Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    CRISPR-Cas12a Gene Editing Technology and Its Application in Agricultural Production
    LUO Gang, CHENG YiYi, YANG Wen, XIAO YiMeng, YANG ChengXi
    Scientia Agricultura Sinica    2025, 58 (7): 1434-1450.   DOI: 10.3864/j.issn.0578-1752.2025.07.014
    Abstract759)   HTML62)    PDF (2162KB)(260)       Save

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (CRISPR- Cas) gene editing technology has not only revolutionized life sciences but also catalyzed transformative advancements in agriculture. As a critical branch of the CRISPR system, the CRISPR-Cas12a system exhibits unique molecular characteristics and distinct application potential in biological breeding and disease diagnosis compared to the classical CRISPR-Cas9 system. Unlike the Type II Cas9 system, the Type V Cas12a protein possesses a single RuvC-like nuclease domain, contrasting sharply with the dual HNH-RuvC nuclease domains of Cas9. Cas12a generates staggered double-strand breaks (DSBs) in target DNA while retaining the CRISPR RNA (crRNA) and Cas12a-formed "R-loop". The preservation of this R-loop constitutes the the structural basis for the collateral cleavage activity inherent to the CRISPR-Cas12a system, which underpins its utility in developing nucleic acid and small molecule detection technologies. Recognizing thymine-rich protospacer adjacent motifs (PAMs), CRISPR-Cas12a acts as a powerful complement to existing CRISPR-Cas systems. Its crRNA-dependent autonomous processing mechanism, distinct from the tracrRNA-dependent system of Cas9, offers superior advantages in multiplex gene editing. These features have driven breakthroughs in crop genetic improvement, including the successful development of disease-resistant and high-yield commercial crop varieties. In basic research, catalytically inactive Cas12a (dCas12a) fused with transcriptional regulators or epigenetic modifiers enables precise gene expression regulation without inducing DSBs. Furthermore, its integration with isothermal amplification techniques allows for visual disease detection.This review systematically introduced the CRISPR-Cas12a system from multiple perspectives: (1) classification of Type V Cas proteins, (2) mechanistic principles of Cas12a in bacterial immunity, and (3) functional domains of the Cas12a-crRNA complex. A comparative analysis between CRISPR-Cas12a and CRISPR-Cas9 was conducted across four dimensions: crRNA processing mechanisms, structural-functional features of Cas effectors, editing efficiency, and application scenarios. Additionally, the regulatory systems of CRISPR-dCas12a and CRISPR-dCas9 were evaluated regarding gene expression modulation, epigenetic editing, and base editing. The review also elucidated the molecular detection principles of CRISPR-Cas12a in targeting nucleic acids, proteins, and small molecules, as well as its agricultural applications in gene regulation, base editing, pathogen detection, disease diagnosis, and bio-breeding.With the emergence of safer non-DSB- dependent technologies such as prime editing, the CRISPR-Cas12a system was poised to play an increasingly vital role in crop precision breeding, livestock genetic improvement, and rapid clinical diagnostics. These advancemented promise innovative solutions to global food security challenges and infectious disease control, further cementing CRISPR-Cas12a as a cornerstone tool in agricultural biotechnology and molecular medicine.

    Table and Figures | Reference | Related Articles | Metrics
    Scientia Agricultura Sinica    2025, 58 (20): 0-.  
    Abstract617)      PDF (312KB)(74)       Save
    Related Articles | Metrics
    Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse
    ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao
    Scientia Agricultura Sinica    2025, 58 (5): 975-990.   DOI: 10.3864/j.issn.0578-1752.2025.05.012
    Abstract597)   HTML19)    PDF (2262KB)(221)       Save

    【Objective】The objective of this research is to clarify the effects of LED supplementary lighting on production and leaf physiological characteristics of substrate-cultivated strawberry, and develop a light control strategy for strawberry cultivation in Chinese solar greenhouses, which will provide theoretical basis and technical support for improving the quality and efficiency of strawberry cultivation in winter and spring seasons in China when solar radiation is low.【Method】Strawberry cultivar ‘HongYan’ was grown in a Chinese solar greenhouse with substrate cultivation, and LED supplementary lighting was provided during the early stage of flower bud differentiation (lamps were installed approximately 15 cm above the canopy). The experiments were set up with different light intensity experiments (photosynthetic photon flux density (PPFD) of 254, 367, and 492 μmol·m-2·s-1, corresponding to the power of 80, 120 and 160 W, respectively), the different light quality experiments (red/blue 9/1, red/blue 1/1, and white light, PPFD of 360-390 μmol·m-2·s-1, with the same power of 120 W), and the different supplementary lighting duration and control strategy experiments (i.e. dynamic supplementary lighting for 10 h and continuous supplementary lighting for 5 h, referred to as DL10 and CL5 hereafter, respectively, both using 120 W white LED, PPFD of 367 μmol·m-2·s-1, lamp on/off strategy of DL10 treatment was the same as the light intensity and quality experiments, lamp of CL5 treatment was continuously turned on during the time period of 8: 00-13: 00), and the control was no supplementary lighting treatment. During the experiment, strawberry production, physiological and biochemical index of leaves and fruits, as well as the leaf photosynthetic parameters were measured, and the power usage efficiency was also analyzed.【Result】Compared with the control, all supplementary lighting treatments increased strawberry yield and accelerated harvest time by ~10 d. In the light intensity experiment, the yield of 160 W treatment increased by 41.9%, which was slightly but not significantly higher than that of 80 W and 120 W treatments. In the light quality experiment, the yield of red/blue 9/1, red/blue 1/1 and white light treatments increased by 55.9%, 44.1%, and 33.1%, respectively, compared to the control. In addition, the yield of DL10 treatment increased by 16% compared to CL5 treatment. Supplementary lighting increased yield due to the higher number of fruits per plant. Supplementary lighting reduced fruit water content and increased leaf thickness, but had no significant effect on leaf physiological and biochemical parameters. Supplementary lighting in the morning and afternoon significantly improved stomatal conductance, which was beneficial for photosynthesis. However, in the light intensity experiment, the maximum photosynthetic capacity of the leaves treated with 160 W was significantly lower than that of 120 W treatment, and the stomatal conductance was also lower than that of the control. Regarding the power usage efficiency, red/blue 9/1 (120 W) treatment was the highest, while the 160 W white light was the lowest among all treatments. The power usage efficiency of DL10 treatment was 2.6 times that of CL5 treatment.【Conclusion】Supplementary lighting can significantly improve strawberry production and accelerate harvest time in winter and spring seasons when solar light is limited, appropriate supplementary light intensity is crucial for yield formation, and supplementing with a high fraction of red light has the best effect on strawberry production, dynamic supplementary light control strategy can significantly improve the power usage efficiency.

    Table and Figures | Reference | Related Articles | Metrics
    The Function of OsDREB1J in Regulating Rice Grain Size
    WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei
    Scientia Agricultura Sinica    2025, 58 (8): 1463-1478.   DOI: 10.3864/j.issn.0578-1752.2025.08.001
    Abstract572)   HTML75)    PDF (3410KB)(395)       Save

    【Objective】 The AP2/ERF (APETALA2/ethylene responsive factor) superfamily is a group of transcription factors that play important regulatory roles in plant growth and development, as well as in response to adverse environmental stressors. The AP2/ERF transcription factors are widely present and have many members in plants. Exploring the function of AP2/ERF family gene on grain size provides important genetic resources for regulating grain shape in rice. 【Method】OsDREB1J gene (LOC_Os08g43200) was cloned by homologous recombination, and its basic characteristics, tissue expression characteristics, and the relative expression patterns under plant hormones were analyzed by bioinformatics and qRT-PCR. The transactivation activity and subcellular localization of OsDREB1J were analyzed by yeast heterologous expression, transient expression of rice protoplasts and tobacco. The overexpression and knockout mutant transgenic rice plants of OsDREB1J were obtained by genetic transformation system, and the grain size phenotypes were analyzed by phenotypic analysis technology. 【Result】Subcellular localization analysis showed that OsDREB1J was localized in the nucleus. Bioinformatics showed that the full-length coding sequence of OsDREB1J was 711 bp, encoding 236 amino acids. OsDREB1J protein had no transmembrane structure, and the molecular weight of 27.47 kDa, the theoretical isoelectric point of 5.54, and had a conserved AP2 domain unique to the AP2/ERF family. The cis-acting elements analysis of OsDREB1J promoter showed that the promoter contained cis-acting elements related to hormone response, light and stresses response. The qRT-PCR analysis showed that OsDREB1J was expressed in different tissues of rice with no tissue specificity, and the relative expression level in panicle was the highest. At the same time, OsDREB1J was induced or reduced by different hormone. Transcriptional activation analysis showed that the full-length of OsDREB1J has no transcriptional activity, but the C-terminal fragment was sufficient for the transactivation ability. Phenotypic analysis showed that the grain length, length-width ratio and thousand grain weight of osdreb1j mutant were significantly higher than those of ZH11, OsDREB1J overexpression transgenic rice plants displayed opposite phenotypes, while changing the expression of OsDREB1J did not affect rice grain width. These results show that OsDREB1J may affect grain size by regulating cell length rather than cell proliferation and cell expansion. 【Conclusion】In conclusion, OsDREB1J may be involved in regulating rice grain size through hormone signaling pathway.

    Table and Figures | Reference | Related Articles | Metrics
    Research Progress and Prospects on Crop Pan-Genomics
    WANG Hui, DING BaoPeng, LI YuXian, REN QuanRu, ZHOU Hai, ZHAO JunLiang, HU HaiFei
    Scientia Agricultura Sinica    2025, 58 (11): 2045-2061.   DOI: 10.3864/j.issn.0578-1752.2025.11.001
    Abstract570)   HTML51)    PDF (1774KB)(288)       Save

    The global population continues to rise and climate change imposes severe challenges on food supply, the issue of food security has become increasingly prominent. To meet the growing demand for food, enhancing crop yield and improving environmental adaptability have become critical goals in agriculture. Under this situation, genomics is regarded as an essential method for accelerating crop breeding, as it enables the in-depth exploration and utilization of superior functional genes to not only boost crop productivity but also strengthen stress tolerance and adaptability, thereby providing robust support for ensuring global food security and achieving sustainable agricultural development. Nonetheless, the traditional single-reference genome often fails to capture the entire spectrum of genomic variations accumulated during crop domestication and improvement, which constrains our understanding of functional genes and their regulatory networks. With the continual advancement of high-throughput sequencing technologies, genomics research has now entered the pangenomics era. By integrating multiple high-quality genomes into a comprehensive catalog of genomic content, researchers can precisely identify a variety of genetic variations, including single nucleotide polymorphisms (SNPs) and structural variations (SVs), thereby capturing the extensive genetic diversity present across different cultivars, subspecies, and wild relatives. Pangenomics framework greatly facilitates the exploration of superior functional genes. Moreover, by combining pangenomic data with other multi-omics datasets (e.g., transcriptomics, proteomics, and epigenomics), researchers can accurately identify superior functional genes, enabling the provision of more targeted and accurate genetic loci for molecular breeding. With emerging gene-editing tools such as CRISPR-Cas9, researchers can further modify essential genetic loci in a directed manner to remove undesirable traits or reinforce resistance to environmental stressors. This will lay a foundation for cultivating the next generation of crops that exhibit higher yield, improved quality, and enhanced resilience. This review summarizes recent developments in major pangenome construction methods and formats, and systematically reviews the progress made in crop pangenomes as well as their applications in crop breeding improvement. It also discusses the challenges pangenomics faces in future crop breeding, offering insights into leveraging pangenome resources for crop genetic improvement, and ultimately provides new perspectives and strategies for future molecular breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Physiological Characteristics in Response to Salt Stress and Allelic Variation and Expression of Salt-Responsive Genes in Seedling Stage of Nangeng Rice Varieties with Salt-Tolerance Ability
    DENG LiCheng, LI Cheng, HE Lei, AN HongQiang, WANG CaiLin, ZHANG YaDong, ZHAO ChangJiang, LU Kai
    Scientia Agricultura Sinica    2025, 58 (12): 2275-2290.   DOI: 10.3864/j.issn.0578-1752.2025.12.001
    Abstract565)   HTML58)    PDF (2427KB)(246)       Save

    【Objective】Salt stress is one of the main environmental stresses that restrict rice production. Studying the physiological characteristics under salt stress and analysis the allelic variation and expression of salt-tolerance genes provide key gene resources and genetic materials for breeding salt-tolerance rice varieties. 【Method】This study first evaluated the salt-tolerance ability of the Nangeng series high-quality rice varieties/lines during the seedling stage, using survival rate as an indicator for screening salt-tolerance varieties, which physiological changes under salt stress were analyzed, including chlorophyll, Na+, K+, MDA, H2O2 and soluble sugar. The variation types and expression levels of salt-tolerance genes in rice varieties with resistance to high salt concentration were also analyzed to explaining their molecular mechanisms in response to salt stress. 【Result】Under the condition of treating with 140 mmol·L-1 NaCl for 6 days, the survival rates of NG9108, NG5718, and NGY1 were greater than 60%, with the highest survival rate among the tested varieties. Compared with Nipponbare, the seedlings of NG9108, NG5718, and NGY1 under salt stress had higher chlorophyll content and lower MDA content, indicating that salt stress caused less cell damage to the three varieties. The Na+/K+ values in the roots of NG9108, NG5718, and NGY1 were significantly higher than those in Nipponbare, while the Na+/K+ values in the aerial parts were significantly lower than those in Nipponbare, implying that the three varieties absorb or store more Na+ in roots, but transport less Na+ upwards, which is beneficial for maintaining cell ion balance and causing less ion toxicity and osmotic stress in aerial parts of the seedlings. The three salt-tolerance varieties have 94 SNPs or InDel sites, distributing in exons, introns, 5′UTR, and 3′UTR of the 23 salt-tolerance genes. 24 variation sites of 11 genes occur in the exons, including 7 genes with frameshift mutations or missense mutations which distributed in Os02g0813500 (OsGR2), Os05g0343400 (OsWRKY53), Os06g0685700 (OsRST1), Os07g0685700 (OsEIL2), Os10g0431000 (OsPQT3), Os11g044600 (OsRSS3), Os12g0150200 (P450). Salt stress significantly induces expression of OsSKC1, OsBAG4, OsGPX1, OsCCX2, OsGR3, OsDREB2a, OsRAB21, OsP5CS, OsbZIP23, OsAPX37 and OsLEA3, which help to enhance salt tolerance and reduce the adverse effects of salt damage on rice growth. 【Conclusion】NG9108, NG5718 and NGY1 showed strong salt tolerance phenotype during the seedling growth stage, which is closely related to the balance of sodium and potassium ions under salt stress, allelic variations of multiple salt tolerance genes, and gene expression levels. NG9108, NG5718 and NGY1 have pyramided multiple salt tolerant and high-quality genes, which can be used as backbone parents for genetic improvement and breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Effects on Pollen Release Related Traits of the Differential Genotypes Indica by High-Temperature Stress at Anthesis
    DU SiQi, WEN YuLun, NING LiXing, YIN XiaoYu, WANG ShuFen, SONG HaiYan, WANG ZhaoHai, LI WeiXing, LIAO JiangLin
    Scientia Agricultura Sinica    2025, 58 (10): 1867-1877.   DOI: 10.3864/j.issn.0578-1752.2025.10.001
    Abstract561)   HTML66)    PDF (8176KB)(370)       Save

    【Objective】 To elucidate the causes of high-temperature stress inducing rice floret infertility, the present study analyzed the effects of high-temperature stresses on pollen release related traits including pollen grain swelling, anther dehiscence, pollen grain residue in anther and pollen grain deposition on the stigma of the differential genotypes Indica at anthesis. 【Method】Indica germplasms were sown in batches and cultivated in the Nanchang region, Jiangxi Province, China. The rice plants flowering at natural high-temperature environments on early August with 36.5-37.8 ℃ canopy temperature was used as treatments, and the rice plants flowering at suitable environments on middle September with 30.8-32.5 ℃ canopy temperature were used as controls. The pollen release related traits, such as pollen grain swelling, anther dehiscence, pollen grain residue in anther and pollen grain deposition on the stigma from treatments and controls, were detected and analyzed. 【Result】 After flowering under high-temperature stress, the rice germplasms Jiangxijiansimiao, Yuexiangzhan and Huangguangyouzhan show high-temperature tolerant at anthesis, and the floret fertility rates are 91.6%, 89.2% and 87.9%, respectively; while the germplasms Zhenfu, Yuzhenxiang, IR64 and Miyang46 show high-temperature sensitive at anthesis, and the floret fertility rates are just 55.2%, 60.3%, 61.1% and 73.2%, which are very significantly or significantly lower than that of its corresponding controls. Under high-temperature environments, the pollen grain swelling rates for the high-temperature sensitive germplasms Zhenfu, Yuzhenxiang, IR64 and Miyang46 are just 1.99%, 1.16%, 1.12% and 2.70%, which are very significant smaller than that of its corresponding controls; while the pollen grain swelling rates of the other germplasms show no significant difference between treatment and its corresponding control. Under high-temperature environments, the rates of anther dehiscence length in total anther length for the high-temperature sensitive germplasms Zhenfu, Yuzhenxiang, IR64 and Miyang46 are respective 66.0%, 45.4%, 48.7% and 63.6%, which are very significantly or significantly shorter than that of the corresponding controls, and the pollen grain residue are obvious more than that of the corresponding controls; while the anther dehiscence length rates and the pollen grain residue from the other germplasms show no significant difference between treatments and controls. After flowering under high-temperature environments, the average pollen grain number deposited on one stigma of the sensitive germplasms were about 20, which were significant less than that of the controls; while the average pollen grain number deposited on one stigma of the other rice germplasms show no significant difference between treatments and controls. 【Conclusion】 The high-temperature stresses inhibit the pollen grain swelling, effect the anther normal dehiscence, increase the pollen viscidity to impede the pollen grain releasing from anther and decrease the pollen grain number scattering on the stigma, inducing rice floret infertility and decreasing the seed set.

    Table and Figures | Reference | Related Articles | Metrics
    The Dilemma and Way Out of Patent Regulation for Gene-Edited Crops
    XU YiHeng
    Scientia Agricultura Sinica    2025, 58 (5): 831-839.   DOI: 10.3864/j.issn.0578-1752.2025.05.001
    Abstract550)   HTML36)    PDF (390KB)(383)       Save

    Gene-edited crops, the product of the intersection between biotechnology and agricultural science, represent a crucial direction in the development of modern agriculture. With the rapid advancement of the CRISPR-Cas9 system, the scientific research and commercial development of crop trait improvement have gradually shifted towards a “technology-driven” path, which has not only overturned traditional crop cultivation methods but also fundamentally propelled humanity’s exploration of crop research. Nevertheless, the phenomenon of patenting fundamental research tools has sparked widespread controversy within academia and profoundly impacted the sharing and utilization of crop resources. Private entities patenting CRISPR-Cas9 technology restrict other researchers and farmers’ opportunities to explore and harness genetic resources. This practice not only hinders scientific progress but also violates the fundamental consensus that genetic resources should be shared by all humanity. The sharing and openness of crop resources are crucial for the sustainable development of global agriculture and ecological balance, serving as a necessary condition for safeguarding public interests. A key issue that the governance of biotechnology patents urgently needs to address is how to reasonably allocate benefits and risks among traditional communities, researchers, research investors, and the public. This is also essential for constructing a new scientific ethics framework and regulating emerging technologies. However, China’s policy responses in this area are still insufficient. To mitigate the negative effects stemming from the exclusivity of patents, it is imperative to reassess and reconstruct the framework of relevant systems. Firstly, we should adhere to the principle of moral utility, emphasizing the public nature of scientific research and its social responsibilities, while carefully considering the “harmful” nature of inventions to social morality. Secondly, implementing a mandatory disclosure system for biological genetic resources is a crucial step towards achieving transparency and fairness, with “applicants truthfully disclosing the actual origin of crop genes based on the principle of good faith” elevated to a mandatory norm. Lastly, the open licensing of fundamental patented technologies can draw inspiration from the experience of open-source software, encouraging more researchers to participate in the exploration of crop resources through the open sharing of research tools, thereby facilitating broader scientific collaboration and the transformation of research outcomes.

    Reference | Related Articles | Metrics
    Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds
    XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi
    Scientia Agricultura Sinica    2025, 58 (7): 1259-1268.   DOI: 10.3864/j.issn.0578-1752.2025.07.001
    Abstract546)   HTML81)    PDF (1722KB)(230)       Save

    【Objective】Cadmium (Cd) is the predominant pollutant in China’s arable land, with rice cultivated on these contaminated soils being a significant dietary source of Cd for the population. This study aims to tissue-specifically express OsNRAMP5, a transporter responsible for the majority of Cd uptake in rice, to investigate strategies for developing low-Cd rice varieties and provide a reference for molecular design breeding to cope with Cd pollution. 【Method】To drive the expression of OsNRAMP5 in rice, we utilized a 2 500 bp sequence upstream of the OsLCT1 start codon as the promoter. The red fluorescent protein mRFP was fused to the C-terminus of OsNRAMP5 to visualize its tissue localization. After obtaining independent homozygous transgenic lines, the transcripts of the OsNRAMP5 were first detected using qRT-PCR, and its tissue localization in roots and nodes was observed via laser confocal microscopy. Subsequently, the accumulation and tolerance of Cd were evaluated in transgenic and wild-type rice under varying concentrations of Cd treatment. Furthermore, plants were grown in Cd-contaminated paddy soil, and the accumulation of Cd and other mineral elements in seeds and leaves, as well as related yield traits, were measured. 【Result】Under the drive of the OsLCT1 promoter, OsNRAMP5 was expressed mainly in the epidermis, exodermis and stele of roots, as well as in the phloem area of enlarged vascular bundles and diffuse vascular bundles in nodes, differing significantly from the native expression pattern of OsNRAMP5 in rice. Compared to wild-type rice, the transgenic lines exhibited increased Cd accumulation in roots, decreased Cd accumulation in shoots, and enhanced tolerance to Cd stress during the seedling stage. When cultivated in Cd-contaminated paddy soils, plant height and grain yield were unaffected by the ectopic expression of OsNRAMP5, while Cd accumulation in seeds and leaves significantly decreased in the transgenic lines. The Cd content in seeds decreased by over 80%, with a greater reduction ratio compared to that in leaves. Although the Mn content in seeds and leaves slightly decreased, the expression of OsNRAMP5 had little impact on the accumulation of other mineral elements such as Fe, Zn, and Cu. 【Conclusion】The expression of OsNRAMP5 driven by the OsLCT1 promoter greatly decreases the Cd migration toward rice seeds by reducing Cd transport to the aboveground parts from roots and increasing the Cd transporting to leaves at nodes. Therefore, the expression of OsNRAMP5 under the control of the OsLCT1 promoter is an effective strategy to reduce Cd accumulation in rice seeds.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population
    LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun
    Scientia Agricultura Sinica    2025, 58 (9): 1663-1683.   DOI: 10.3864/j.issn.0578-1752.2025.09.001
    Abstract498)   HTML86)    PDF (9359KB)(1044)       Save

    【Objective】 Wheat is a cornerstone of global food security, with its production being pivotal in both China and the international community. With global climate change, the threat of high temperature has become increasingly prominent, posing a significant challenge to wheat cultivation. The strategic identification and selection of heat-tolerant germplasm, coupled with the exploration of genes associated with heat resistance, are crucial steps. These efforts are essential for broadening the genetic diversity of heat tolerance in wheat within China, providing prerequisites for breeding heat-tolerant wheat varieties and ultimately contributing to the safeguarding of our nation’s food security in the face of a warming climate. 【Method】 In this study, a natural population of 331 wheat accessions was utilized, and artificial climate chambers were employed to simulate high temperatures conditions. The heat tolerance of wheat seedlings was assessed by monitoring their survival rate under various durations of treatment, using heat resistance grade as the evaluative metric. Meanwhile, a genome-wide association study (GWAS) was conducted using the 55K SNP chip to identify genetic loci associated with heat tolerance. Expression data from multiple tissues, including roots, leaves under heat stress were analyzed, leading to the selection of genes related to heat tolerance. Subsequently, qPCR validation of candidate genes was performed using the extremely heat-tolerant accession Xinong 889 and the heat-sensitive accession Chinese Spring (CS) as materials. 【Result】 Under high-temperature stress, significant variations in survival rates were observed among different wheat accessions. The extremely heat-tolerant, moderately heat-tolerant, moderately heat-sensitive, and extremely heat-sensitive germplasm accounted for 110, 104, 110, and 7, respectively, representing 33.23%, 31.42%, 33.23%, and 2.12% of the total. Heat-tolerant germplasms, including Xinong 889, Zhengmai 7698, Zhongmai 895, Zhoumai 18, and Fengchan 3, were identified. Through GWAS, a total of 293 SNP loci significantly associated with the 12-hour survival rates (SR) and heat resistance grades (HRG) were detected, with the phenotypic variation explained ranging from 4.40% to 12.46%. Among these, 200 loci were related to the 12-hour survival rates, and 257 were related to the heat resistance grades, with 164 loci identified as the same heat-related loci. Based on significantly associated SNP markers, 313 heat-related genes were predicted. According to gene annotation information and expression data under heat stress, 23 heat tolerance candidates were selected, and after qPCR validation of differentially expressed candidate’s genes, 20 key heat tolerance candidate genes were identified. 【Conclusion】 At the seedling stage, 331 wheat germplasms were identified for heat tolerance. A rapid method was developed for determining the survival rate of wheat seedlings subjected to treatments of varying durations at 45 ℃ to assess their heat tolerance In total, 38 heat-tolerant germplasms and 293 loci significantly associated with seedling heat tolerance were screened. Also, TraesCS1A02G355900, TraesCS1A02G389500, TraesCS5A02G550700, TraesCS5D02G557100, TraesCS6D02G402500 and TraesCS7A02G232500 represented as candidate genes were filtered out.

    Table and Figures | Reference | Related Articles | Metrics
    Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean
    LIU LuPing, HU XueJie, QI Jin, CHEN Qiang, LIU Zhi, ZHAO TianTian, SHI XiaoLei, LIU BingQiang, MENG QingMin, ZHANG MengChen, HAN TianFu, YANG ChunYan
    Scientia Agricultura Sinica    2025, 58 (5): 840-850.   DOI: 10.3864/j.issn.0578-1752.2025.05.002
    Abstract492)   HTML37)    PDF (1308KB)(262)       Save

    【Objective】Maturity time is an essential phenotypic measure of ecological adaptability of soybean and an important trait related to its yield formation. The study of promoters and expression patterns of major maturity genes E1 and E2 would provide basis for the study of gene function and molecular regulatory network of maturity time and lay foundation for adaptability improvement and yield increase in soybean.【Method】The promoter sequences of major maturity genes E1 and E2 were analyzed through the promoter cis-element analysis website PlantCARE, and the important regulatory elements were detected. The promoters of E1 and E2 were cloned, the GUS vectors were constructed, and transformation of Arabidopsis was performed to detect GUS activity in different tissues and organs of transgenic plants. Under low light and strong light conditions, the expression levels of E1 and E2 were compared between long day and short day conditions. The expression levels of E1 and E2 were detected in soybean varieties of different maturity groups, which is for the analysis of correlation between expression levels and maturity time of soybean varieties.【Result】Both E1 and E2 promoters contained multiple photoresponsive elements such as AE-box, Box4 and G-box, E1 promoter also contained auxin-response, abolic acid-response elements, and E2 promoter also contained low temperature-response, drought-response elements and meristem expression elements. In GUS activity detection of transgenic Arabidopsis, E1 promoter had strong transcriptional activity in all organs of the plant, and transcriptional activity of E2 promoter in fibrovascular tissues of seedling hypocotyl, leaf and root was relatively strong. Under both low light and strong light conditions, the expression level of E1 was significantly higher in long day than in short day. Under low light conditions, the expression level of E2 was higher in short day than in long day. Under strong light conditions, the expression level of E2 was higher in long day than in short day. With the increase of maturity time of different soybean varieties, expression level of E1 increased gradually, while E2 expression level did not change regularly.【Conclusion】The promoter of E1 gene was a widely expressed promoter, and its expression level was significantly regulated by photoperiod and significantly correlated with the maturity time of soybean varieties. The promoter of E2 was strongly expressed in vascular tissues of various organs, the photoperiodic regulation mode of this gene was different under strong light and low light conditions, and there was no significant correlation between expression level of E2 and maturity time.

    Table and Figures | Reference | Related Articles | Metrics
    Research on Ecological Protection Strategy for Comprehensive Utilization of Saline-Alkali Soil in China
    LÜ GuoHua, WANG QingSuo, SONG JiaShen, LI YuYi, MEI XuRong
    Scientia Agricultura Sinica    2025, 58 (20): 4047-4053.   DOI: 10.3864/j.issn.0578-1752.2025.20.002
    Abstract486)   HTML44)    PDF (370KB)(333)       Save

    This study provided a systematic review of the ecological issues arising from the development of saline-alkali land in China. These included secondary salinization, the formation of groundwater depression cones, wetland shrinkage and functional degradation, and reduction in natural vegetation, as well as high remediation costs and pollution risks. In addition, it clarified the technological development pathways for the comprehensive utilization of saline-alkali land. These pathways encompassed four major directions: targeted strategies under a systematic management approach, cost-effective remediation under new ecological requirements, dual-force development through land-crop synergy, and specialized agriculture aligned with the broader concept of food. Furthermore, the study proposed an integrated strategy to strengthen the comprehensive management of saline-alkali lands, including emphasizing zonal rehabilitation of saline-alkali farmland, establishing a collaborative innovation system, and advancing fundamental theories and key technologies for sustainable utilization. It also recommended developing a tiered land-use model to support pilot programs for reserve resources and cultivated land, promoting specialized agriculture, enhancing productive capacity, advancing water-adapted planting, fostering innovation in water-saving agricultural technology, and strengthening ecological monitoring and impact assessment. This study provided the theoretical foundation and strategic support for ecological protection in the comprehensive utilization of saline-alkali land in China.

    Reference | Related Articles | Metrics
    Research Progress on Mechanisms Interpretation and Prediction Methods for Heterosis of Livestock
    SUN YanYan, NI AiXin, YANG HanHan, YUAN JingWei, CHEN JiLan
    Scientia Agricultura Sinica    2025, 58 (5): 1017-1031.   DOI: 10.3864/j.issn.0578-1752.2025.05.015
    Abstract484)   HTML49)    PDF (1252KB)(828)       Save

    Heterosis is a phenomenon where the offspring of genetically distinct populations exhibit superior vitality, reproductive capacity, and adaptability compared with the average of their parent populations, which is an important genetic resource. Heterosis plays a significant role in modern agriculture, contributing to increase yields and quality of livestock and crops, rapidly improve traits, accelerate the breeding of new varieties, and enhance genetic diversity, thereby efficiently boosting the production of animal husbandry and agriculture while reducing costs. Despite the discovery of heterosis is over a century ago, the elucidation of its genetic basis lags far behind its application in agricultural production. The study of the complex formation mechanism of heterosis is a classic and an active topic in the field of genetics and breeding, but the clear conclusions remain limited. In response to the characteristics of heterosis, scientists have successively proposed various hypotheses for its formation, such as the dominance hypothesis, overdominance hypothesis, and epistasis hypothesis, revealing that the genetic basis of heterosis was non-additive genetic effects. However, these hypotheses are based on the effects of single genes, which are overly idealized and simplistic. Explorations at different levels, such as DNA, RNA, and proteins, have successively discovered the coexistence of multiple genetic effects. Particularly in hybrid crops like rice and corn, the related researches have been continuously identified the loci of heterosis effects, enriched the understanding of the formation mechanism for heterosis in crops, and promoted the transformation of crop breeding technologies, such as precise molecular design breeding. Heterosis is also widely applied in the breeding of livestock and poultry. In developed countries with advanced animal husbandry, over 80% of commercial pork, chicken, and eggs are obtained from hybrid breeds. To efficiently apply heterosis in production for animal husbandry, it is necessary to predict heterosis in advance. New methods, such as the inter- and intra-group phenotypic variance ratio prediction, hybrid heritability prediction, and molecular marker prediction, have been developed to solve the long experimental cycle, environmental sensitivity, and high human and financial costs associated with traditional hybridization experiments for predicting heterosis. However, the accuracy of these prediction methods is limited. Heterosis involves in interaction of multiple levels, and because of the complex genetic background and long breeding cycle, it is still a big challenge for the study of the heterosis formation mechanism and accurate prediction methods. In recent years, the gradual application of sequencing technology has provided a new perspective for understanding the molecular regulatory network of heterosis in livestock and poultry. QTL mapping and genome-wide association study reveal the molecular mechanism of heterosis at the genomic level, and the identified molecular makers are applied in selection and breeding. Combined with multi-omics researches, such as transcriptomics and metabolomics, the key functional genes, variations, and metabolites affecting heterosis can be more precisely located, which facilitate hybrid improvement. This review elaborated the research progress in the formation mechanism and prediction methods for heterosis in the field of livestock and poultry. For looking forward to future, the researches will gradually clarify the complex mechanism of heterosis by integrating multi-omics sequencing data and bioinformatics analysis, in order to identify genes and molecular markers related to heterosis, and innovate new prediction methods, which will provide a more accurate direction for the utilization of heterosis.

    Table and Figures | Reference | Related Articles | Metrics
    Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode
    TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen
    Scientia Agricultura Sinica    2025, 58 (6): 1102-1115.   DOI: 10.3864/j.issn.0578-1752.2025.06.005
    Abstract483)   HTML20)    PDF (551KB)(218)       Save

    Cotton production in Xinjiang is transforming from high input of production materials to green, high efficiency and light simplification. This paper analyzed the existing issues as well as advantages and disadvantages of cotton production in Xinjiang under the green and high efficiency mode of production, so as to understand the current situation of cotton production in Xinjiang, explore ways and means to improve the yield per unit area, and put forward suggestions and countermeasures for improving the yield per unit area. This paper provided a detailed analysis of the current status of green and efficient cotton production in Xinjiang in recent years, focusing on resource conditions, mechanization levels, and management practices. Specifically, the utilization rate of chemical fertilizers was close to 40%, the area under drip irrigation exceeded 1.86 million hm2, the recovery rate of plastic films from farmland in the current season reaches 80%, the comprehensive mechanization rate for tillage, sowing, and harvesting attained 94.5%, locally developed cotton varieties accounted more than 90% of the market share across Xinjiang, and the average managed area per cotton farmer reached 20 hm2. These achievements demonstrated efficient resource utilization, enhanced production efficiency, and standardized and normalized management. However, these challenges remained, which included drip irrigation systems and technologies that lagging behind the demands of modern agriculture, excessive inputs of fertilizers, pesticides, and plastic films, inadequate implementation of technologies with poor alignment with regional needs, and a lack of environmental-friendly concepts among cotton farmers. Therefore, it was quite challenging to maintain green and efficient production while also increasing cotton yield per unit area. It was recommended to improve the efficiency of water utilization by modifying drip irrigation systems and refining technological models, fostering superior crop populations to boost yield. We should optimize the input of fertilizers, pesticides, and plastic films, apply fertilizers rationally, prevent the abuse of pesticides, and intensify the management of residual plastic films, supporting yield enhancement through the improvement of resources and the environment. Efforts should be made to ensure the implementation of technologies aligned with regional needs, advocating for green development concepts and guaranteeing sustainable yield enhancement through changes in management and mindset. To achieve high-quality development of cotton in Xinjiang, it was essential to leverage regional characteristics and scale advantages, making production more specialized. We should refine, improve, integrate, and innovate technologies in production details, promoting sustained and healthy economic and ecological development in Xinjiang's cotton regions through green and efficient cotton planting.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape
    YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun
    Scientia Agricultura Sinica    2025, 58 (7): 1397-1417.   DOI: 10.3864/j.issn.0578-1752.2025.07.012
    Abstract466)   HTML94)    PDF (6666KB)(201)       Save

    【Objective】Based on grape genome information, this study identifies and analyzes the terpene synthase (TPS) gene family expression in grapes using bioinformatics methods. This research lays an important foundation for subsequent studies on the biological functions of VvTPSs and grape breeding. 【Method】The VvTPS gene family was identified using the protein sequences of Arabidopsis AtTPS gene family members and the reported Hidden Markov model (HMM) files PF01397 and PF03936. Various bioinformatics tools, including Expasy, Tbtools, MEME, MEGA, MCScanX, SPOMA, WoLF PSORT, and PlantCARE were used to analyze the physicochemical characteristics, phylogenetic tree, chromosomal distributions, gene structure, subcellular localization, secondary structure of protein, and cis-acting elements in the promoters of gape TPS family genes. Additionally, the expression profiles of TPS genes in two aromatic grape varieties Red Globe (neutral) and Muscat Hamburg (muscat) were analyzed using qPCR. The transgenic tomato overexpressed VvTPS4 was used to study its function in influencing the muscat aroma by metabolomics. 【Result】A total of 65 VvTPS gene family members were identified, encoding proteins ranging from 339 to 840 amino acids, with an average molecular mass of 64.13 kDa and theoretical isoelectric points of 4.93 to 7.65. Most members have 7 exon structures. Phylogenetic analysis classified the grape TPS genes into five subfamilies: TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g. Subcellular localization analysis indicated that most VvTPS proteins are localized in chloroplasts and cytoplasm, with 10 members from the TPS-g subfamily found in plastids. Promoter analysis revealed numerous cis-acting elements associated with responses to light, temperature, drought, hormones, and defense mechanisms. Of the 29 VvTPS genes cloned, most showed higher expression levels in the muscat-flavored grape variety compared to the non-aromatic variety. In transgenic tomatoes overexpressing VvTPS4, volatile monoterpenoids were significantly accumulated, with linalool levels increasing 20.73-fold and L-α-terpineol levels rising 14.55-fold compared to the wild type. Flavor characteristics analysis demonstrated these two compounds have floral aroma and are the main characteristic substances affecting the aroma of muscat fragrance.【Conclusion】Sixty-five VvTPS genes were identified in grapes, showing high conservation with some variations. Several TPS genes showed significantly expressed in muscat-flavored grape varieties. Overexpression of VvTPS4 led to a significant increase the accumulation of volatile monoterpenoids, which may play an essential role in developing the muscat aroma in grapes.

    Table and Figures | Reference | Related Articles | Metrics
    Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast
    JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei
    Scientia Agricultura Sinica    2025, 58 (6): 1043-1051.   DOI: 10.3864/j.issn.0578-1752.2025.06.001
    Abstract453)   HTML53)    PDF (1873KB)(235)       Save

    【Objective】 Rice blast is one of the most devastating diseases of rice production. A broad-spectrum disease resistance gene Pigm-1 was identified but its functional pathway and interactors are unknown. The screening and identification of key proteins in the Pigm-1 signaling pathway will provide an important theoretical basis for rice disease resistance breeding. 【Method】 In this study, the decoy protein pGBKT7-Pigm-1-CC1-576 vector was constructed to detect the decoy protein self-activation, and the toxicity of the decoy protein was detected by separately transforming the plasmid pGBKT7 and pGBKT7-Pigm-1-CC1-576 into Y2H Gold yeast. The rice disease resistance R protein Pigm-1 was screened by cDNA expression yeast library induced by rice blast fungus. The sequencing results were compared and annotated by Rice Information GateWay (RIGW). The interaction of OsbHLH148 protein was verified by Luc, Co-IP and yeast two-hybrid assays, and the tissue expression of the corresponding gene of the interaction protein OsbHLH148 was analyzed by qRT-PCR. 【Result】 The self-activation test showed that the decoy protein pGBKT7-Pigm-1-CC1-576 did not self-activate when cotransformed with the AD plasmid, and the toxicity analysis showed that the decoy protein had little or no toxicity to yeast cells. A total of 124 proteins that may interact with Pigm-1 were obtained by screening the yeast library, and among these proteins, there are ethylene synthesis related, gibberellin synthesis related, active oxygen species clearly related, enzyme metabolism related, and some function unknown. The interaction between Pigm-1-CC1-576 and OsbHLH148 was verified by Luc, Co-IP and yeast two-hybrid methods. Further analysis showed that OsbHLH148 can be induced by blast fungus infection, and the tissue expression analysis showed that OsbHLH148 expression level was the highest in rice leaves at 6 weeks. 【Conclusion】 In this study, 124 proteins that may interact with Pigm-1 were obtained. One of these proteins, OsbHLH148, was selected and verified to interact with Pigm-1-CC1-576. Suggesting that OsbHLH148 may be involved in Pigm-1 mediated resistance of rice blast.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize
    XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang
    Scientia Agricultura Sinica    2025, 58 (8): 1535-1549.   DOI: 10.3864/j.issn.0578-1752.2025.08.006
    Abstract452)   HTML51)    PDF (1229KB)(251)       Save

    【Objective】 The effects of different nitrogen forms on filling characteristics, grain quality and yield of summer maize were studied, so as to provide the scientific basis for selecting suitable nitrogen fertilizer types and improving the yield and grain quality of summer maize. 【Method】 The experiment was conducted in Taian, Shandong Province from 2022 to 2023. Denghai 605 (DH605) was selected as the experimental material, with a nitrogen application rate of 210 kg N·hm-2. The experiment included five treatments: amide nitrogen (Urea, UREA), nitrate nitrogen (Calcium nitrate, NN), ammonium nitrogen (Ammonium chloride, AN), co-application of nitrate and ammonium nitrogen (1:1, HH), and urea ammonium nitrate solution with a blend of amide nitrogen, nitrate nitrogen, and ammonium nitrogen (2:1:1, UAN). The effects of different nitrogen forms on the yield and quality of summer maize were investigated by determining the grain filling characteristics, grain quality characteristics and grain capacity of summer maize. 【Result】Compared with the conventional application of amide nitrogen in UREA, both the maize yield and grain quality under NN decreased. The maize yield under AN increased, but the grain quality decreased. HH significantly increased maize yield without affecting grain quality. UAN significantly increased maize yield and improved grain quality. Over the two years, the highest maize yield achieved with the co-application of the three nitrogen forms, significantly increasing by 13.7% to 16.3% compared with UREA. The Next the highest maize yield were from AN and HH, which significantly increased maize yield by 5.2% to 6.8% and 7.3% to 10.6%, respectively, compared with UREA. The maize yield under NN decreased by 5.4% to 5.8% compared with UREA. Compared with UREA, the growth amount at the maximum filling rate (Wmax) under UAN was enhanced by 6.3% to 9.7%, and the active filling period (D) was extended by 7.7% to 10.9%. Both AN and HH increased Wmax and prolonged D, thereby promoting the accumulation of grain weight and increasing yield. The Wmax, D, grain filling rate, and dehydration rate of NN were significantly lower than those in the other treatments. The crude protein content was lower with NN and AN, decreasing by 20.6% to 22.0% and 15.2% to 17.4% than that under UREA, respectively. The rude fat content with NN was significantly higher than that of other treatments, increasing by 23.6% to 30.9% than that under UREA. Compared with UREA, UAN improved grain quality, with total starch and amylopectin content increasing by 4.9% to 5.2% and 11.7% to 14.4%, respectively, compared with UREA, and the ratio of amylopectin to amylose increased by 31.0% to 39.1%. The amylose content decreased by 14.1% to 16.8%. The crude protein content of UAN increased by 11.7% to 24.1%. The grain bulk weight under UAN was significantly higher than that under other treatments. 【Conclusion】Compared with the conventional application of amide nitrogen, the treatment with nitrate nitrogen inhibited grain filling, reduced grain weight, and decreased yield. In contrast, ammonium nitrogen or the co-application of multiple nitrogen forms enhanced the grain filling process, increased grain weight, and thereby improved yield. Furthermore, compared with the application of a single nitrogen form, the co-application of three nitrogen forms could achieve a synergistic improvement in both yield and grain quality.

    Table and Figures | Reference | Related Articles | Metrics
    Some Reflections on Modern Science of Agricultural Product Quality
    JI ShengYang, LU BaiYi, LI PeiWu
    Scientia Agricultura Sinica    2025, 58 (9): 1830-1844.   DOI: 10.3864/j.issn.0578-1752.2025.09.012
    Abstract448)   HTML46)    PDF (4327KB)(362)       Save

    Meeting the evolving demands of the public for the nutrition and quality of agricultural products is the eternal driving force and direction for high-quality agricultural development. Science of agricultural product quality has emerged in response to this need, which plays a crucial role in guiding the development of the agricultural industry and supporting rural revitalization. Based on a review of domestic and international research on agricultural product quality, this paper outlined the development history of science of agricultural product quality and introduced the concept of modern science of agricultural product quality. This concept focused on agricultural products such as grains, vegetables, aquatic products, dairy, fruits, meat, poultry, tuber and root, and medicinal food plants. By employing modern detection methods and analytical techniques, the core of this discipline was the nutritional quality and intelligent characterization of agricultural products. It aimed to establish a quality evaluation system for agricultural products based on different uses, elucidate the material basis and influencing factors of product quality, uncover the mechanisms of quality composition (structure-function) and quality formation (deterioration), and establish comprehensive control measures, thus producing high-quality agricultural products to meet consumer demand, guide processing, and improve agricultural industrial efficiency. From the perspective of industrial high-quality development and public health, the paper also analyzed the necessity of modern science of agricultural product quality research. Additionally, it identified key challenges in current agricultural product quality research, including: (1) Unclear spatiotemporal variation patterns and undefined characteristic quality, lack of evaluation technologies, and low precision and portability of detection technologies; (2) The complexity of agricultural product components, unclear relationships between spatial structure and quality characteristics, excessive processing, resource waste, and difficulty in premium prices for high quality; (3) Unclear quality influence patterns, unidentified molecular targets for formation and deterioration, and difficulty in controlling and maintaining quality. Based on these challenges, the paper proposed three major research areas in modern science of agricultural product quality, including agricultural products characteristic quality exploration and evaluation detection technologies, mechanisms of quality composition (structure-function) and high-value utilization technologies, and mechanisms of quality formation (deterioration) and control technologies. Finally, the paper outlined key future research tasks, including: (1) Constructing a database of agricultural product quality based on IoT, big data, and artifical intelligence technologies to achieve precise individual nutritional needs; (2) Building sensor networks and data collection systems driven by AI-powered supply chain technologies to achieve intelligent characterization of agricultural product quality throughout the entire industry chain; (3) Developing a green circular model system based on quality gradients and comprehensive utilization technologies to realize high-value resource transformation in the entire agricultural production process; (4) Creating an agricultural product AI intelligent system based on multi-source knowledge integration technologies for full-process quality control of agricultural products. This review aimed to provide the guidance and support for agricultural research, production, and management practices, addressing current bottlenecks in improving agricultural product quality, and contributing to the high-quality development of the agricultural industry.

    Table and Figures | Reference | Related Articles | Metrics
    Integrated Nutrient Management Technology and Its Effects for Annual Rice-Rapeseed Rotation
    REN Tao, FANG YaTing, LU JianWei
    Scientia Agricultura Sinica    2025, 58 (16): 3159-3163.   DOI: 10.3864/j.issn.0578-1752.2025.16.001
    Abstract443)   HTML88)    PDF (246KB)(226)       Save
    Reference | Related Articles | Metrics
    Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton
    WANG WeiMeng, WEI YunXiao, TANG YunNi, LIU MiaoMiao, CHEN QuanJia, DENG XiaoJuan, ZHANG Rui
    Scientia Agricultura Sinica    2025, 58 (8): 1479-1493.   DOI: 10.3864/j.issn.0578-1752.2025.08.002
    Abstract441)   HTML26)    PDF (5388KB)(172)       Save

    【Background】 Cotton is one of the most important crops globally. The application of bioengineering technology has greatly improved the efficiency of molecular breeding. However, current cotton genetic transformation faces challenges such as genotype dependency, lengthy timelines, and limited transformation methods.【Objective】This study aims to establish an efficient Agrobacterium rhizogenes-mediated genetic transformation system for cotton to expand genetic breeding methodologies.【Method】Using the common cotton receptor varieties WC and R18 as primary materials and mRUBY as a reporter gene, the root inducing process mediated by A. rhizogenes was optimized through screening hormone combinations (types and concentrations), analyzing differences in explant types and genotype-specific rooting systems. A stable genetic transformation system was subsequently developed and applied to gene editing.【Result】The addition of naphthaleneacetic acid (NAA) and lovastatin to the root inducing medium (RIM) promoted more efficient root formation compared to NAA alone or combinations of NAA+indole-3-butyric acid (IBA) or NAA+Lovastatin+IBA. The optimal concentrations for inducing hairy roots were both 2 mg·L-1 for NAA and lovastatin. Cotyledons were the most effective explants for root induction: WC cotyledons, cotyledon nodes, and hypocotyls exhibited rooting efficiencies of 398%, 72%, and 39%, respectively. Cotyledons required the shortest induction time (7 d), 3 d shorter than cotyledon nodes and 8 d shorter than hypocotyls. Cotyledons were also the optimal explants for R18, their rooting capacity differed. Genotype comparisons revealed that 20 days post-infection (dpi), the rooting efficiencies per cotyledon were 398% (WC), 116% (R18), 199% (NDM8), 103% (XLZ61), 57% (Gb-1), and 0 (Gb-2). Upland cotton varieties (WC, R18, NDM8, and XLZ61) exhibited rooting efficiencies above 100%, while sea island cotton varieties (Gb-1, Gb-2) were below 100%. Notably, Gb-2 began to root at 35 dpi. Receptor varieties of upland cotton generally showed slightly higher rooting efficiency than production varieties. There was a certain difference between the positive rate of genetic transformation and the rooting rate. The positive rates of NDM8, XLZ61, Gb-1 and Gb-2 at 20 dpi were 59.8%, 16.0%, 38.5% and 0, respectively. Using positive roots as explants, non-embryogenic and embryogenic callus induction yielded transgenic mRUBY-expressing plants, establishing a complete genetic transformation system. The intensity of plant coloration correlated positively with mRUBY expression levels. Additionally, cotton plants with edited GhGI genes were successfully obtained.【Conclusion】The study optimized the A. rhizogenes-mediated root induction process in cotton and established a robust genetic transformation system. This system was successfully applied to gene editing, generating transgenic cotton plants expressing mRUBY and edited GhGI genes.

    Table and Figures | Reference | Related Articles | Metrics
    Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat
    ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan
    Scientia Agricultura Sinica    2025, 58 (5): 864-876.   DOI: 10.3864/j.issn.0578-1752.2025.05.004
    Abstract440)   HTML27)    PDF (2009KB)(186)       Save

    【Objective】The aim of this study was to provide the theoretical and technical support for the innovation of green, high-yield, high-quality and high-efficient unmanned cultivation technology system of wheat. 【Method】 According to the situation of accelerating land transfer and large-scale operation, decreasing labor force engaged in agricultural production, and more efficient and comfortable farming methods, the integrated unmanned cultivation technology of wheat was put forward through the integration study of “agronomy-machinery-intelligence”, that is, using new technology, new product and new equipment to simplify and integrate the whole process of wheat production, and complete wheat production with the least number of operations, the least number of machines and unmanned operations. On the basis of exploratory experimental research, the integrated unmanned cultivation technology of wheat (IU) and conventional mechanized high-yield cultivation techniques of wheat in experimental area (CK) were set up as treatments in Dazhong Farm of Yancheng, Jiangsu Province in 2019-2020, 2020-2021 and 2021-2022, to study the traits and differences of wheat yield formation among different technology treatments, analyze the high-yield traits of IU, and put forward the technical approaches of IU. 【Result】 The IU increased wheat yield by 3.0%-5.9% compared with CK, and significant differences were observed between treatments of some varieties or some growing seasons. In terms of yield components, the spike number was IU>CK (significant differences were observed between treatments of some varieties or some growing seasons), the grains per spike were IU>CK (P>0.05), the total grains were IU>CK (P<0.05), and the 1000-kernels weight was IU<CK (P>0.05), indicating that the IU increased wheat yield by stabilizing the grains per spike and 1000-kernels weight, and increasing the spike number. In the production of photosynthetic matter, the culm number, leaf area index, dry matter accumulation at the main growth stages, the leaf area duration and crop growth rate in the main growth periods, and the culm fertility and grain leaf ratio were all expressed as IU>CK (significant differences were observed between treatments of some varieties or some growing seasons), which laid a material foundation for the yield increase of the IU. This paper not only summarized the technical approaches and basic technologies of IU but also discussed the development of IU from the aspects of integrated cultivation, unmanned cultivation, “agronomy-machinery-intelligence” fusion degree, key agronomy technology and comprehensive evaluation. 【Conclusion】 The yield under IU was equivalent or significantly increased to that under CK. And the high-yield cultivation of wheat was realized with less agricultural machinery and labor and unmanned operation, which was an effective way for the development of agricultural modernization production. In the future, multi-faceted collaborative innovation and investment should be strengthened to accelerate the application and large-scale promotion of this technology.

    Table and Figures | Reference | Related Articles | Metrics
    Screening of Wheat Varieties with Low Nitrogen Tolerance and Genome-Wide Association Studies of Low Nitrogen Stress Tolerance Index
    LI Ning, GAO LiFeng, HUANG Xin, SHI HuaWei, YANG JinWen, SHI YuGang, CHEN Ming, JIA JiZeng, SUN DaiZhen
    Scientia Agricultura Sinica    2025, 58 (13): 2487-2503.   DOI: 10.3864/j.issn.0578-1752.2025.13.001
    Abstract432)   HTML57)    PDF (7056KB)(225)       Save

    【Objective】 The excessive application of nitrogen fertilizers has led to ecological pollution and waste of agricultural resources. Developing nitrogen-efficient wheat varieties and improving nitrogen use efficiency are effective approaches for achieving sustainable agricultural development and environmental protection. Screening low-nitrogen-tolerant germplasm resources and identifying genetic loci and candidate genes associated with low-nitrogen tolerance can provide materials and theoretical foundations for breeding nitrogen-efficient wheat varieties. 【Method】 A natural population consisting of 389 wheat varieties was cultivated under high-nitrogen (HN) and low-nitrogen (LN) treatments in 10 field environments. Grain yield per plant (GYP) was measured to calculate the stress tolerance index (STI), thereby enabling the classification of varieties with differential low-nitrogen tolerance. Genome-wide association studies (GWAS) were conducted using 660K SNP array genotyping data to identify stable genetic loci associated with low-nitrogen tolerance. Candidate genes were prioritized through haplotype analysis, expression profiling, and functional annotation. 【Result】 Twelve wheat varieties with strong low-nitrogen tolerance were identified, including Zhongluo 08-1, Jimai 15, Jinghua 2, Kehong 1, Mianyang 19, Jimai 22, Zhenmai 4, Yumai 35, Fengkang 7, Mianyang 11, Jinmai 31, and Lumai 5. Fourteen loci significantly associated with STI were detected, among which four (qSTI1A.1, qSTI3B, qSTI6A, and qSTI7A.2) overlapped with previously reported low-nitrogen tolerance or yield-related QTLs. Notably, qSTI3B-replicated across three environments-was identified as a key locus governing low-nitrogen tolerance. Functional annotation revealed that its candidate gene, TraesCS3B02G042400, encodes an AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) transcription factor. Haplotype analysis showed significant STI divergence among varieties carrying distinct haplotypes, while expression levels of TraesCS3B02G042400 exhibited nitrogen dose-responsive upregulation. 【Conclusion】 Twelve wheat varieties with strong low-nitrogen tolerance were screened. A stable genetic locus, qSTI3B, and a candidate gene, TraesCS3B02G042400, associated with low-nitrogen tolerance were identified.

    Table and Figures | Reference | Related Articles | Metrics
    Identification and Gene Mapping of Rice Grain Shape Mutant sgd13
    ZHUANG LiHua, LUO Lei, ZHAO ChunFang, WANG JiZhong, ZHANG YaDong, HE Lei
    Scientia Agricultura Sinica    2025, 58 (24): 5097-5109.   DOI: 10.3864/j.issn.0578-1752.2025.24.001
    Abstract426)   HTML88)    PDF (3776KB)(286)       Save

    【Objective】Grain shape is an important agronomic trait affecting rice yield and quality, and its development is regulated by the three-dimensional morphology of grain (grain length, grain width, grain thickness). Identification and cloning of grain shape regulatory genes can enrich the molecular mechanism of rice grain development regulation, and provide theoretical basis and genetic resources for high-yield molecular design breeding of rice. 【Method】A stable inherited grain type mutant sgd13 (small grain and dwarf 13) was screened from the mutant library of Nanjing 9108 induced by ethyl methane sulfonate (EMS). The grain morphology, 1000-grain weight, seed setting rate, yield per plant, plant height, panicle length and other phenotypes of the mutants were statistically analyzed. Paraffin sections and scanning electron microscopy were used to analyze the changes in the number and size of glume and stem cells. The genetic analysis of sgd13 and Nanjing 9108 was carried out. The F2 population constructed by sgd13 and Nanjing 9108 was used to locate the gene by BSA-seq technology. The SWISS-MODEL website was used to predict the three-dimensional structure of wild-type and mutant proteins. 【Result】The grains of sgd13 were significantly smaller and narrower, the grain length decreased by 19.98%, and the grain width decreased by 7.81%. Compared with WT, the plant height, spike length and yield per plant of sgd13 were significantly reduced. There was no significant difference in the number of internodes between sgd13 and WT, but the lengths of the first, second, third and sixth internodes were shorter. Cytological analysis showed that the glume and stem cells of sgd13 became smaller and less, indicating that sgd13 may affect organ development by regulating cell division and expansion. Genetic analysis confirmed that the trait was controlled by a single recessive nuclear gene. The candidate gene was mapped to LOC_Os01g52550 by BSA-seq, which encodes an ATP-binding cassette (ABC) transporter. The ABC transporter contains two typical core domains: A highly conserved nucleotide binding domain (NBD) and a less conserved transmembrane domain (TMD). In the sgd13 mutant, a single base substitution (T→A) occurred in the exon region of the gene, which was located in the NBD domain. This single base substitution directly causes the encoded amino acid to change from glutamic acid (E) to aspartic acid (D). Due to the differences in side chain structure and chemical properties between glutamic acid and aspartic acid, this change is likely to affect the spatial structure of SGD13 protein, thereby interfering with its normal function, and ultimately leading to a unique phenotype of the mutant sgd13. Genetic complementation experiments showed that the introduction of wild-type LOC_Os01g52550 could restore the grain shape of sgd13 to the wild-type level.【Conclusion】The sgd13 mutant phenotype was controlled by a single recessive nuclear gene, which was caused by the LOC_Os01g52550 mutation. The T→A mutation in the exon region of the gene causes the glutamic acid in the NBD domain to become aspartic acid, which affects the three-dimensional structure of the protein.

    Table and Figures | Reference | Related Articles | Metrics
    The Green Revolution of Chinese Grain Hybrid Sorghum
    CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin
    Scientia Agricultura Sinica    2025, 58 (8): 1494-1507.   DOI: 10.3864/j.issn.0578-1752.2025.08.003
    Abstract424)   HTML21)    PDF (2551KB)(144)       Save

    Sorghum is the main food crop in arid and semi-arid regions of the world, which is of great significance to food security, marginal land use and dietary structure in arid and semi-arid regions. Since the first generation of grain hybrid sorghum was introduced in China in 1958, in order to adapt to mechanized harvesting and reduce labor costs, the plant height of cultivated hybrid sorghum has experienced the change process of high stalk, middle stalk, middle dwarf and dwarf. the green revolution of Chinese grain hybrid sorghum has been completed in the past two decades. This paper summarizes the reasons, history and current situation of grain sorghum dwarfing breeding in China. It shows the trend of decreasing plant height and increasing yield of sorghum varieties in China in the past 60 years. The important germplasms created in the process of green revolution of grain sorghum in China were listed. Through the analysis of genetic relationship, it was found that the dwarf source of restorer line in China came from Chinese local variety Sanchisan, and the dwarf source was traced back to Tx3197B due to the utilization of foreign germplasm Tx3197 A, Tx3197 B. The cloning, variation sites, dwarfing mechanism of sorghum dwarf genes dw1, dw2 and dw3, which play an important role in the green revolution of sorghum, and the contributions of predecessors in exploring new plant height QTLs were reviewed. The dwarfing mechanism of sorghum was different from that of gibberellin regulation system (GA) in rice and wheat. dw1 reduced plant height by regulating the brassinosteroid system (BR) to shorten the length of internodes. dw2 and dw3 encode KIPK protein kinase and auxin efflux transporter (ABCB1), respectively, which regulate the transport of auxin (IAA) to shorten the length of internodes and reduce plant height. The dwarfing genes of dw1, dw2 and dw3 had multiple effects on maturity, spike length, spike grain weight, leaf area while reducing plant height. The distribution and application of dw1, dw2 and dw3 dwarf genes in backbone sterile lines and restorer lines were analyzed by molecular markers and sequencing techniques. It was found that the dwarf genes used more in sorghum restorer lines in China were only dw3, and the combination of dw1dw3 and dw2dw3 formed by dw1, dw2 and dw3 was more widely used in sterile lines. The problems and solutions of sorghum green revolution in China were discussed. It is expected to provide guidance for further improving the process of sorghum green revolution in China and cultivating new germplasm and new varieties with major breakthroughs in yield and stress resistance.

    Table and Figures | Reference | Related Articles | Metrics
    Genome-Wide Association Study and Genetic Improvement Study of Rice Blast Resistance
    ZHENG MinHua, CHEN Luo, XING JiaLe, XIE YueLan, JIANG XianYa, NIE Shuai, CAI FuGe, WU HaoXiang, LU ZhanHua, SUN Wei, HUO Xing, BAI Song, ZHAO JunLiang, YANG Wu
    Scientia Agricultura Sinica    2025, 58 (14): 2707-2719.   DOI: 10.3864/j.issn.0578-1752.2025.14.001
    Abstract419)   HTML26)    PDF (2128KB)(140)       Save

    【Objective】Rice blast critically compromises rice production. The genetic enhancement of blast resistance remains challenging due to pathogen variability and limited genetic diversity in breeding parents. This study seeks to accelerate resistance breeding by identifying novel resistance loci through systematic germplasm characterization. 【Method】A panel of 265 sequenced indica rice accessions (including 120 international germplasms and 145 cultivars from South China) underwent field-based blast resistance evaluation. Genome-wide association study (GWAS) was subsequently employed to identify blast resistance quantitative trait loci (QTL). Haplotype effects of these QTL on blast resistance were analyzed, and candidate genes within newly identified QTL regions were predicted using rice genome annotation. 【Result】Field resistance evaluation identified 47 accessions (18 international germplasms and 29 cultivars from South China) exhibiting high resistance to both panicle and leaf blast. GWAS detected nine blast resistance QTL distributed across chromosomes 1, 5, 6, 11, and 12, respectively. Among them, four QTL was co-localized with previously reported blast resistance genes and five QTL were newly identified. Haplotype analysis revealed significant resistance variations associated with peak SNP alleles, with eight QTL showing higher frequency of resistant haplotypes in cultivars from South China compared to international germplasms. Notably, the qPB11 locus demonstrated an inverse distribution pattern, where its resistant haplotype frequency was substantially lower in cultivars from South China (1%) than in international germplasm (16%). Candidate gene analysis within novel QTL regions identified four NBS-LRR disease resistance proteins and four NB-ARC domain-containing proteins, with eight candidate genes clustered within a 27.22-27.35 Mb interval on chromosome 11.【Conclusion】Cultivars from South China exhibit superior blast resistance compared to international germplasms. The high-resistance haplotypes of qPB1-1, qPB1-2, qPB1-3, qPB5, qPB6, qPB12-1, and qLB12/qPB12-2 have been preferentially selected during the genetic improvement of cultivars from South China. Furthermore, the qPB11 locus harbors genes encoding NBS-LRR disease-resistant proteins and NB-ARC domain-containing proteins, representing new potential resistance gene for rice blast disease.

    Table and Figures | Reference | Related Articles | Metrics
    Foliar Spraying TaSBEIIbs-dsRNA to Increase Amylose Content in Wheat
    LI LinYan, ZHANG GaoYang, FENG XianYang, GU ShiLong, HUANG YeNan, SUN ZhongKe, LI ChengWei
    Scientia Agricultura Sinica    2025, 58 (22): 4557-4569.   DOI: 10.3864/j.issn.0578-1752.2025.22.001
    Abstract411)   HTML68)    PDF (922KB)(272)       Save

    【Objective】Wheat starch mainly consists of amylose and amylopectin. Long-term consumption of refined flour products increases the risk of chronic diseases such as diabetes, whereas consuming flour with a high content of resistant starch has a positive effect on regulating blood glucose levels. Given the generally positive correlation between resistant starch and amylose, increasing the amylose content in wheat germplasm has become a goal for quality improvement breeding research. 【Method】Four gene fragments of starch branching enzyme (TaSBEIIb) were selected to successfully construct a high-efficiency dsRNA expression vector. A gradient optimization based on culture medium components significantly enhanced dsRNA yield. Based on this, the effects of naked dsRNA and dsRNA encapsulated with the nanocarrier hydroxypropyltrimethyl ammonium chitosan chloride (HACC) on wheat starch metabolism were explored through foliar spraying. Utilizing a wheat seedling culture system, the impact of dsRNA spraying on the amylose content in wheat seedlings and the expression of starch-related genes was observed. Furthermore, a field trial analyzed the effects of dsRNA spraying on the amylose content in mature wheat grains. The protective effect of chitosan quaternary ammonium salt-coated dsRNA and its influence on amylose content in mature wheat grains were also investigated. 【Result】Four recombinant plasmids (pRNAI-TaSBE1-pRNAI-TaSBE4), expressing dsRNA were successfully constructed. The optimized fermentation medium increased the dsRNA yield from 26.54 mg·L-1 to 50.65 mg·L-1, representing a 91% increase compared to the initial medium. Spraying dsRNA interfered with the expression of the target genes, with the highest interference efficiency observed on day 7 for the TaSBEIIb1 fragment. After interference with the four fragments, the expression of TaSBEIIb was reduced by an average of 47.73%. Additionally, the interference of TaSBEIIb affected the expression of other genes in the starch synthesis pathway, including TaSSII, TaSSIV, and TaSBEIIa1 with peak interference efficiencies occurring on days 3, 7, and 3, respectively. Their expression levels decreased by an average of 54.53%, 59.94%, and 47.64%. The 2023 field trial indicated that spraying naked dsRNA increased the amylose content in wheat grains by 17.2%-36.5% after 7 days of treatment, although the effect diminished to 0.2%-8.3% by the maturity stage. In the 2024 field trial, multiple applications of both naked dsRNA and chitosan quaternary ammonium salt-coated raised the amylose content in mature wheat grains from 27.72% to 30.37%, about 10% increase compared to the control. 【Conclusion】Exogenous spraying of TaSBEIIbs-dsRNA effectively increases the amylose content in starch.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition
    ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng
    Scientia Agricultura Sinica    2025, 58 (7): 1296-1310.   DOI: 10.3864/j.issn.0578-1752.2025.07.004
    Abstract409)   HTML65)    PDF (2479KB)(203)       Save

    【Objective】Increasing planting density is a key agronomic strategy to enhance maize yield; however, excessive density may result in an imbalanced population structure, reduced utilization efficiency of limited resources (e.g., light), and suppressed yield potential. Gene editing can optimize canopy architecture through targeted improvement of maize plant type, thereby enhancing adaptability to high-density planting and boosting yield. Elucidating the effects of plant type improvement on root-shoot characteristics, grain yield, and density response in spring maize, as well as the underlying mechanisms, will provide theoretical and technical foundations for optimizing plant type and achieving high-yield dense planting in spring maize.【Method】The field experiment was conducted at Gongzhuling farm in Jilin, China. In this study, two maize hybrids, includding Jingke 968 and the improved plant types Jingke Y968, were grown with 60 000 plants/hm2 (D1), 75 000 plants/hm2 (D2) and 90 000 plants/hm2 (D3) in 2019 and 2020, respectively. The effects of two plant types of spring maize of the same genetic background on the root-canopy characteristics and yield of spring maize were studied.【Result】Under normal density conditions (D1), there were no significant differences in leaf area index (LAI), net photosynthetic rate (Pn), PAR utilization (PUE), dry matter accumulation and grain yield between the two different plant types spring maize cultivars. However, compared with Jingke 968, under D3 conditions, the improved plant type Jingke Y968 had a relatively high number of main roots (7.2%) and a relatively large weight of root dry matter (6.0%), which promoted the absorption of nutrients; furthermore, under D2 and D3 conditions, Jingke Y968 significantly improved the canopy structure of maize, so that the upper, middle and lower parts had relatively low leaf angles, higher leaf orientation and LAI, and the excellent canopy structure increased the Pn of mid-to-late ear leaves of (7.5% (D2) and 7.7% (D3)) and PUE (4.3% (D2) and 10.8% (D3)). The structural equation results showed that higher leaf direction values and LAI could positively and directly increase the accumulation of dry matter in the aboveground, thereby increasing grain yield (8.7% (D2) and 11.2% (D3)).【Conclusion】In summary, the improvement of plant type enabled Jingke Y968 to have higher main root number and larger root dry matter weight under high-density conditions, which was conducive to nutrient absorption in the underground part. Meanwhile, its leaves were more compact, Pn was significantly increased, PUE was effectively improved, and root-canopy characteristics were more reasonable, which promoted dry matter accumulation in the above-ground part. Thus, the relatively high grain yield could be obtained.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Nitrogen Fertilization Levels on Matter Accumulation and Nitrogen Uptake in Different Source and Library Types of Japonica Rice
    ZHOU Yu, SUN Tong, ZHANG YanHong, RU Yan, SU Tan, WANG Shuai, ZHU JinYan, HU JinLong, XIONG QiangQiang, ZHANG HongCheng, ZHOU NianBing
    Scientia Agricultura Sinica    2025, 58 (11): 2096-2117.   DOI: 10.3864/j.issn.0578-1752.2025.11.004
    Abstract405)   HTML38)    PDF (779KB)(193)       Save

    【Objective】 This study aimed to investigate the overground part material accumulation and nitrogen transport of japonica rice with different sources and library types under different nitrogen application conditions, in order to select the japonica rice strain with high yield and high nitrogen efficiency, and explore the optimal nitrogen application rate for the growth of this japonica rice variety, ultimately achieve an increase in yield.【Method】 The trial was conducted in 2022-2023, with the source library interaction type Yangchan35003, source restriction type Yangchan35002, and library restriction type Yangchan35004 as test materials, and the split zone design was adopted. Four nitrogen application treatments of 180 kg·hm-2, 225 kg·hm-2, 270 kg·hm-2 and 315 kg·hm-2 were set. The yield, dry matter accumulation and nitrogen related indexes (mainly taking nitrogen transport efficiency, nitrogen transport contribution rate, harvest index, nitrogen harvest index, grain production efficiency, dry matter production efficiency and nitrogen fertilizer productivity as the evaluation indexes of nitrogen utilization efficiency) of different types of japonica rice under each treatment were measured at the key stage, the changes of different types of japonica rice under different nitrogen treatment were analyzed in the bar chart, and the influence of nitrogen application on material accumulation and transport was delved; the index mean value and variation coefficient of japonica rice were compared, the differences in indicators caused by different nitrogen application amounts were eliminated, and the differences between different types of japonica rice were highlighted; by using the correlation coefficient, the relationship between yield types of japonica rice and nitrogen utilization efficiency were explored, and the influence of nitrogen application on the accumulation of dry matter, nitrogen utilization and yield of japonica rice in heading and maturity period were analyzed.【Result】 (1) Applying additional nitrogen fertilizer within the range of 180-315 kg·hm-2 could significantly increased the yield of each type of japonica rice (9.68%-29.19%), dry matter and nitrogen accumulation at heading stage (3.26%-28.57% and 8.57%-47.91%), and dry matter and nitrogen accumulation at maturity stage (1.01%-24.84% and 3.83%-57.98%) during the two-year period. Meanwhile, it was also beneficial to improve nitrogen transport capacity of leaves and stem at maturity stage. (2) Under the same nitrogen application conditions, the accumulation of dry matter, the accumulation of nitrogen, 1000-grain weight and setting percentage in Yangchan35003 were higher than that in Yangchan35002 and Yangchan35004 (29.08%-44.12%, 9.32%-29.21%, 11.40%-15.42%, 17.67%-40.70% and 25.93%-44.13%, 18.25%-26.17%, 6.16%-8.30%,-1.50%-13.96%, respectively) during the two-year period, the final yield exceeded the two types of japonica rice (24.26%-32.33% and 21.14%-30.05% higher than the yield Yangchan35002 and 35004, respectively) during the two-year period.(3) The high nitrogen transport capacity was not a unique feature of the source library interaction type strain. In this experiment, under the same nitrogen level condition, the nitrogen transport efficiency of Yangchan35004 was similar to the source library interaction type strain in the experiment, but the nitrogen intake was lower than Yangchan35003 (15.43%-20.74%), and the yield was lower than Yangchan35003 (17.45%-23.11%) during the two-year period, so it was a low yield and high nitrogen efficiency rice strain.【Conclusion】 Under the condition of applying 270 kg·hm-2 of nitrogen fertilizer, Yangchan35002 could significantly optimize the synergy utilization efficiency of nutrients and temperature-light resources, enhance the nitrogen absorption and transportation capacity of plants, and improve the yield performance of the population. It was determined as the optimal combination in this experiment.

    Table and Figures | Reference | Related Articles | Metrics
    Identification and Characterization of Retrotransposon Tos17 in the Genomes of Indica Rice
    LUO JiaRui, WU SanLing, GUO Fu, LIU Zhen, SONG JingHan, TAN YuanYuan, SHU QingYao
    Scientia Agricultura Sinica    2025, 58 (15): 2933-2947.   DOI: 10.3864/j.issn.0578-1752.2025.15.001
    Abstract396)   HTML42)    PDF (4291KB)(178)       Save

    【Objective】 Tos17 is a type of retrotransposon in the rice genome. In the japonica variety Nipponbare, a Tos17 located on chromosome 7 (Tos17Chr.7) can be activated during tissue culture. This study aims to reveal the genomic features of Tos17 of indica varieties in China and determine whether their Tos17 can be activated in tissue culture like in japonica rice, which may affect biotechnological breeding. 【Method】 High-quality genome resequencing data of indica varieties or hybrid parents were retrieved from public databases. An in-house program was developed to identify and analyze Tos17 insertion loci, confirmed by IGV visualization and PCR assays. The varieties were classified through hierarchical clustering and principal component analysis, a phylogenetic tree was constructed based on genome-wide single nucleotide polymorphism (SNP) data, and the association between varietal clusters and Tos17 haplotypes was assessed using Mantel test. Transgenic plants were generated by Agrobacterium -mediated transformation of mature embryo-derived callus of indica varieties, and the changes of Tos17 copy number were analyzed in 125 T0 transgenic plants.【Result】 23 distinct Tos17 insertion loci were identified in 1 511 indica varieties using the Tos17-finder, a program developed specifically for Tos17 identification. All varieties had a Tos17 on Chr.10 (Tos17Chr.10) identical to the one in japonica rice Nipponbare, and there were two high-frequency Tos17 copies on Chr.2, i.e., Tos17Chr.2-1 (79.0%) and Tos17Chr.2-2 (83.7%), but only 85 (5.6%) varieties carried the Tos17Chr.7 common to japonica rice. There were 4.0 Tos17 copies per variety on average, and while 11 varieties had up to 8 Tos17 copies, 35 only had a single Tos17, i.e., Tos17Chr.10. Twelve Tos17 insertions were located within or 2 kb up- or down-stream of annotated genes, with the remaining 11 in intergenic regions. Phylogenetic analysis based on SNPs classified the 1 511 varieties into three subpopulations, each showing partial correlation with specific Tos17 haplotypes. No new Tos17 insertions were detected in the 125 T0 transgenic seedlings of 5 indica varieties. A molecular marker capable of accurately distinguishing Tos17Chr.7 from other Tos17s was developed. 【Conclusion】 The genomic features of Tos17 in indica rice varieties differ from those in japonica rice variety Nipponbare. The developed molecular marker can be used to determine readily whether the test materials carry the activatable Tos17Chr.7.

    Table and Figures | Reference | Related Articles | Metrics
    Origin, Evolution and Spread of Crop Buckwheat
    WEI YiMin, ZHOU MeiLiang, TANG Yu
    Scientia Agricultura Sinica    2025, 58 (21): 4305-4316.   DOI: 10.3864/j.issn.0578-1752.2025.21.001
    Abstract392)   HTML36)    PDF (509KB)(164)       Save

    China is one of the four major centers of agricultural origin in the world, where two distinct agricultural systems were established: the rice-based system represented by the middle and lower reaches of the Yangtze River, and the dryland farming system represented by the Yellow River basin. Historical records and archaeological evidence indicate that as early as the Shang Dynasty, oracle bone inscriptions already mentioned crops such as millet (Setaria italica), broomcorn millet (Panicum miliaceum), wheat, rice, and soybeans. During the pre-Qin period, the concept of the ‘Five Grains’ was established, and in The Book of Songs (Shijing), the broader term ‘Hundred Grains’ also appeared as a general reference to food crops. However, it is noteworthy that buckwheat, a crop native to China, has long been absent from these documented grain systems. This omission is inconsistent with the fact that buckwheat is an indigenous Chinese crop with high genetic diversity, significant local variation, and a long history of cultivation and domestication in cold mountainous regions. This study conducts a systematic review of the literature related to the origin, evolution, and spread of buckwheat, integrating recent findings in archaeobotany and genetic diversity analysis. Following internationally accepted principles for identifying crop origin centers, and drawing on historical texts, biological characteristics, and distribution patterns, the study presents comprehensive evidence supporting the hypothesis that southwestern China-particularly Yunnan, Sichuan, Guizhou, and the southern fringe of the Qinghai-Tibet Plateau-is the center of origin, genetic diversity, and domestication for Fagopyrum species. There are 23 species of Fagopyrum identified in China, including three cultivated species-common buckwheat (F. esculentum), tartary buckwheat (F. tataricum), and golden buckwheat (F. cymosum)-and 20 wild species, the majority of which are concentrated in southwestern China. This region is not only the native habitat of the ancestral subspecies of common and tartary buckwheat (F. esculentum ssp. ancestrale and F. tataricum ssp. potanini), but also the area with the richest diversity of Fagopyrum, strongly indicating its status as the origin center. Furthermore, molecular markers and phylogenetic studies confirm close genetic relationships between wild and cultivated buckwheat species in this region, providing key evidence for reconstructing domestication pathways. With advancements in modern research, buckwheat has gained recognition not only for its short growth cycle, broad adaptability, and resilience to poor soils and cold climates, making it suitable for cultivation in remote and mountainous areas, but also for its grain's rich content of proteins, flavonoids, and functional sugar alcohols. As a highly promising functional coarse grain crop, buckwheat is particularly suited to the development of characteristic agriculture in central and western China. It holds significant potential for ecological sustainability, nutritional health, and high-value agricultural development, and is expected to play an important role in China’s national nutrition strategy and food diversity conservation. This study provides theoretical and empirical evidence to support the scientific designation of China as the center of origin and domestication of buckwheat, laying a solid foundation for future work in germplasm conservation, variety improvement, and industrial development.

    Table and Figures | Reference | Related Articles | Metrics
    Breeding of a New Heat-Tolerance Fragrant Rice Germplasm ZY532 Using Sanming Dominant Genic Male Sterile Rice
    QIU DongFeng, LIU Gang, LIU ChunPing, XIA KuaiFei, WANG TingBao, WU Yan, HE Yong, HUANG XianBo, ZHANG ZaiJun, YOU AiQing, TIAN ZhiHong
    Scientia Agricultura Sinica    2025, 58 (18): 3571-3582.   DOI: 10.3864/j.issn.0578-1752.2025.18.001
    Abstract387)   HTML29)    PDF (1257KB)(109)       Save

    【Objective】To meet the increasing food demand driven by population growth and environmental changes, it is necessary to continuously cultivate varieties with high yield, good quality, and multiple resistances. Efficiently create new germplasm with rich genetic backgrounds and genetic diversity to provide a reference for breeding new varieties that balance multiple excellent traits. 【Method】The Sanming dominant genic male sterile material was used to simplify the hybridization procedure. It was hybridized with multiple parents with distant geographical relationships to aggregate multiple excellent traits. Aiming at problems such as a narrow genetic basis and the difficulty of applying molecular markers, S221 was successively and continuously hybridized with materials such as 09598, Ezhong 5, Yuanfengzhan, Yunxiangruan, etc. Fertile plants were selected from the offspring of the last hybridization. The new variety was cultivated by combining the pedigree method with heat-tolerance analysis, rice quality analysis, and resistance screening. The DNA of 60 selected single plants from the F10 series of lines and 4 parents was extracted. Primers for the target sites were designed. The target DNA fragments were captured by PCR and sequenced. Finally, the genotyping analysis of the target sites was carried out. The SLYm1R high-density rice whole-genome SNP chip was used for the analysis of functional genes. 【Result】Genotype analysis is carried out to analyze the degree of genetic relationship or similarity based on the magnitude of the base substitution rate. The parental materials Ezhong 5 and Yunxiangruan have a relatively distant relationship with other parental materials, while 09598 has a relatively close relationship with Yuanfengzhan. The base substitution rates among the three newly obtained lines are as follows: 0.0099545 (170531-170532), 0.0338213 (170531-170533), and0.0371913 (170532-170533). Within each line, the base substitution rate is 0, indicating that there are differences among the three lines, but there is no genetic difference within each line. Through successive generations and expansion propagation, new germplasms were formed, which were named ZY531, ZY532, and ZY533 respectively. The results of functional gene analysis show that the functional genes of the ZY532 series of germplasms are respectively derived from 4 parents, aggregating excellent genes from multiple parents. For example, the Os-MOT1;1 gene is derived from Yunxiangruan, which can reduce abiotic stresses such as molybdenum accumulation; the Bph3 gene is derived from 09598 and Ezhong 5, which can enhance the resistance to brown planthoppers; the OsGSK2 gene is derived from 09598, Yuanfengzhan, and Yunxiangruan, which can increase the length of the mesocotyl and is suitable for direct seeding; the Badh2 gene is derived from Yunxiangruan, making the rice fragrant; multiple blast resistance genes are derived from different parents and can also be aggregated into the innovative resources, enabling it to obtain good blast resistance. ZY532 has excellent rice quality, good blast resistance, and strong heat resistance. ZY532 also has good heat resistance, and the heat resistance of the hybrid combination prepared reaches level 3. 【Conclusion】When using dominant genic male sterility to cultivate new varieties, due to the complex genetic background, the breeding cycle is often long. Combining high-throughput SNP marker detection can quickly screen out stable lines and more types, which not only broadens the genetic basis but also improves the breeding efficiency. It is an efficient breeding method.

    Table and Figures | Reference | Related Articles | Metrics
    Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas
    WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao
    Scientia Agricultura Sinica    2025, 58 (8): 1521-1534.   DOI: 10.3864/j.issn.0578-1752.2025.08.005
    Abstract387)   HTML27)    PDF (560KB)(134)       Save

    【Objective】In terms of the issues of yield instability and quality deterioration caused by improper water and fertilizer application, the effects of reduced irrigation combined with organic and inorganic nitrogen fertilization on the yield and quality of silage maize in arid irrigated regions of Northwest China were investigated, so as to identify optimal water and fertilizer management practices for achieving high yield and superior quality in silage maize cultivation in the irrigated areas. 【Method】 From 2021 to 2022, a field experiment based on two-factor split-plot design was carried out at the Oasis Agricultural Experimental Base of Gansu Agricultural University. The main factor was two irrigation levels, respectively, including I1 conventional irrigation reduction 20 % irrigation was 324 mm, and I2 conventional irrigation is 405 mm, and drip irrigation was used. The sub-factor included five different fertilization regimes: F1, 100% chemical nitrogen fertilizer; F2, 75% chemical nitrogen fertilizer+25% organic fertilizer; F3, 50% chemical nitrogen fertilizer+50% organic fertilizer; F4, 25% chemical nitrogen fertilizer+75% organic fertilizer; and F5, 100% organic fertilizer. The effects of different water and fertilizer management practices on the yield, grain quality, and stalk quality of silage maize were analyzed, and the comprehensive evaluation of the yield and quality of silage maize was performed using factor analysis.【Result】Reducing irrigation alone led to a decrease in the yield and quality of silage maize. However, the combined application of organic-inorganic nitrogen fertilizers helped to enhance the potential for simultaneously improving both yield and quality under reduced irrigation conditions. Notably, the combination of reduced 20% irrigation with 75% chemical nitrogen fertilizer+25% organic fertilizer (I1F2) demonstrated significant advantages. The I1F2 treatment significantly increased fresh and hay yields of silage maize, with fresh and dry grass yields improving by 9.9% and 12.7% over conventional irrigation combined with 100% chemical nitrogen fertilization (the control treatment, I2F1), respectively. Meantime, the I1F2 treatment was able to maintain a relatively high grain and stover quality of silage maize. Compared with I2F1, the I1F2 treatment increased protein and fat contents of grain by 17.4% and 20.5%, and increased essential amino acids content too, with phenylalanine, valine, leucine, isoleucine, tryptophan, threonine, lysine, and methionine rose by 17.4%, 13.9%, 19.4%, 17.9%, 23.1%, 30.0%, 44.5%, and 22.0%, respectively. The I1F2 treatment increased crude protein, crude fat, and soluble sugar contents in the stover by 13.9%, 19.1%, and 15.6% over I2F1, respectively, while decreasing neutral detergent fiber content by 13.5%, thereby improving relative feed value by 14.0%. Factor analysis also revealed that the I1F2 treatment had the highest composite applicability index, which was beneficial for increasing both the yield and quality of silage maize.【Conclusion】The combination of 20% reduced irrigation with 75% chemical nitrogen fertilizer+25% organic nitrogen fertilizer was the optimal water and nitrogen management practice for simultaneously enhancing both the yield and quality of silage maize in the Northwest irrigation areas.

    Table and Figures | Reference | Related Articles | Metrics
    Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation
    WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song
    Scientia Agricultura Sinica    2025, 58 (9): 1719-1734.   DOI: 10.3864/j.issn.0578-1752.2025.09.004
    Abstract386)   HTML28)    PDF (4529KB)(167)       Save

    【Objective】 Rice leaf area is a critical physiological metric that indicates photosynthetic efficiency, energy conversion, and dry matter accumulation capacity. This study aimed to develop a simple and efficient rice leaf area imaging system and prediction method, so as to provide a theoretical foundation and technical support for rapid and accurate leaf area measurement.【Method】 The study utilized representative rice varieties—Xiushui 134 (indica), Huanghuazhan (japonica), and Yongyou 1540 (indica-japonica hybrid)—as experimental materials. Leaf area data were collected from the aboveground parts during critical growth periods, and both flat-overhead-view and side-view images were captured. Using the PlantScreen high-throughput modular plant phenotyping platform, morphological and color feature information was extracted. Based on these data, various feature selection methods(Pearson correlation coefficient, maximal information coefficient (MIC), and recursive feature elimination (RFE)) combined with machine learning models (support vector regression (SVR), random forest regression (RFR), and XGBoost) and deep learning models (ResNet50, AlexNet, VGG, and SeNet) were employed to develop a simplified and efficient rice leaf area prediction model.【Result】 (1) An imaging approach that integrated flat-overhead and multi-angle side views significantly outperformed single-view methods for leaf area prediction, with R² values of 0.76-0.82 and coefficients of variation (CV) of 5.5%-13.7%, compared with R² values of 0.51-0.78 and CVs of 9.7%-27.5% for single views. The optimal system used one flat-overhead-view and one side-view image, achieving R² = 0.79, root mean square error (RMSE) = 95.3, mean absolute error (MAE) = 77.02, and CV = 6.5%. (2) Using MIC algorithm for key feature selection combined with the random forest regression model achieved excellent results (= 0.84, RMSE = 81.8, and MAE = 63.3), noticeably outperforming other machine learning models. The deep learning model SeNet (R2 = 0.80, RMSE = 98.1, and MAE = 74.7) outperformed traditional ResNet50 and AlexNet models but showed no significant advantage over the MIC-RFR model. (3) Feature analysis indicated that the projected area and plant height from side-view images, as well as leaf perimeter and green-yellow characteristics from flat-overhead-view images, significantly contributed to leaf area prediction. The contribution of the side-view projected area (+117.4) was substantially greater than that of other features (ranging from 1.48 to 18.87).【Conclusion】 This study employed a simple and efficient leaf area prediction imaging system (one flat-overhead-view combined with one side-view image), integrated with the MIC-RFR model, to meet the high-precision and stable prediction requirements for individual rice leaf area. This method provided a powerful tool and technical support for precision agriculture and crop breeding.

    Table and Figures | Reference | Related Articles | Metrics
    Intelligent Monitoring and Ecological Utilization of Saline-Alkaline Land
    MEI XuRong, LI YuYi, WU WenBin, WU XuePing
    Scientia Agricultura Sinica    2025, 58 (20): 4039-4046.   DOI: 10.3864/j.issn.0578-1752.2025.20.001
    Abstract382)   HTML38)    PDF (371KB)(253)       Save
    Reference | Related Articles | Metrics
    Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress
    TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui
    Scientia Agricultura Sinica    2025, 58 (6): 1083-1101.   DOI: 10.3864/j.issn.0578-1752.2025.06.004
    Abstract377)   HTML30)    PDF (2444KB)(140)       Save

    【Objective】 Under the background of global warming, this paper explored the physiological mechanism of anthocyanin content in colored wheat in response to high temperature stress in the middle of grain filling, so as to lay a theoretical basis for further coping with the high-quality cultivation of functional colored wheat varieties under climate warming. 【Method】 The experiment was conducted in Hefei High-tech Agricultural Park in the 2022-2023 and 2023-2024 growing seasons. Six colored wheat varieties with different colors were selected and subjected to high temperature stress treatment (T) for 5 days at the middle stage of filling, with the same materials grown under ambient temperature as the controls (CK). 【Result】 Under high temperature stress after anthesis, the net photosynthetic rate, stomatal conductance, transpiration rate, relative chlorophyll content (SPAD), dry matter partition, soluble sugar content, sucrose synthase activity, anthocyanin content, anthocyanidin synthase activity, chalcone synthase activity and phenylalanine ammonia-lyase activity of colored wheat were significantly reduced, and the yield of six varieties of colored wheat decreased by 9.10% to 16.94%, 1000-grain weight decreased by 7.84% to 16.94%, and anthocyanin content decreased by 7.18% to 14.17%. The yield, photosynthetic intensity, SPAD value, dry matter partition, soluble sugar content, sucrose synthase activity, anthocyanin content, anthocyanidin synthase activity, chalcone synthase activity, and phenylalanine ammonia-lyase activity of different varieties of colored wheat were: Qinbai 1>Qinlü 3>Qinzi 1>Xinchun 36>Qinhe 2>Qinlan 1, and the anthocyanin content was: Qinhei 2>Xinchun 36>Qinzi 1>Qinlü 3>Qinlan 1>Qinbai 1. The yield of heat-resistant wheat varieties of Qinbai 1, Qinlü 3 and Qinzi 1 decreased significantly less than that of heat-sensitive wheat varieties Qinhei 2, Xinchun 36 and Qinlan 1. The decreases in photosynthetic intensity, SPAD value, dry matter fraction, soluble sugar content, sucrose synthase activity, anthocyanin content, anthocyanidin synthase activity, chalcone synthase activity and phenylalanine ammonia-lyase activity of color wheat varieties Qinhei 2, Xinchun 36 and Qinzi 1 with high anthocyanin content were smaller than those of Qinlü 3, Qinlan 1 and Qinbai 1 with low anthocyanin content. Correlation analysis showed that the yield of each color wheat variety was significantly positively correlated with 1000-grain weight, sucrose content, sucrose synthase activity, flag leaf net photosynthetic rate, stomatal conductance, transpiration rate and SPAD value, anthocyanin content was significantly positively correlated with soluble sugar content, and yield was negatively correlated with anthocyanins, but the correlation was not significant. After high temperature stress after anthesis, the decomposition of sucrose bound to free anthocyanins decreased, and the decomposition of anthocyanins in grains increased, which supplemented the growth and development of wheat.【Conclusion】 The antioxidant activity of anthocyanins helped crops resist external stress, and the decline of various indexes of color wheat varieties with higher anthocyanin content was comparable to that of color wheat varieties with lower anthocyanin content under high temperature stress after anthesis, the anthocyanin content was significantly positively correlated with soluble sugar content. In conclusion, the accumulation of anthocyanin content could respond to high temperature stress, reduce the decrease of soluble sugar content, and increase the heat resistance of colored wheat.

    Table and Figures | Reference | Related Articles | Metrics
    Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis
    JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong
    Scientia Agricultura Sinica    2025, 58 (6): 1052-1064.   DOI: 10.3864/j.issn.0578-1752.2025.06.002
    Abstract375)   HTML31)    PDF (3491KB)(194)       Save

    【Objective】 Rice (Oryza sativa L.) is a staple cereal crop for about half of the global population, with protein being the second-most significant nutritional component in rice grains. The storage proteins in rice grains mostly consist of glutelin, prolamin, globulin, and albumin, among which the content of easy-to-digest glutelin is the highest. Consequently, common rice increases the burden of kidney and accelerates the progression of renal disorders. The method of generating low-glutelin rice germplasm will provide novel genetic material for the cultivation of functional rice cultivars suitable for individuals with kidney diseases. 【Method】 We utilized Suxiu 867 (SX867), an elite japonica rice cultivar appropriate for cultivation in Jiangsu province, as a transgenic recipient to delete a fragment of approximately 3 500 bp between the B subfamily glutelin-coding genes GluB4 and GluB5 using CRISPR/Cas9-mediated gene editing technology. The large fragment deletion was identified by PCR using the primers corresponding to the flanking sequence of gene editing target sites, while sequence-specific primers for Cas9 and hygromycin resistance gene cassettes were used to identify the low-glutelin rice mutant absent of transgenic elements. The protein component contents of homozygous low-glutelin mutants were analyzed qualitatively and quantitatively, and the expression levels of glutelin-coding genes in rice grains were detected by quantitative PCR. The agronomic traits and quality traits of homozygous low-glutelin mutants and recipient cultivar cultivated under the same cultivation conditions were measured. 【Result】 Homozygous mutants with a 3 448 bp deletion between GluB4 and GluB5 genes were generated successfully. In the mutants, the relative proportion of glutelin decreased significantly, while that of prolamin and globulin increased significantly. The glutelin content of homozygous mutants decreased to 45.54%-49.75% compared to recipient cultivar, and the reduction level is comparable to LGC-1, a low-glutelin rice germplasm commonly used as a donor of low-glutelin trait in commercialized rice cultivars. The expression levels of B subfamily glutelin-coding genes in homozygous mutant were decreased significantly, and the changing trends was consistent with that of LGC-1 derived rice cultivar. Except that plant height decreased and grain length increased significantly, other measured agronomic and quality traits of homozygous mutants were not changed significantly compared to recipient cultivar. 【Conclusion】 Using CRISPR/Cas9-mediated gene editing technology, rice mutants with significant lower glutelin content free from transgenic elements were obtained successfully providing a convenient and quick method to generate low-glutelin germplasm.

    Table and Figures | Reference | Related Articles | Metrics
    Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River
    WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun
    Scientia Agricultura Sinica    2025, 58 (7): 1355-1365.   DOI: 10.3864/j.issn.0578-1752.2025.07.009
    Abstract375)   HTML47)    PDF (453KB)(136)       Save

    【Objective】This study aimed to clarify the water demand characteristics of the rice-oilseed rape rotation system in the middle reaches of the Yangtze River, so as to provide the theoretical support for water allocation in this cropping system.【Method】This study analyzed the water demand of the rice-oilseed rape rotation system in the middle reaches of the Yangtze River using the single crop coefficient method. The supplementary irrigation amount was calculated based on the effective precipitation, and the water surplus/deficit characteristics of the rotation system were identified according to the crop water surplus-deficit index.【Result】The rice-oilseed rape rotation pattern in the Middle Reaches of the Yangtze River required an average annual water demand of 1 172 mm, with rice accounting for approximately 898 mm (76.6%) and oilseed rape accounting for approximately 274 mm (23.4%). Rice required an average annual supplementary irrigation of 643 mm, while oilseed rape required drainage of 54 mm on average per year. Years with moderate, severe, and extreme drought in the rice accounted for 77.5%, 15%, and 2.5%, respectively. Years with moderate, severe, and extreme flooding in the oilseed rape accounted for 10%, 17.5%, and 2.5%, respectively. Special attention should be paid to the field water conditions during the tillering, joint-booting, and heading and filling stages of rice, and flood prevention measures should be taken during the seedling and maturity stages of oilseed rape. The early rice-late rice-oilseed rape rotation pattern required an average annual water demand of 1 161 mm, with early rice accounting for approximately 550 mm, late rice accounting for approximately 401 mm. The total water demand of the two seasons accounts for 82.0% of the total water demand of the whole rotation system. while oilseed rape accounting for approximately 210 mm (18.0%). Early rice required an average annual supplementary irrigation of 322 mm, late rice requires 272 mm, and oilseed rape requires drainage of 59 mm on average per year. Years with moderate, severe, and extreme drought in the rice season account for 40%, 15%, and 1.3%, respectively. Years with moderate, severe, and extreme flooding in the oilseed rape season account for 12.5%, 17.5%, and 17.5%, respectively. The special attention should be paid to the water conditions during the joint-booting and heading and filling stages of late rice, and flood prevention measures should be taken during the seedling and maturity stages of oilseed rape.【Conclusion】In the middle reaches of the Yangtze River, the water demand of rice-oilseed rape rotation mode was 1 172 mm, and the water demand of rice and oilseed rape accounted for 76.6% and 23.4%, respectively. The water demand of early rice-late rice-oilseed rape rotation mode was 1 161 mm, and the water demand of rice and oilseed rape accounted for 82.0% and 18.0%, respectively. Supplementary irrigation was required to prevent water deficits during the rice season, while drainage measures were necessary during the oilseed rape season. In years with extreme precipitation, special attention should be paid to excess water conditions during the seedling stage of rice and the seedling and maturity stages of oilseed rape, and corresponding measures should be taken. In years with extreme drought, special monitoring of water deficits should be conducted during the tillering, joint-booting, heading and filling stages of rice and the flowering stage of oilseed rape, and the timely supplementary irrigation should be provided.

    Table and Figures | Reference | Related Articles | Metrics
    Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits
    YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong
    Scientia Agricultura Sinica    2025, 58 (7): 1269-1283.   DOI: 10.3864/j.issn.0578-1752.2025.07.002
    Abstract374)   HTML58)    PDF (3160KB)(193)       Save

    【Objective】To clarify the molecular characteristics and the effectiveness of target traits of transgenic maize LD05 with composite insect and herbicide resistance, and to provide data basis, technical support and product reserve for industrial application.【Method】Using biological information analysis, we designed and modified the proprietary insect-resistant fusion gene m2cryAb-vip3A, and selected BC4F3, BC4F4 and BC4F5 generations of the newly created transgenic hybrid insect-resistant and herbicide-tolerant maize LD05 to carry out experimental research. Specific PCR and Southern blot were used to analyze the stability of genomic integration. qRT-PCR and ELISA were used to analyze the expression stability. The resistance to target pests was evaluated by bioassay and field trials, and the herbicide tolerance was tested by field spraying of glufosinate. 【Result】A new insect-resistant fusion gene m2cryAb-vip3A with independent property right was discovered and designed, and a multivalent insect-resistant and herbicide resistant maize transformant LD05 was created. The exogenous T-DNA was integrated into the maize genome in the form of a single copy. The qRT-PCR results indicated that m2cryAb-vip3A and bar were both expressed in various tissues and organs across three generations, and the variation trend of expression quantities was largely consistent. Specifically, the expression level of m2cryAb-vip3A was the highest in the leaves at the seedling stage of the three consecutive generations, with an average expression quantity of 36.73, while the expression level was the lowest in the kernel at the mature stage, with an average of merely 0.91. The expression pattern of bar was similar to that of m2cryAb-vip3A, with the highest expression level in the leaves at the seedling stage, averaging 7.35, and the expression level decreased after the jointing stage. The ELISA results demonstrated that M2CryAb-VIP3A could stably accumulate in different organs and at different periods in the three generations, and the protein accumulation amounts in different generations were similar. Among them, the accumulation amount was the highest in the leaves at the seedling stage of different generations, all exceeding 19.67 μg·g-1 fresh weight. The expression of the targeted protein at a relatively high level could be detected in different tissues of the PAT transgenic plants of three consecutive generations, and there was no significant difference in the expression quantity between different generations. Among them, the expression level was the highest in the leaves at the seedling stage of different generations, with an average content of 16.61 μg·g-1 fresh weight, while the accumulation amount was the lowest in the roots at the mature stage, with an average content of 0.30 μg·g-1 fresh weight. The bioassay result showed that the corrected mortality of Ostrinia furnacalis, Spodoptera fragiperda and Mythimna separata reached 100% after feeding on V5 maize leaf tissue of LD05 for 96 h, which was a high resistance level. The results of field trials showed that LD05 transformants had high resistance to Ostrinia furnacalis at V5 stage and silking stage, to Mythimna separata at V5 stage, and to Helicoverpa armigera at silking stage. The results of glufosinate tolerance test showed that transgenic maize LD05 could tolerate 4-fold glufosinate. Agronomic character investigation showed that there was no difference between transgenic maize LD05 and control maize Zheng 58.【Conclusion】A novel insect-resistant fusion gene m2cryAb-vip3A with independent property rights was developed, and a transgenic hybrid insect-resistant and herbicide-tolerant maize LD05 was created with clear molecular characteristics, genetic stability and outstanding functional traits.

    Table and Figures | Reference | Related Articles | Metrics
    Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition
    ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei
    Scientia Agricultura Sinica    2025, 58 (5): 877-889.   DOI: 10.3864/j.issn.0578-1752.2025.05.005
    Abstract351)   HTML16)    PDF (592KB)(199)       Save

    【Objective】This study aimed to examine changes in seed vitality and physiological mechanisms under natural aging conditions in winter wheat, to analyze how different storage durations affect seed germination vitality, root growth, and antioxidant capacity, and to identify key physiological indicators of seed aging, so as to provide a basis for breeding winter wheat varieties with improved storability. 【Method】 The newly bred winter wheat cultivars, including Annong1589 (AN1589), Annong1687 (AN1687), and Annong179 (AN179), were used as experimental materials. The seeds were stored at room temperature to simulate natural aging condition. Samples were taken from seeds stored for 6 months, 18 months, and 30 months to measure seed vigor indices, such as germination rate, germination potential, germination index, vigor index, field emergence rate, and seedling root characteristics. Additionally, those key physiological indicators during the seed and seedling stages were analyzed, including electrical conductivity (Con), malondialdehyde (MDA) content, proline (Pro), superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, and the content of soluble sugars and soluble proteins in the seeds.【Result】Genotype had a significant effect on seed vigor and physiological indicators within the same storage period, with the interaction of cultivar and aging time having a notable impact on seed vigor. As storage time increased, the germination potential and root vigor of winter wheat seeds significantly declined. Germination index, vigor index, field emergence rate, and seedling stage indicators such as seedling height, fresh weight, and root fresh weight also showed a decreasing trend. Germination potential decreased most rapidly, with all three cultivars maintaining over 90% germination potential after 6 months of storage. After 18 months, the germination potential of AN1589, AN1687, and AN179 declined to 85.88%, 81.70%, and 88.58%, respectively. After 30 months of storage, the germination potential of all cultivars dropped below 80%, to 75.42%, 74.04%, and 79.17% of AN1589, AN1687, and AN179, respectively. This indicated a significant decline in seed vigor during natural aging. The study found that as the aging process progressed, the three cultivars continuously accumulated MDA and Pro, indicating increasing oxidative damage to the seed cell membranes. The initial MDA content in AN1589 was the lowest among the three cultivars, at 0.0427 μmol·g-1. Moreover, AN1589 had the smallest increase in Pro content after 30 months of storage, at 22.43%. The activities of antioxidant enzymes of SOD, CAT, and POD, as well as the contents of soluble sugars and soluble proteins, decreased with increasing aging, indicating a gradual loss of antioxidant capacity and consumption of internal substances to support seed germination and seedling growth. 【Conclusion】Under natural aging conditions, the vigor of winter wheat seeds gradually decreased, closely related to the consumption of internal substances, increased oxidative damage, and weakened antioxidant capacity. The increase in MDA content and changes in antioxidant enzyme activity were important physiological indicators reflecting seed aging. AN1589 exhibited relatively stable vigor and physiological indicators under natural aging conditions, indicating strong storage tolerance.

    Table and Figures | Reference | Related Articles | Metrics
    Comprehensive Evaluation of Salt Tolerance at the Seedling Stage and Screening of Tolerant Germplasm in Adzuki Bean (Vigna angularis)
    CHEN TianXiao, CAO Rong, SONG QianNan, HU LiangLiang, WANG SuHua, WANG LiXia, CHENG XuZhen, CHEN HongLin
    Scientia Agricultura Sinica    2025, 58 (21): 4317-4332.   DOI: 10.3864/j.issn.0578-1752.2025.21.002
    Abstract349)   HTML43)    PDF (2935KB)(177)       Save

    【Objective】Adzuki bean (Vigna angularis) is an important legume crop in China, yet, its production is severely constrained by soil salinity. This study aimed to systematically identify and evaluate the salt tolerance of a large-scale adzuki bean germplasm collection to provide elite genetic resources and a theoretical basis for the genetic improvement of salt-tolerant adzuki bean cultivars. 【Method】A total of 398 adzuki bean accessions were evaluated in a hydroponic system under 100 mmol·L-1 NaCl stress a concentration determined as suitable for screening in preliminary experiments. The salt injury index and 10 root morphological traits of each accession were measured post-treatment. A comprehensive salt tolerance value (D-value) for each accession was calculated using a combination of principal component analysis (PCA) combined with the subordinate function method. Based on the D-value, all accessions were systematically evaluated and classified into different salt tolerance grades. Subsequently, differences in salt tolerance among three germplasm types (cultivars, landraces, and wild accessions) were compared. Finally, stepwise regression analysis was employed to identify key indicators for evaluating seedling salt tolerance and to construct a simplified evaluation model. 【Result】Salt stress significantly inhibited root growth in adzuki bean, but extensive genetic variation was observed among the accessions. PCA effectively reduced the 10 root traits to three independent principal components, accounting for a cumulative 88.76% of the total variation. According to the criteria of a comprehensive salt tolerance value (D-value) and salt tolerance grade, a group of highly tolerant accessions at the seedling stage, such as B552 and B533, were identified. Comparative analysis indicated that wild accessions and landraces exhibited stronger seedling stage salt tolerance potential than cultivars, with wild accessions showing particularly outstanding tolerance. Stepwise regression analysis identified the salt tolerance coefficients of five key traits, including root volume, root fresh weight, root dry weight, average root diameter, and number of root crossing as the key indicators. Based on these indicators, an optimal regression equation with a very high coefficient of determination was established. 【Conclusion】This study systematically evaluated the salt tolerance of a large-scale adzuki bean germplasm collection at the seedling stage. It not only identified a group of elite salt-tolerant accessions, but also established a simplified and efficient comprehensive evaluation system for seedling salt tolerance in adzuki bean based on five key root traits.

    Table and Figures | Reference | Related Articles | Metrics
    Identification and Evaluation of Drought Resistance for 111 Germplasm Resources of Alfalfa During Germination Stage
    CHEN CaiJin, MA Lin, BAO MingFang, ZHANG GuoHui, JIANG QingXue, YANG TianHui, WANG Chuan, WANG XiaoChun, GAO Ting, WANG XueMin, LIU WenHui
    Scientia Agricultura Sinica    2025, 58 (10): 1896-1907.   DOI: 10.3864/j.issn.0578-1752.2025.10.003
    Abstract345)   HTML31)    PDF (2050KB)(179)       Save

    【Objective】 To identify and evaluate the drought resistance of alfalfa germplasm resources, screen out different drought-resistant alfalfa germplasm materials, and lay a foundation for further development of drought-resistant alfalfa resources creation and breeding utilization. 【Method】 In this study, A total of 111 alfalfa germplasm resources were used as experimental materials, and drought stress conditions were simulated using a 13% PEG-6000 solution. Two treatments were established: drought stress (13% PEG-6000) and a control (distilled water). Drought tolerance at germination stage were comprehensively evaluated by the comprehensive drought resistance coefficient (CDC value) and drought resistance coefficient (D value) using nine indicators, including germination potential, germination rate, germination index, vitality index, promptness index, root length, bud length, fresh weight and dry weight. Meanwhile, single drought tolerance coefficients, correlation analysis, principal component analysis and stepwise regression analysis were conducted to identify the key indicators influencing drought resistance during germination. 【Result】 Analysis of the single drought tolerance coefficients for the nine indicators showed that vitality index, fresh weight, and promptness index were key indicators for screening drought resistance at the germination stage. The single drought tolerance coefficients of the indicators had the highest correlation among germination index and promptness index, germination rate, vitality index, with coefficients of 0.9838, 0.9495 and 0.9338, respectively. Principal component analysis transformed the nine indicators into three principal components with a cumulative contribution of 87.287%. Drought resistance of alfalfa at germination stage was identified using two methods with CDC value and D value, and it was found that the evaluation results of the two methods were highly consistent; however, the D value method was more comprehensive, reliable, and accurate, as it used the weighting coefficients to reflect the degree of influence of each indicator to the overall drought resistance of the varieties. Based on the D value, the 111 alfalfa germplasm resources were clustered into five categories: ClassⅠ(strongest drought resistance, 1 accession), Class Ⅱ (strong drought resistance, 5 accessions), Class Ⅲ (moderate drought resistance, 55 accessions), Class Ⅳ (weak drought resistance, 37 accessions), and Class Ⅴ (drought-sensitive, 13 accessions). 【Conclusion】 The D value evaluation method was found to be the most reliable for assessing drought resistance in alfalfa during the germination stage; The study identified AG37 as the strongest drought resistance germplasm, along with five strong drought resistance accessions, including AG19, AG5, AG13 and other. Vitality index and promptness index were determined to be the most suitable indicators for evaluating drought resistance in alfalfa at the germination stage.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Residue Return Methods on Nitrogen Mineralization and N-Cycling Functional Genes in Black Soil of Northeast China
    ZHANG Yang, GAO Yan, ZHANG Yan, HUANG DanDan, CHEN XueWen, ZHANG ShiXiu, LIANG AiZhen
    Scientia Agricultura Sinica    2025, 58 (10): 1958-1968.   DOI: 10.3864/j.issn.0578-1752.2025.10.008
    Abstract345)   HTML25)    PDF (653KB)(153)       Save

    【Objective】 This study aimed to explore the effects of different residue return methods on nitrogen fractions, nitrogen mineralization and nitrogen-cycling genes in black soil of Northeast China, and to clear the soil nitrogen supply capacity and the change of soil nitrogen cycling gene community structure under long-term residue return. 【Method】 Based on the long-term experiment of black soil in Northeast China, the residue incorporated into soil (RI) and the residue covered on soil surface (RC) under monoculture maize were selected, with residue removed as control (CK). Nitrogen content in soil fractions were measured, soil nitrogen mineralization incubation was conducted by using leaching incubation at intervals, and fluorescence quantitative PCR (qPCR) was used to determine the copy number of nitrogen-cycling genes in soil. 【Result】 After 8-year experiment, compared with CK, RC significantly increased the content of particulate organic nitrogen (PON)(0.21 g·kg-1) and mineral-associated organic nitrogen (MAON) (0.27 g·kg-1) in surface (0-5 cm) soil, whereas RI only increased the content of MAON (0.13 g·kg-1) in soil (P<0.05). Residue return (RI and RC) markedly increased the microbial biomass nitrogen (MBN) in soil by 1.4-2.8 times (P<0.05), the RI had higher content of ammonium nitrogen (NH4+) and dissolved organic nitrogen (DON), while the RC had the lowest content of nitrate nitrogen (NO3-). In comparison with CK, residue return significantly enhanced soil nitrogen mineralization amount by 25.3%-83.2% (P<0.05), taking the descending order of RC>RI>CK. Residue return remarkably increased the potential of soil nitrogen mineralization (N0) and mineralization rate constant (k) (P<0.05) by using a first-order reaction kinetics model, both showing the highest values under RC, with N0 and k reached 199.8 mg·kg-1 and 0.31 mg·kg-1·d-1, respectively. Random forest analysis indicated that PON, MBN, and NO3- had greater impacts on N0. In addition, the abundance of nifH, AOB and nirS genes under residue return were enhanced and the abundance of AOA and nirK genes under residue return were declined in comparison with residue removed (P<0.05), which indicated that residue return could change the structure of soil nitrogen-cycling genes communities. Redundancy analysis (RDA) result showed that the changes of soil microbial community structure were affected by different nitrogen fractions under different residue return methods. 【Conclusion】 Long-term residue covered on soil surface had the highest organic nitrogen content and nitrogen mineralization potential in soil. It was beneficial to improve soil nitrogen pools and to ensure the supply of nitrogen required for plant growth, which provided greater possibility for reducing the application of chemical nitrogen fertilizer in cropland in black soil of Northeast China.

    Table and Figures | Reference | Related Articles | Metrics
    Identification of Salt Tolerance in Maize Natural Populations at the Seedling Stage and Analysis of Salt Tolerance-Associated Genes
    WU ShuYu, HENG YanFang, YU TaiFei, WANG ShiJia, YU SiJia, LI Yuan, HU Zheng, ZHANG Hui, SUN XianJun, LI Liang, JIANG QiYan
    Scientia Agricultura Sinica    2025, 58 (20): 4085-4099.   DOI: 10.3864/j.issn.0578-1752.2025.20.005
    Abstract343)   HTML44)    PDF (4369KB)(162)       Save

    【Objective】Soil salinization significantly impairs the growth and development of maize, resulting in reduced yields. Investigating the salt tolerance of various maize inbred lines and identifying favorable allelic variants associated with salt tolerance can provide valuable SNP markers and candidate gene resources for salt-tolerant maize varieties.【Method】This study utilized a natural population comprising 238 inbred maize lines as experimental materials. Twenty-day-old maize seedlings at the three-leaf stage were subjected to treatment with a 300 mmol·L-1 NaCl solution, and changes in biomass, moisture contents as well as salt damage phenotypes were evaluated after 40 days of salt stress. A genome-wide association study (GWAS) was subsequently performed to identify favorable allelic variants associated with salt tolerance in maize.【Result】Through salt tolerance assessment of a maize natural population at the seedling stage, the materials were categorized into five distinct salt tolerance grades based on the salt damage rate: 22 highly tolerant materials (Grade 1), 93 tolerant materials (Grade 2), 62 moderately tolerant materials (Grade 3), 41 salt-sensitive materials (Grade 4), and 20 highly sensitive materials (Grade 5). The number of materials with different salt tolerance levels shows a normal distribution characteristic, with high-tolerance and highly sensitive materials comprising 17.6% of the total, while intermediate-grade materials accounted for 82.4%. Statistical analysis revealed that the salt damage rate was significantly and negatively correlated with the fresh weight, dry weight, and moisture content of plants under salt stress. The investigated traits exhibited considerable variability, indicating substantial differences among the genotypes. Genome-wide association analysis identified a total of 40 SNP loci associated with maize salt tolerance. Further investigation revealed one significantly associated SNP locus on chromosome 1 and another on chromosome 10. Analysis of the candidate genes within the 100 Kb confidence interval upstream and downstream of these two loci identified a total of 18 functional genes, including 9 genes with functional annotations and 9 genes with unknown functions.【Conclusion】22 first-class salt-tolerant maize inbred line materials were selected from a natural population consisting of 238 lines. 40 SNP loci associated with salt tolerance in maize seedlings were identified, among which two key SNPs showed significant association with the trait. Two salt tolerance-related candidate genes, ZmSTYK46 and Zm00001eb004810, were identified. ZmSTYK46 encodes a serine/threonine protein kinase, while the function of Zm00001eb004810 remains unknown.

    Table and Figures | Reference | Related Articles | Metrics
    The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle
    GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu
    Scientia Agricultura Sinica    2025, 58 (6): 1239-1258.   DOI: 10.3864/j.issn.0578-1752.2025.06.014
    Abstract342)   HTML39)    PDF (8726KB)(1017)       Save

    【Objective】 The composition and content of intramuscular lipids are important factors affecting flavor and tenderness of beef, and are closely related to beef quality. In this study, by comparing the lipid characteristics and gene expression patterns of longissimus dorsi muscle and tenderloin tissue of Nanyang cattle, the potential candidate genes regulating lipid characteristics of different muscle tissues in Nanyang cattle were identified. 【Method】 The longissimus dorsi muscle and tenderloin tissues of adult Nanyang cattle with the same growth environment and genetic background were selected as experimental materials, and then the lipid profile and gene expression profile of muscle tissue were constructed by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and transcriptome sequencing (RNA-seq) to identify differential lipid molecules (DLMs) and differentially expressed genes (DEGs) between different tissues. Functional enrichment analysis and protein-protein interaction network (PPI) were performed to screen potential candidate genes, and real-time fluorescent quantitative PCR (RT-qPCR) was used to verify their expression levels. 【Result】 In this study, 19 kinds of fatty acids were detected in muscle tissue, among which the content of C18:0, C14:1n5 and C16:1n7 were significantly different between tissues. A total of 2 106 lipid molecules were detected, of which Phosphatidylcholine (PC), Triacylglycerols (TG) and Phosphatidylethanolamine (PE) were the main components. A total of 39 DLMs and 3,424 DEGs were screened between two muscle tissues by difference analysis. According to receiver operating characteristic curve (ROC) analysis, 13 DLMs (e.g. DG(16:0_18:1), DG(18:0_18:1), DG(18:0_18:2)) could be used as potential lipid biomarkers between tissues. PPI and MCODE analysis obtained three core gene modules closely related to lipid metabolism. Pathway enrichment analysis showed that DEGs and DLMs were involved in Inositol phosphate metabolism, Glycerolipid metabolism and Glycerophospholipid metabolism. Integration analysis identified 19 potential candidate genes with different lipid characteristics, among which 7 genes (PLCG2, SYNJ1, LPIN1, DGKZ, DGAT1, LPL and SELENOI) were located in key positions in the pathway, and had direct regulatory effects on DLMs. RT-qPCR showed that the expression trend of six candidate genes was consistent with that of RNA-seq. 【Conclusion】 In this study, 13 potential lipid biomarkers were identified and 19 potential candidate genes were screened for the key metabolic pathways involved in the regulation of lipid characteristics between longissimus dorsi muscle and tenderloin tissue for Nanyang cattle, which provided a theoretical basis for further exploration of the regulatory mechanism for lipid difference formation in Nanyang cattle and molecular breeding for high-quality beef.

    Table and Figures | Reference | Related Articles | Metrics
    The Concept, Content and Research Progress of Functional Agriculture
    LIU JinDong, WANG YaMei, WANG YiCun, YU HaiXia, TIAN JiChun
    Scientia Agricultura Sinica    2025, 58 (23): 4813-4824.   DOI: 10.3864/j.issn.0578-1752.2025.23.001
    Abstract337)   HTML50)    PDF (556KB)(205)       Save

    Agriculture is the source of human food ingredients and the foundation for survival and development. Modern agriculture meets the demand for sufficient food, it has also led to diet-related diseases such as hyperlipidemia, hypertension, and hyperglycemia due to unbalanced diets. After the “Second International Conference on Nutrition (ICN2)” jointly held by the FAO and WTO in 2014, functional agriculture research aimed at meeting people’s nutritional and health needs rapidly developed both domestically and internationally, China has issued guiding documents such as the “National Nutrition Plan (2017-2030)” and the “Healthy China 2030” planning outline. This paper systematically reviews the background of functional agriculture emergence and focuses on the functionalization of staple crops to discuss the research progress in functional agriculture of the world. It also summarizes the key research areas of functional agriculture, including exploration of functional components in germplasm resources, breeding of new functional varieties, agronomic enhancement measures, and development and promotion of health foods. On this basis, in accordance with the requirements of the “China Food and Nutrition Development Outline (2025-2030)” proposed by the Ministry of Agriculture and Rural Affairs, the National Health Commission, and the Ministry of Industry and Information Technology in February 2025, four suggestions are put forward: Strengthening top-level government design, establishing major projects for staple crop functionalization, accelerating the construction of standard systems, and improving intellectual property protection for varieties. These suggestions aim to provide theoretical support and practical paths for implementing China large-scale agriculture and grain strategy and ensuring national nutrition and health. This paper offers valuable insights for establishing a functional agricultural industry system with Chinese characteristics.

    Table and Figures | Reference | Related Articles | Metrics
    Cloning and Genetic Effect Analysis of TaTIFY11c-4A in Wheat
    JIA YuJing, LI ChaoNan, PAN ZhiXiong, YANG DeLong, MAO XinGuo, JING RuiLian
    Scientia Agricultura Sinica    2025, 58 (17): 3357-3371.   DOI: 10.3864/j.issn.0578-1752.2025.17.001
    Abstract328)   HTML52)    PDF (2977KB)(136)       Save

    【Objective】The TIFY family, a plant-specific group of transcription factors, plays critical roles in regulating growth, development, and stress responses. This study aimed to clone TaTIFY11c-4A in wheat, validate its genetic effects, and provide a theoretical basis for high-yield molecular breeding of wheat.【Method】The wheat cultivar Hanxuan 10 was used to clone TaTIFY11c-4A and allelic variations were detected in germplasms. The tissue-specific expression patterns of TaTIFY11c-4A and its responses to various hormones and stresses were analyzed via quantitative real-time PCR (qRT-PCR). The subcellular localization of TaTIFY11c-4A was determined through transient expression in tobacco. A molecular marker targeting the polymorphic site in TaTIFY11c-4A was developed to assess the genotypes in the natural population, and association analysis was performed to evaluate the correlations between the genotypes and phenotypes. Additionally, the spatial and temporal distribution of different genotypes were analyzed. Synergistic effects of TaTIFY11c-4A and TaSRL1-4A haplotypes were explored to identify superior genotype.【Result】TaTIFY11c-4A was successfully cloned, comprising three exons and two introns, encoding a 198-amino acid protein with conserved TIFY and Jas domains. TaTIFY11c-4A is expressed in roots, root bases and leaves at the seedling stage, and highly expressed in roots and leaves at the booting stage. There are multiple cis-acting elements related to hormone responses, stress adaptation, and endosperm development in the promoter of TaTIFY11c-4A. Its expression responds to plant hormones (ABA, IAA, MeJA) and abiotic stresses (drought, high salinity, low and high temperature). A SNP (G/A) was identified in its promoter at -405 bp. A molecular marker was developed based on the SNP and association analysis revealed significant correlations between TaTIFY11c-4A alleles and plant height, thousand grain weight under multiple environments such as drought and high temperature, and root depth at tillering stage. Compared with genotype SNP-G, wheat germplasms carrying the SNP-A allele exhibited shorter plants, higher thousand grain weight, and shallower roots at tillering stage, and have been positively selected in the wheat breeding process. TaTIFY11c-4A-SNP-A and TaSRL1-4A-SNP-C genotypes synergistically reduced plant height and enhanced thousand grain weight.【Conclusion】TaTIFY11c-4A encodes a nuclear-localized JAZ protein. It is expressed in various tissues of wheat and involved in responses to ABA, IAA, MeJA, as well as abiotic stresses such as drought, extreme temperature, and high salinity. The TaTIFY11c-4A-SNP is associated with plant height and thousand grain weight under multiple environments, and root depth. SNP-A allele has been positively selected in the wheat breeding process. The superior genotypes and combinations of TaTIFY11c-4A and TaSRL1-4A provide genetic resources for breeding high-yield and stress-resistant wheat cultivars.

    Table and Figures | Reference | Related Articles | Metrics
    Functional Analysis of MADS-box Transcription Factor Gene CaAGL61 in Heat Tolerance of Pepper
    WANG MengYuan, WEI QianRui, LI HaiYan, YANG QiaoMin, YU Jun, HUANG Wei, LU MingHui
    Scientia Agricultura Sinica    2025, 58 (8): 1604-1616.   DOI: 10.3864/j.issn.0578-1752.2025.08.011
    Abstract327)   HTML26)    PDF (2335KB)(156)       Save

    【Objective】 MADS-box transcription factors are one of the largest transcription factor families in plants, and play important roles in plant growth, development, and stress responses. Previously, based on transcriptome data of pepper, a heat-responsive gene, Agamous-like MADS-box protein61 (AGL61), was identified as a MADS-box transcription factor. However, the function of CaAGL61 in pepper heat stress remains unknown. In this study, we explored the molecular function of CaAGL61 in heat tolerance of pepper plants, providing the regulatory insights of CaAGL61 as a potential locus for genetic improvement. 【Method】 The SMART online tool was used to predict the conserved domain of CaAGL61, and a phylogenetic tree of AGL61 in pepper and other plant species was constructed using MEGA7. The expression pattern of CaAGL61 was analyzed by quantitative real-time PCR. The subcellular localization of CaAGL61 was examined in tobacco, and its transcriptional regulatory role was investigated using a yeast two-hybrid system (Y2H). The effects of CaAGL61 on heat tolerance of pepper were accessed using transgenic plants generated by virus-induced gene silencing (VIGS) and transient overexpression techniques.【Result】CaAGL61 encodes a protein of 179 amino acids, containing a MADS domain and exhibiting high evolutionary conservation. CaAGL61’s expressional level was relatively high in the flower of pepper, followed by the stem and fruit, and lowest in the root. Further analysis reveals that the expression of CaAGL61 increased along with flower maturation process, peaking in the anther during pollination and fruit setting. High temperature treatment at 45 ℃ significantly upregulates the expression of CaAGL61. Subcellular localization showed that CaAGL61 is located in the nucleus, and yeast transcriptional activation assays indicates that CaAGL61 has transcriptional activation activity. Silencing of CaAGL61 significantly enhances heat tolerance of pepper. Comparing with control, CaAGL61-silenced plants exhibit reduced wilting in plant growth points, lower relative electrolyte leakage, reduced content of malondialdehyde, and accumulation of dead cells and reactive oxygen species (ROS), and increased content of chlorophyll under heat stress. However, transient overexpression of CaAGL61 reduces the heat tolerance of pepper, indicated by more severe heat-stress damage, higher relative electrolyte leakage, increased content of malondialdehyde, and accumulation of dead cells and ROS, and decreased content of chlorophyll compared to control. 【Conclusion】A heat-responsive MADS-box transcription factor gene, CaAGL61, was identified in pepper. This gene negatively regulates pepper heat tolerance by exacerbating oxidative stress.

    Table and Figures | Reference | Related Articles | Metrics
    Eeffects of Long-Term Fertilization on Bacterial Community Structure and Carbon Metabolic Functions in Brown Soil
    BAI YuXin, LIU LingZhi, AN TingTing, LI ShuangYi, WANG JingKuan
    Scientia Agricultura Sinica    2025, 58 (8): 1579-1590.   DOI: 10.3864/j.issn.0578-1752.2025.08.009
    Abstract320)   HTML24)    PDF (2017KB)(135)       Save

    【Objective】 This study aimed to elucidate the relationships among bacterial population structure, key species, carbon metabolic functions, and variations in soil physicochemical and biological properties resulting from long-term different fertilization treatments in agricultural soils. 【Method】 The amplicon sequencing technology based on the molecular marker of bacterial 16S rRNA were employed to analyze soil bacterial community structure, ecological networks, potential carbon metabolic functions, and their correlations with soil physicochemical and biological properties after 29 years of continuous application of various fertilization treatments (no fertilization as control, CK; chemical fertilizers, N4; and reduced application of chemical fertilizer combined with organic manure, M2N2) at the Long-term Positioning Experimental Station at Shenyang Agricultural University. 【Result】Different fertilization treatments significantly altered soil physicochemical and biological properties, and bacterial populations, diversity, and abundance of potential carbon metabolic genes. Compared with CK treatment, N4 treatment significantly decreased soil pH value, bacterial abundance and community diversity, which indicated that M2N2 treatment demonstrated a beneficial maintenance effect. Although long-term fertilization practices (both N4 and M2N2) significantly increased soil respiration rates, they also markedly reduced net nitrogen (N) mineralization rates at 0-20 cm soil layer. Furthermore, compared with N4 treatment, M2N2 treatment significantly enhanced soil net N mineralization rates. Soil ammonium N content, net N mineralization rate and pH value were the critical environmental factors influencing soil bacterial populations. Network co-occurrence analysis revealed that Bradyrhizobium elkanii and beta proteobacterium WWH154 were the key bacterial species that maintained the stability of bacterial ecological networks, and about 100 dominant bacterial species co-occurred fully with beta proteobacterium WWH154 and 54% of the species co-occurred with Bradyrhizobium elkanii. Long-term fertilization (N4 and M2N2) increased the relative abundance of two key species by 61.9%-169.4%, especially the M2N2 treatment. The function prediction of carbon metabolic genes showed that N4 treatment reduced the abundance of various carbon metabolism-related genes, such as carbon fixation pathways in prokaryotes, Aminoacyl tRNA biosynthesis and Amino acid related enzymes in soil bacteria, and M2N2 treatment significantly stabilized the carbon metabolic pathways. 【Conclusion】In summary, long-term fertilization altered the physicochemical and biological properties of agricultural soil. Reduced application of chemical fertilizer combined with organic manure enriched key bacterial species and increased the complexity of microbial networks, which would be beneficial to coping with environmental changes, thus maintaining soil ecological functions and increasing crop yield.

    Table and Figures | Reference | Related Articles | Metrics
    Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China
    LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao
    Scientia Agricultura Sinica    2025, 58 (8): 1508-1520.   DOI: 10.3864/j.issn.0578-1752.2025.08.004
    Abstract320)   HTML22)    PDF (497KB)(155)       Save

    【Objective】 Optimal reduction of nitrogen (N) fertilizer application is a sustainable management strategy in rice production. The effects of lowering N fertilizer input on grain yield and rice quality of early and late-season dual-use rice in South China were investigated, which could provide a theoretical basis for high-quality and high-yield cultivation and nitrogen management of the ‘Simiao Rice’. 【Method】 A two-year in-situ field trial was carried out at the Dafeng Experimental Base of the Guangdong Academy of Agricultural Sciences from 2022 to 2023, two early and late-season dual-use ‘Simiao Rice’ (19Xiang and Nanjingxiangzhan) were used as test cultivars, and a two-factor split-plot experimental design was adopted. The main plots were a 20% reduced N fertilizer application rate treatment (RN) and the conventional N fertilizer application rate treatment (CN). The split plots were rice varieties, to analyze the changing characteristics of early and late-season dual-use rice yield and quality under RN conditions. 【Result】Compared with CN, RN did not change the grain yield in the late season, but significantly decreased the grain yield in the early season by an average of 11.7% in the two years. The decrease in grain yield under RN conditions was related to the decline in total spikelet. In the early season, RN did not affect milled rice rate, chalky grain rate, and chalkiness, but significantly reduced head rice rate by an average of 3.30% in the two years. RN had no effect on the hardness of cooked rice in the early season, but significantly reduced its protein content, stickiness and taste value of cooked rice, with an average reduction of 0.61%, 12.80% and 2.80%, respectively, and significantly increased its amylose content by an average of 1.23%. RN did not influence the milled rice rate, head rice rate, chalky grain rate, chalkiness, amylose and protein content, and the hardness, stickiness, and taste value of cooked rice in the late season. In addition, the relevant analysis showed that the decrease in head rice rate of RN treatment in the early season might be related to the decrease in protein content, while the decrease in stickiness and taste value was related to the increase in amylose content. 【Conclusion】RN decreased the grain yield, milling quality, and eating quality in the early season, while did not alter the appearance quality in the early season, the grain yield, milling quality, appearance quality, and eating quality in the late season. Therefore, in the production of early and late-season dual-use rice, it was necessary to ensure an adequate N supply in the early season to maintain grain yield and rice quality, while reducing N fertilizer by 20% in the late season could still achieve stable and high-quality rice production under current N fertilizer application levels. Keywords:

    Table and Figures | Reference | Related Articles | Metrics
    Effects of Long-Term Chemical Fertilizer and Organic Material Application on Crop Yield and Nutrient Utilization in Rice-Rapeseed Rotation System
    FANG YaTing, ZHAO Jian, SHENG QianNan, LI KaiXu, WANG XiangHua, ZHANG YangYang, ZHU Jun, CONG RiHuan, LU ZhiFeng, LI XiaoKun, REN Tao, LU JianWei
    Scientia Agricultura Sinica    2025, 58 (16): 3164-3177.   DOI: 10.3864/j.issn.0578-1752.2025.16.002
    Abstract319)   HTML44)    PDF (1104KB)(168)       Save

    【Objective】The application of chemical fertilizers and organic materials is a crucial measure for increasing agricultural production. Rice-rapeseed rotation system is a primary paddy-upland crop rotation pattern in the Yangtze River basin of China. Clarifying the impact of chemical fertilizers and organic material inputs on the annual crop yield and nutrient utilization in rice-rapeseed rotation could provide a scientific basis for ensuring food and oil security and achieving green and sustainable agricultural development. 【Method】From 2017 to 2022, a continuous field experiment was conducted at the Huazhong Agricultural University's Shayang Experimental Station in Shayang County, Hubei Province. Four treatments were established: no fertilizer (CK), chemical fertilizer only (NPK), chemical fertilizer with straw return (NPK+S), and chemical fertilizer with straw return plus organic fertilizer (NPK+S+M). The crop yields, nitrogen (N), phosphorus (P) and potassium (K) nutrient absorption of rapeseed and rice were analyzed. The nutrient use efficiency, apparent nutrient balances, and their relationships with yield were also assessed.【Result】The average results over 6 years showed that compared with no fertilization, the application of chemical fertilizers and organic materials significantly increased the yield of rapeseed (493.5%-758.8%) and rice (94.3%-106.4%), and enhanced crop yield stability (24.6%-72.1%) and sustainability (17.2%-85.0%). Compared with the NPK treatment, the NPK+S treatment increased the yield of rapeseed by 6.3%, but decreased yield stability and sustainability; it decreased the yield of rice by 0.8%, but increased yield stability and sustainability. The NPK+S+M treatment increased the yield of rapeseed and rice by 44.7% and 5.4%, respectively, and improved the sustainability of yield. Throughout the rotation cycle, nutrient uptake by rapeseed was consistently lower than that by rice across all treatments. The addition of organic materials significantly enhanced nutrient uptake in both rapeseed and rice. Relative to the NPK treatment, the NPK+S+M treatment resulted in increases of 5.1%-91.2% in average nutrient uptake and 12.2%-100.4% in trend nutrient uptake. The NPK+S treatment did not significantly differ from the NPK treatment in average nutrient uptake but exhibited a 7.7%-25.4% higher trend nutrient uptake. The input of organic materials decreased the physiological nutrient use efficiency of rapeseed and rice. Compared with the NPK treatment, the physiological N use efficiency of rapeseed and rice in the NPK+S+M treatment decreased by 3.0 and 3.7 percentage points, respectively, and the physiological P use efficiency decreased by 19.3 and 25.5 percentage points, respectively. Further analysis revealed that the application of organic materials led to higher apparent nutrient surpluses, which caused the annual increase in the cumulative yield of crops in the rice-rapeseed rotation. The cumulative apparent nutrient surplus was significantly positively correlated with the cumulative crop yield. 【Conclusion】The application of chemical fertilizers and organic materials significantly increased crop yields and nutrient use efficiency, and its effects were jointly influenced by crop and nutrient type. Increasing organic fertilization along with chemical fertilizers and straw application could further enhance soil fertility and increase crop yield; however, efforts should focus on improving the physiological nutrient use efficiency to fully realize the potential of organic amendments for sustainable grain and oil production.

    Table and Figures | Reference | Related Articles | Metrics