Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4248-4263.doi: 10.3864/j.issn.0578-1752.2024.21.007

• PLANT PROTECTION • Previous Articles     Next Articles

Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects

SHAO JiaZhu(), LÜ Wen(), LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua()   

  1. College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang
  • Received:2024-07-03 Accepted:2024-08-06 Online:2024-11-01 Published:2024-11-10
  • Contact: JIANG DongHua

Abstract:

【Objective】Plant growth-promoting rhizobacteria (PGPR) can effectively promote plant growth through long-term mutualistic symbiosis with plants. The objective of this study is to screen and identify rhizosphere growth-promoting actinomycetes from soybean rhizosphere soil and clarify their growth-promoting mechanisms, and to lay a foundation for the development and utilization of microbial agents. 【Method】Different actinomycetes were collected using soil dilution coating method and plate streak inoculation method. The growth-promoting characteristics of isolates were analyzed using phosphorus solubilization, potassium solubilization, and siderophore assay media. Through microscopic observation, physiological and biochemical experiments, and multi-gene sequence analysis, the target growth-promoting actinomycetes were identified. Different salt concentrations (0-10%) were set to determine the salt tolerance of the target isolate. The growth-promoting ability of the isolate on soybean seedlings was detected by pot experiments and whether spraying the culture medium of the isolate under salt stress conditions could improve the stress resistance of soybean plants was evaluated. 【Result】Thirteen PGPR isolates were screened and obtained. Among then, the Sg-7 isolate not only had strong abilities to dissolve phosphorus, potassium, siderophore, and IAA production, but also effectively antagonized Pseudomonas syringae pv. glycinea (Psg). Based on morphological characteristics, biochemical, and multi-gene analyses, the soybean rhizosphere growth-promoting bacterium Sg-7 was identified as Streptomyces griseocarneus. The Sg-7 strain had certain salt tolerance characteristics, with a maximum tolerance to 7% NaCl salt concentration. Pot experiments showed that the diluted culture fluid after irrigation could effectively promote the germination of soybean seeds and improve growth indicators such as root length, stem diameter, fresh weight, and leaf area. Under 150 mmol·L-1 salt stress, irrigation with a 50× dilution of the Sg-7 culture fluid could effectively enhance SOD enzyme activity of soybean leaf, which was 1.84 times that of the salt stress treatment group. The CAT enzyme activity after irrigation with 100× dilution of culture fluid was 4.33 times higher than that of the salt stress treatment group. The POD enzyme activity after irrigation with 10× dilution of culture fluid was 1.10 times that of the salt stress treatment group. The culture fluid of Sg-7 strain could also enhance the root activity of soybean plants and promote the increase of carotenoid content in leaves to resist stress, which was 3.05 and 1.12 times that of salt stress treatment group, respectively. 【Conclusion】S. griseocarneus Sg-7 strain is a potential plant rhizosphere growth-promoting bacterium with broad development potential and practical application value.

Key words: Streptomyces griseocarneus, growth-promoting evaluation, salt stress, antioxidant enzyme activity, soybean, root activity

Table 1

Gene amplification and primer sequences"

基因
Gene
引物序列
Primer sequence (5′-3′)
16S rRNA 27F AGAGTTTGATCCTGGCTCAG
1492R CTACGGCTACCTTGTTACGA
recA recA F CCGCRCTCGCACAGATTGAACGSCAATTC
recA R GCSAGGTCGGGGTTGTCCTTSAGGAAGTTGCG
rpoB rpoB F GAGCGCATGACCACCCAGGACGTCGAGGC
rpoB R CCTCGTAGTTGTGACCCTCCCACGGCATGA
gyrB gyrB F GAGGTCGTCATGACCCAGCA
gyrB R GTCTTGGTCTGGCCCTCGAACTG

Table 2

Growth-promoting characteristics of 13 representative actinomycetes"

分离株编号
Isolate number
固氮Nitrogen
fixation
溶磷Phosphorus solubilization 解钾Potassium
solubilization
产铁载体Siderophore
production
产吲哚乙酸
IAA production
Sg-7 - ++ +++ ++ +++
Sc-8 ++ + - + -
Sl-9 - + + - -
Sv-9 ++ - - - -
Sn-1 + + - - +
Sa-4 ++ - + + -
Sb-17 - - + ++ -
Sl-10 ++ + - + -
Sc-7 - + + + -
Sm-11 + + - - +
Sc-2 - + + + -
St-4 + + - - +
Sw-6 ++ - + ++ -

Fig. 1

Growth-promoting characteristics of Sg-7 isolate A:Sg-7分离株溶磷圈Sg-7 isolate phosphate solubilization zone;B:Sg-7分离株解钾圈Sg-7 isolate potassium solubilization zone;C:Sg-7分离株铁载体产生Production of siderophore by Sg-7 isolate;D—F:分别为高氏1号培养基对照的溶磷圈、解钾圈和铁载体产生Gause No. 1 phosphate solubilization zone, potassium solubilization zone, production of siderophore"

Fig. 2

Inhibitory zones of Sg-7 isolate against Psg"

Fig. 3

Colony morphology and microscopic characteristics of Sg-7 isolate"

Fig. 4

Colony morphology characteristics of Sg-7 isolate on six characteristic media"

Table 3

Growth of Sg-7 isolate on different identification media"

特征性培养基
Characteristic medium
气生菌丝
Aerial mycelium
基内菌丝
Substrate mycelium
可溶性色素
Soluble pigment
无机盐淀粉琼脂ISP4 白色White 白色White -
甘油天门冬素ISP5 黄褐色Yellow brown 黄色Yellow -
马铃薯葡萄糖琼脂PDA 白色White 黑色Black 黄色Yellow
察氏Cha’s 黄色Yellow 黄色Yellow -
葡萄糖天门冬素琼脂 Glucose asparagine agar 黄色Yellow 黄棕色Yellow brown -
克氏1号Keshi No. 1 黄色Yellow 褐色Brown -

Table 4

Physiological and biochemical properties of Sg-7 isolate"

项目Item 结果Result 项目Item 结果Result
淀粉酶Amylase ++ 硫化氢Hydrogen sulfide -
纤维素酶Cellulase ++ 黑色素Melanin +
明胶液化Gelatin liquefaction ++ 蛋白酶Protease +++
甲基红Methyl red (MR) - 脲酶Urease +++
V-P - 脂肪酶Lipase +++

Fig. 5

Partial physiological and biochemical test results of Sg-7 isolate"

Table 5

Comparison of carbon and nitrogen source utilization between Sg-7 isolate and standard strain"

碳源种类
Carbon source
Sg-7分离株
Sg-7 isolate
标准菌株
<BOLD>S</BOLD>tandard strain
氮源种类
Nitrogen source
Sg-7分离株
Sg-7 isolate
标准菌株
<BOLD>S</BOLD>tandard strain
葡萄糖Glucose + + 蛋白胨Peptone + +
α-乳糖α-lactose - + KNO3 + +
L-鼠李糖L-rhamnose + - (NH4)2SO4 + +
D-木糖D-xylose - - 甲硫氨酸Methionine + +
蔗糖Sucrose - - 赖氨酸Lysine + -
D-麦芽糖D-maltose + + 亮氨酸Leucine + -
肌醇Inositol + + 组氨酸Histidine + +

Fig. 6

Phylogenetic tree of Sg-7 isolate based on 16S rDNA sequence, recA, rpoB and gyrB"

Fig. 7

Effect of Sg-7 culture fluid on soybean seed germination rate"

Fig. 8

Effect of Sg-7 culture fluid on the growth of soybean seedlings"

Fig. 9

Promotion of soybean seedling growth by Sg-7 culture fluid"

Fig. 10

Tolerance of Sg-7 to different salt concentrations"

Fig. 11

Effect of Sg-7 on the activities of stress-related enzymes in soybean"

Fig. 12

Effect of irrigation with Sg-7 culture fluid on soybean root activity after salt stress"

Fig. 13

Effect of irrigation with Sg-7 isolate culture fluid on soybean photosynthetic indicators after salt stress"

[1]
张晓佳, 卢亚军, 张文晋, 张瑜, 崔高畅, 郎多勇, 张新慧. 抗旱耐盐菌剂的制备及其对甘草种子萌发的影响. 生物技术通报, 2020, 36(9): 180-193.

doi: 10.13560/j.cnki.biotech.bull.1985.2020-0120
ZHANG X J, LU Y J, ZHANG W J, ZHANG Y, CUI G C, LANG D Y, ZHANG X H. Preparation of drought-resistant and salt-tolerant bacteria and its effect on germination of licorice seeds. Biotechnology Bulletin, 2020, 36(9): 180-193. (in Chinese)
[2]
宋燕飞, 金忠华, 孙丹丹. 盐碱胁迫下复合微生物菌剂对玉米根系性状的影响. 杂粮作物, 2008, 28(3): 160-162.
SONG Y F, JIN Z H, SUN D D. The effect of composite microbial agents on maize root traits under salt-alkali stress. Rain Fed Crops, 2008, 28(3): 160-162. (in Chinese)
[3]
李欣. 微生物菌剂对盐碱胁迫下玉米幼苗的促生效果研究[D]. 泰安: 山东农业大学, 2022.
LI X. Growth-promoting effect of microbial inoculants on maize seedlings under saline-alkali stress[D]. Taian: Shandong Agricultural University, 2022. (in Chinese)
[4]
张晓丽, 王国丽, 常芳弟, 张宏媛, 逄焕成, 张建丽, 王婧, 冀宏杰, 李玉义. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响. 生态环境学报, 2022, 31(10): 1984-1992.

doi: 10.16258/j.cnki.1674-5906.2022.10.006
ZHANG X L, WANG G L, CHANG F D, ZHANG H Y, PANG H C, ZHANG J L, WANG J, JI H J, LI Y Y. Effects of microbial agents on physicochemical properties and microbial flora of rhizosphere saline-alkali soil. Ecology and Environmental Sciences, 2022, 31(10): 1984-1992. (in Chinese)
[5]
ZHAO X, WANG R Y, SHANG Q H, HAO H T, LI Y Y, ZHANG Y B, GUO Z H, WANG Y, XIE Z K. The new flagella-associated collagen-like proteins ClpB and ClpC of Bacillus amyloliquefaciens FZB42 are involved in bacterial motility. Microbiological Research, 2016, 184(1): 25-31.
[6]
吕亮雨, 段国珍, 苏彩风, 郭寰, 樊光辉. 木霉菌微生物菌剂对枸杞生长及土壤性状的影响. 沈阳农业大学学报, 2022, 53(4): 476-482.
L Y, DUAN G Z, SU C F, GUO H, FAN G H. Effects of microbial agents on growth and soil properties of Lycium barbarum L. Journal of Shenyang Agricultural University, 2022, 53(4): 476-482. (in Chinese)
[7]
张新飞, 佘木子, 李晗玉, 敬松, 姜惠娜, 高浩, 朱延晓, 付娟娟. 琥珀酸黄杆菌促生机理及其对多年生黑麦草生长和抗逆性的生理调控作用. 草地学报, 2021, 29(8): 1704-1711.

doi: 10.11733/j.issn.1007-0435.2021.08.013
ZHANG X F, SHE M Z, LI H Y, JING S, JIANG H N, GAO H, ZHU Y X, FU J J. Growth promotion mechanisms of Flavobacterium succinicans and their physiological regulation on the growth and stress tolerance in Lolium perenne. Acta Agrestia Sinica, 2021, 29(8): 1704-1711. (in Chinese)
[8]
SARKAR A, GHOSH P K, PRAMANIK K, MITRA S, SOREN T, PANDEY S, MONDAL M H, MAITI T K. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 2018, 169(1): 20-32.
[9]
孙韵雅, 陈佳, 王悦, 程济南, 韩庆庆, 赵祺, 李惠茹, 李慧萍, 何傲蕾, 缑晶毅, 吴永娜, 牛舒琪, 索升州, 李静, 张金林. 根际促生菌促生机理及其增强植物抗逆性研究进展. 草地学报, 2020, 28(5): 1203-1215.

doi: 10.11733/j.issn.1007-0435.2020.05.004
SUN Y Y, CHEN J, WANG Y, CHENG J N, HAN Q Q, ZHAO Q, LI H R, LI H P, HE A L, GOU J Y, WU Y N, NIU S Q, SUO S Z, LI J, ZHANG J L. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance. Acta Agrestia Sinica, 2020, 28(5): 1203-1215. (in Chinese)
[10]
OMAR A F, ABDELMAGEED A H A, AL-TURKI A, ABDELHAMEID N M, SAYYED R Z, REHAN M. Exploring the plant growth promotion of four Streptomyces strains from rhizosphere soil to enhance cucumber growth and yield. Plants, 2022, 11(23): 3316.
[11]
乔美霞, 杨珍平, 闫霞, 马延玲, 刘玉涛, 高志强, 陈杰. 微白黄链霉菌对谷子萌发及拔节期生长的作用及机制. 核农学报, 2023, 37(2): 370-378.

doi: 10.11869/j.issn.1000-8551.2023.02.0370
QIAO M X, YANG Z P, YAN X, MA Y L, LIU Y T, GAO Z Q, CHEN J. Effect and mechanism of Streptomyces albidoflavus on seed germination and plant growth of foxtail millet at the jointing stage. Journal of Nuclear Agricultural Sciences, 2023, 37(2): 370-378. (in Chinese)
[12]
胡小京, 敖飞雄, 石乐娟, 彭强, 李欣, 周小会, 陈孝玉龙. 两株链霉菌对非洲菊生长和生理生化指标的影响. 应用生态学报, 2021, 32(9): 3321-3326.

doi: 10.13287/j.1001-9332.202109.029
HU X J, AO F X, SHI L J, PENG Q, LI X, ZHOU X H, CHEN X Y L. Effects of two Streptomyces strains on growth and physiological properties of Gerbera jamesonii. Chinese Journal of Applied Ecology, 2021, 32(9): 3321-3326. (in Chinese)
[13]
王鹤, 彭楚, 来航线, 韦小敏, 姜影影. 太白山土壤放线菌分离方法及生态分布规律. 干旱地区农业研究, 2017, 35(5): 107-114.
WANG H, PENG C, LAI H X, WEI X M, JIANG Y Y. Study on method of actinomycetes isolation from soils of Taibai mountain and its ecological distribution. Agricultural Research in the Arid Areas, 2017, 35(5): 107-114. (in Chinese)
[14]
JIANG B, WANG Z Y, XU C X, LIU W J, JIANG D H. Screening and identification of Aspergillus activity against Xanthomonas oryzae pv. oryzae and analysis of antimicrobial components. Journal of Microbiology, 2019, 57(7): 597-605.
[15]
王海德. 溶磷解钾菌株的筛选及培养基优化[D]. 泰安: 山东农业大学, 2018.
WANG H D. Screening and medium optimization of phosphate- solubilizingm, potassium-solubilizing microorganism[D]. Taian: Shandong Agricultural University, 2018. (in Chinese)
[16]
宁楚涵, 李文彬, 张晨, 刘润进. 定殖植物根内和根围放线菌的分离鉴定及其体外抑菌促生效应. 微生物学报, 2019, 59(10): 2024-2037.
NING C H, LI W B, ZHANG C, LIU R J. Isolation and identification of antagonizing and growth promoting actinobacteria colonized in plant roots and rhizosphere. Acta Microbiologica Sinica, 2019, 59(10): 2024-2037. (in Chinese)
[17]
SCHWYN B, NEILANDS J B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1): 47-56.

doi: 10.1016/0003-2697(87)90612-9 pmid: 2952030
[18]
白娟娈. 苏北海岸带典型盐生植物根际放线菌多样性及其耐盐促生作用研究[D]. 徐州: 江苏师范大学, 2017.
BAI J L. Study on the diversity of rhizosphere actinomycetes from the typical halophilic in coastal zone of northern Jiangsu and their plant growth-promoting effects under salt stress[D]. Xuzhou: Jiangsu Normal University, 2017. (in Chinese)
[19]
张秀娟, 安丽芸, 刘勇, 刘菊, 李君剑. 基于梯度稀释法分析细菌多样性对土壤碳代谢的影响. 生态学报, 2020, 40(3): 768-777.
ZHANG X J, AN L Y, LIU Y, LIU J, LI J J. Effects of soil bacterial diversity on soil carbon metabolism based on gradient dilution method. Acta Ecologica Sinica, 2020, 40(3): 768-777. (in Chinese)
[20]
黄臣, 杨凯元, 高鹏, 梁银萍, 韩玲娟, 赵祥. 达乌里胡枝子根际解磷细菌的筛选、鉴定及特性研究. 草地学报, 2022, 30(9): 2345-2355.

doi: 10.11733/j.issn.1007-0435.2022.09.014
HUANG C, YANG K Y, GAO P, LIANG Y P, HAN L J, ZHAO X. Screening, identification and characteristics of phosphate-solubilizing microorganisms in Lespedeza daurica. Acta Agrestia Sinica, 2022, 30(9): 2345-2355. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2022.09.014
[21]
于鑫焱. 高产铁载体假单胞菌HYS铁载体合成调控机理研究[D]. 武汉: 武汉大学, 2014.
YU X Y. The study on mechanisms of biosynthesis and regulation of siderophores in high-siderophore-yielding Pseudomonas sp. HYS[D]. Wuhan: Wuhan University, 2014. (in Chinese)
[22]
王西祥, 徐坤, 张冬梅, 杜秉海, 杨倩倩, 胡秀娜, 丁延芹. 5株生姜促生菌的初步鉴定及产IAA和抑菌能力测定. 山东农业科学, 2015, 47(1): 36-40, 46.
WANG X X, XU K, ZHANG D M, DU B H, YANG Q Q, HU X N, DING Y Q. Preliminary identification, IAA-producing and antibacterial capacity determination of five ginger growth-promoting bacteria. Shandong Agricultural Sciences, 2015, 47(1): 36-40, 46. (in Chinese)
[23]
王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能. 中国农业科学, 2023, 56(2): 275-286. doi: 10.3864/j.issn.0578-1752.2023.02.006.
WANG X D, SONG Z, LAN H T, JIANG Y Z, QI W J, LIU X Y, JIANG D H. Isolation of dominant actinomycetes from soil of waxberry orchards and its disease prevention and growth-promotion function. Scientia Agricultura Sinica, 2023, 56(2): 275-286. doi: 10.3864/j.issn.0578-1752.2023.02.006. (in Chinese)
[24]
东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001: 140-176.
DONG X Z, CAI M Y. Handbook for Identification of Common Bacterial Systems. Beijing: Science Press, 2001: 140-176. (in Chinese)
[25]
郭银平, 黄英. 链霉菌看家基因引物的设计与验证. 微生物学报, 2007, 47(6): 1080-1083.
GUO Y P, HUANG Y. Design and validation of primers for housekeeping genes of streptomyces. Acta Microbiologica Sinica, 2007, 47(6): 1080-1083. (in Chinese)
[26]
刘诗琪, 张金峰, 孟泽洪, 李帅, 周玉锋. 一株拮抗茶炭疽病(Colletotrichum camelliae)的放线菌的分离及初步鉴定. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20230822.1406.004.html.
LIU S Q, ZHANG J F, MENG Z H, LI S, ZHOU Y F. Isolation and preliminary identification of an antagonistic actinomycetes against Colletotrichum camelliae. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20230822.1406.004.html. (in Chinese)
[27]
郁进元, 何岩, 赵忠福, 王栋. 长宽法测定作物叶面积的校正系数研究. 江苏农业科学, 2007(2): 37-39.
YU J Y, HE Y, ZHAO Z F, WANG D. A study on the correction coefficient for measuring crop leaf area by length and width method. Jiangsu Agricultural Sciences, 2007(2): 37-39. (in Chinese)
[28]
程云龙. 烟草黑胫病菌有效杀菌剂的筛选及抗药性风险分析[D]. 合肥: 安徽农业大学, 2021.
CHENG Y L. Screening of effective fungicides against tobacoo black shank and analysis of fungicide resistance risk[D]. Hefei: Anhui Agricultural University, 2021. (in Chinese)
[29]
杜兴翠. NO对非洲菊切花衰老的影响及作用机理的研究[D]. 杭州: 浙江农林大学, 2012.
DU X C. Effects of NO on senescence in cut gerbera and its mechanism[D]. Hangzhou: Zhejiang A&F University, 2012. (in Chinese)
[30]
ARKHIPOVA T N, PRINSEN E, VESELOV S U, MARTINENKO E V, MELENTIEV A I, KUDOYAROVA G R. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 2007, 292: 305-315.
[31]
杜建雄, 任尉香, 张淑卿, 李剑峰, 周丕飞. 汞胁迫对草坪草及牧草幼苗生理及养分积累特性的影响. 贵州农业科学, 2021, 49(7): 18-25.
DU J X, REN Y X, ZHANG S Q, LI J F, ZHOU P F. Effects of Hg2+ stress on seedling physiological characteristics and nutrient accumulation of four turfgrass and forage varieties. Guizhou Agricultural Sciences, 2021, 49(7): 18-25. (in Chinese)
[32]
秦文文, 梁剑平, 郝宝成, 尚若锋, 王学红, 黄鑫, 衣云鹏, 刘宇. 茶树油对5种常见致病菌的体外抑菌作用研究. 黑龙江畜牧兽医, 2017(11): 195-199.
QIN W W, LIANG J P, HAO B C, SHANG R F, WANG X H, HUANG X, YI Y P, LIU Y. Bacteriostasis of tea tree oil on five common pathogenic bacteria in vitro. Heilongjiang Animal Science and Veterinary Medicine, 2017(11): 195-199. (in Chinese)
[33]
张亮, 盛浩, 袁红, 周清, 张杨珠, 李华兴. 根际促生菌防控土传病害的机理与应用进展. 土壤通报, 2018, 49(1): 220-225.
ZHANG L, SHENG H, YUAN H, ZHOU Q, ZHANG Y Z, LI H X. Applications and mechanisms of plant-growth-promoting rhizobacteria used for controlling soil-borne diseases: A review. Chinese Journal of Soil Science, 2018, 49(1): 220-225. (in Chinese)
[34]
BOUBEKRI K, SOUMARE A, MARDAD I, LYAMLOULI K, HAFIDI M, OUHDOUCH Y, KOUISNI L. The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms, 2021, 9(3): 470.
[35]
孟静, 张丽慧, 白变霞, 任嘉红. 一株党参根际促生长菌的促生长特性及其挥发性物质对农作物生长的影响. 中国农学通报, 2023, 39(30): 123-131.

doi: 10.11924/j.issn.1000-6850.casb2022-0959
MENG J, ZHANG L H, BAI B X, REN J H. Growth promoting characteristics of rhizosphere growth promoting bacteria of Codonopsis pilosula and effects of its volatile substances on crop growth. Chinese Agricultural Science Bulletin, 2023, 39(30): 123-131. (in Chinese)
[36]
韩丽珍, 刘畅, 周静. 接种促生菌对花生根际土壤微生物及营养元素的影响. 基因组学与应用生物学, 2019, 38(7): 3065-3073.
HAN L Z, LIU C, ZHOU J. Effects of inoculation with growth- promoting bacteria on peanut rhizosphere soil microorganism and nutrient elements. Genomics and Applied Biology, 2019, 38(7): 3065-3073. (in Chinese)
[37]
LIU F, XING S, MA H, DU Z, MA B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 2013, 97(20): 9155-9164.
[38]
LUGTENBERG B, KAMILOVA F. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 2009, 63: 541-556.

doi: 10.1146/annurev.micro.62.081307.162918 pmid: 19575558
[39]
UPADHYAY S K, SINGH D P. Effect of salt-tolerant plant growth- promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 2015, 17(1): 288-293.
[40]
AMIRJANI M. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 2010, 5(6): 350-360.
[41]
PATANI A, PRAJAPATI D, ALI D, KALASARIYA H, YADAV V K, TANK J, BAGATHARIA S, JOSHI M, PATEL A. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt- stressed tomato (Lycopersicon esculentum Mill.). Frontiers in Plant Science, 2023, 14: 1168155.
[42]
赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响. 生物技术通报, 2022, 38(7): 224-235.

doi: 10.13560/j.cnki.biotech.bull.1985.2021-1251
ZHAO Z J, YANG K, HU J D, WEI Y L, LI L, XU W S, LI J S. Effects of Trichoderma harzianum ST02 on the growth of peppermint and physicochemical properties of root zone soil under salt stress. Biotechnology Bulletin, 2022, 38(7): 224-235. (in Chinese)
[43]
廖鑫琳, 郭鑫, 杨季学, 邵嘉朱, 袁歆瑜, 胡佳燕, 陈晓晓, 蒋冬花. 拮抗青枯雷尔氏菌的放线菌筛选及其防病作用. 中国农业科学, 2024, 57(7): 1319-1334. doi: 10.3864/j.issn.0578-1752.2024.07.009.
LIAO X L, GUO X, YANG J X, SHAO J Z, YUAN X Y, HU J Y, CHEN X X, JIANG D H. Screening of actinomycetes against Ralstonia solanacearum and its disease prevention function. Scientia Agricultura Sinica, 2024, 57(7): 1319-1334. doi: 10.3864/j.issn.0578-1752.2024.07.009. (in Chinese)
[44]
LIOTTI R G, DA SILVA FIGUEIREDO M I, SOARES M A. Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biological Control, 2019, 138: 104065.
[1] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[2] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[3] XIA Yang, HAN GuangJie, LI ChuanMing, LIU Qin, ZHANG Nan, HUANG LiXin, LU YuRong, XU Bin, XU Jian. Survival Adaptability and Damage Potential of Spodoptera frugiperda in the Soybean-Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(20): 4035-4044.
[4] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[5] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[6] HU XueJie, LIU LuPing, WANG FengMin, HAN YuHua, SUN BinCheng, MA QiBin, HUANG ZhiPing, FENG Yan, CHEN Qiang, YANG ChunYan, ZHANG MengChen, ZHANG Kai, QIN Jun. Construction of ms1 Basic Recurrent Populations Adapted to Different Ecological Regions Using Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(17): 3305-3317.
[7] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
[8] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[9] ZHU ZuoYin, ZHAO HanKe, CHENG HaiSheng, HAN MengYi, QIU Zhi, WANG Jie, ZHOU XinLi, YANG JunHua. Study on Characterization and Interaction Analysis of Co-Contamination of Multi-Mycotoxins in the Flours of Rice, Maize, Soybean and Wheat Flour in Shanghai from 2021 to 2022 [J]. Scientia Agricultura Sinica, 2024, 57(12): 2454-2466.
[10] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[11] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[12] MIAO Long, YANG Lei, XU JingHao, LI Na, WANG FeiYu, QIU LiJuan, WANG XiaoBo. Establishment of Evaluation System and Screening of Disease- Resistant Accessions for Phomopsis Seed Decay in Soybean Germination Stage [J]. Scientia Agricultura Sinica, 2024, 57(11): 2092-2101.
[13] SHOU XinYue, LIU Zhi, CHEN YueHan, LI ChenHui, SUN BinCheng, SUN RuJian, HAN DeZhi, LU WenCheng, SHEN YongHui, WANG XiaoBo, YAN Long. Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei [J]. Scientia Agricultura Sinica, 2024, 57(11): 2102-2113.
[14] ZHOU YeYing, XIE ZiWen, ZHONG PeiGe, LI ShuangWei, MA YunTao. Quantification of Row Orientation Effects on Radiation Distribution in Maize-Soybean Intercropping Based on Functional-Structural Plant Model [J]. Scientia Agricultura Sinica, 2024, 57(10): 1882-1899.
[15] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!