Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3533-3550.doi: 10.3864/j.issn.0578-1752.2024.18.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages

LIU DeLong1,2(), LI ShiRu1,2, WANG ChuanXing1, GUO ShuQing1, MA ZhiXiu1, WU YongJiang1, HAN HuiBing1, LI YuJie1, ZHANG PanPan2, YANG Pu1()   

  1. 1 College of Agriculture, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
    2 College of Life Science, Yulin University, Yulin 719000, Shaanxi
  • Received:2024-02-27 Accepted:2024-04-10 Online:2024-09-16 Published:2024-09-29
  • Contact: YANG Pu

Abstract:

【Objective】 Plant height is a trait that plays an important role in the increase of foxtail millet yield. The dynamic changes of foxtail millet plant height at different growth stages were studied, and the QTL loci and effects controlling plant height were identified to provide a theoretical basis for plant type breeding of foxtail millet. 【Method】 In this study, a recombinant inbred line population YRRIL containing 215 lines were used as the research object, and the YRRIL population was planted in two environments, Yulin, Shaanxi and Mizhi, Shaanxi, in May 2023, respectively. The phenotypic values of plant height trait of each family were measured at five stages: seedling, elongation, booting, tasseling, and ripening period, respectively. Combined with the genetic linkage map of the YRRIL population, genetic analysis and dynamic QTL mapping of plant height trait at different growth stages of millet were carried out, and the unconditional QTL and conditional QTL controlling plant height of millet were identified. On this basis, candidate gene prediction for important QTL was carried out using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis methods. 【Result】 In the entire growth period of the millet plant height growth trend was the “S” type curve, from the elongation stage to the booting stage, the growth rate of plant height was faster, which was the key stage of plant height development. In the two environments, plant height of each family line of the population showed continuous distribution at different periods. A total of 86 QTL related to plant height were detected at five periods in the two environments, which were distributed on all 9 chromosomes of the foxtail millet genome. It contained 48 unconditional QTL and 38 conditional QTL, and the phenotypic contribution rate of unconditional QTL was 1.13%-17.49%, of which 6 could be detected repeatedly at two growth periods, and the rest were detected only at one growth period. The phenotypic contribution rate of conditional QTL was 1.97%-14.69%, of which one could be detected repeatedly at two growth stages, and the rest were detected only at one growth stage. No QTL that can be detected in three or more periods were present in either unconditional QTL analysis or conditional QTL analysis. A total of 12 major QTL were detected by unconditional QTL and conditional QTL analysis in two environments, of which 6 QTL were newly identified as primary loci in this study. Based on the prediction and analysis of genes within the main effect QTL interval combined with functional annotation of homologous genes screened out 14 candidate genes that might be related to foxtail millet plant height, among which Seita.1G242300.1, Seita.6G110200.1, and Seita.7G143300.1 were all able to directly regulate plant height development. 【Conclusion】 In the two environments, a large number of QTL were detected to be involved in the phenotypic regulation of plant height trait during the whole growth and development of foxtail millet, with 79 (91.86%) played a role in one period and 7 (8.14%) played a role in two periods and there were no QTL detected in three or more periods, including 12 major QTL. The QTL detected by unconditional and conditional analysis methods accounted for 55.81% and 44.19%, respectively, and 16 (18.60%) were both unconditional and conditional QTL. The QTL effects controlling plant height development at different stages varied, with smaller effect in the seedling stage and generally larger effects from the elongation to the tasseling stage.

Key words: foxtail millet, RIL, plant height, plant architecture, QTL, candidate genes

Table 1

Determination time of plant height at different periods and determination method criteria"

时期
Periods
生育期
Growth periods
测定时间
Measuring time
测定方法
Measurement methods
参考文献
Reference
T1 苗期
Seedling stage
播种后40 d
40 days after sowing
自然状态下地面至植株最高叶的距离
The distance from the ground to the highest leaf of the plant under natural conditions
/
T2 拔节期
Elongation stage
播种后56 d
56 days after sowing
地面至植株最上部展开叶叶尖距离
Distance from the ground to the tip of the uppermost unfolded leaf of the plant
/
T3 孕穗期
Booting stage
播种后72 d
72 days after sowing
地面至幼穗顶部距离
Distance from the ground to the top of the spikelet
/
T4 抽穗期
Tasseling stage
田间50%的植株穗子完全伸出旗叶鞘
50% of the plants in the field had spikes fully protruding from the flag leaf sheaths
齐穗后地面至穗子顶端距离
The distance from the ground to the top of the ear after full heading
[32]
T5 成熟期
Ripening period
田间50%的植株穂部籽粒完全硬化转成正常颜色
The grains of 50% plants in the field were completely hardened and turned into normal color
成熟后地面至植株顶端(含穗)距离
The distance from the ground to the top of the plant (including spikes) after ripening
[32]

Table 2

Phenotypic values of YRRIL population for plant height at different fertility periods"

性状
Trait
时期
Periods
环境
Environments
平均值±标准差
Mean±SD
变异系数
Coefficient of variation (%)
最小值
Min value
最大值
Max value
偏度
Skewness
峰度
Kurtosis
株高
PH (cm)
T1 E1 24.38±2.12 8.70 19.42 30.33 0.30 -0.30
E2 18.81±3.79 20.15 8.88 27.63 -0.06 -0.43
T2 E1 45.58±5.57 12.22 32.50 65.00 0.42 0.19
E2 37.57±9.24 24.59 16.75 65.50 0.26 -0.24
T3 E1 98.16±12.97 13.21 57.50 133.25 0.11 -0.03
E2 94.36±10.31 10.93 71.67 119.33 0.12 -0.51
T4 E1 125.81±11.65 9.26 94.25 150.33 -0.23 -0.32
E2 98.94±11.45 11.57 72.00 136.00 0.33 -0.29
T5 E1 131.31±13.44 10.24 97.50 163.00 0.02 -0.27
E2 100.54±11.79 12.00 75.33 138.00 0.31 -0.22

Fig. 1

Bar chart of net plant height growth of millet YRRIL population in two environments at different growth stage"

Fig. 2

Correlation analysis of net plant height growth and plant height at maturity of YRRIL population under different environments at different fertility periods a: 2023 Yulin; b: 2023 Mizhi"

Table 3

Unconditional QTL for plant height detected in YRRIL population at different fertility periods"

时期
Periods
环境
Environments
数量性状位点
QTL
染色体
Chromosome
标记区间
Marker interval
物理区间
Physical interval
(bp)
LOD 加性效应
Additive effect
贡献率
R2
(%)
T1 E1 qPH-3-1 Chr.3 c03b143-c03b144 49232103-49249434 5.20 0.70 4.13
qPH-3-2 Chr.3 c03b144-c03b145 49236212-49263886 5.01 0.71 4.27
qPH-4-1 Chr.4 c04b091-c04b092 32103966-32392762 4.90 0.55 2.60
qPH-7-1 Chr.7 c07b111-c07b112 28718452-28977042 10.15 0.97 7.85
qPH-8-1 Chr.8 c08b154-c08b155 35794684-36110021 3.78 -0.91 7.20
qPH-8-2 Chr.8 c08b176-c08b177 38668781-38953634 6.36 0.86 6.29
qPH-9-1 Chr.9 c09b120-c09b121 41372093-41585138 4.49 -0.54 2.44
E2 qPH-4-2 Chr.4 c04b111-c04b112 34316068-34803353 2.98 1.48 2.95
qPH-7-2 Chr.7 c07b143-c07b144 34974931-35164751 2.52 2.37 7.56
T2 E1 qPH-3-3 Chr.3 c03b135-c03b136 48347192-48472348 7.06 2.64 5.75
qPH-3-4 Chr.3 c03b136-c03b137 48422155-48788896 8.51 2.68 5.78
qPH-5-1 Chr.5 c05b044-c05b045 8175113-9040955 3.58 1.50 1.79
qPH-7-3 Chr.7 c07b113-c07b114 29002989-29630484 7.98 2.49 5.13
qPH-9-2 Chr.9 c09b009-c09b010 1065098-1132102 7.18 -1.79 2.64
qPH-9-3 Chr.9 c09b039-c09b040 7371255-7920890 3.02 -1.40 1.66
qPH-9-4 Chr.9 c09b166-c09b167 49092452-49697847 6.47 2.65 5.85
qPH-9-5 Chr.9 c09b167-c09b168 49697847-50189164 4.93 2.75 6.38
E2 qPH-3-5 Chr.3 c03b106-c03b107 40990588-42411342 5.57 2.97 4.83
qPH-4-3 Chr.4 c04b125-c04b126 36452291-36506711 2.74 5.03 14.41
qPH-7-4 Chr.7 c07b082-c07b083 21476252-21704756 3.48 2.29 3.00
qPH-9-6 Chr.9 c09b015-c09b016 1903164-1983343 4.67 -2.71 4.02
T3 E1 qPH-5-2 Chr.5 c05b028-c05b029 6388870-6398535 5.00 3.92 3.35
qPH-7-5 Chr.7 c07b114-c07b115 29307823-30059669 3.48 7.54 12.49
qPH-9-7 Chr.9 c09b008-c09b009 988753-1082109 3.53 -3.22 2.27
E2 qPH-1-1 Chr.1 c01b083-c01b084 26758853-27387031 4.75 3.50 7.65
qPH-3-6 Chr.3 c03b046-c03b047 7367554-7576946 3.51 -2.64 4.35
qPH-3-1 Chr.3 c03b143-c03b144 49232103-49249434 3.75 -2.31 3.42
qPH-4-4 Chr.4 c04b041-c04b042 6913490-7153895 2.96 -2.04 2.68
qPH-7-6 Chr.7 c07b055-c07b056 17909787-18105601 3.60 2.74 4.23
qPH-7-7 Chr.7 c07b090-c07b091 23079209-23253415 8.07 5.22 17.49
T4 E1 qPH-1-2 Chr.1 c01b109-c01b110 31914666-32213218 7.64 5.68 13.60
qPH-2-1 Chr.2 c02b089-c02b090 27836775-28229243 4.38 -5.74 13.79
qPH-3-7 Chr.3 c03b053-c03b054 9220324-9287696 6.40 -3.54 5.02
qPH-5-3 Chr.5 c05b041-c05b042 7885959-8086611 3.01 2.48 2.30
qPH-8-3 Chr.8 c08b057-c08b058 8950445-9240501 2.84 2.26 2.16
qPH-9-8 Chr.9 c09b002-c09b003 526353-660290 4.09 2.77 3.14
E2 qPH-2-2 Chr.2 c02b142-c02b143 44084471-44171197 6.84 6.47 16.32
qPH-5-4 Chr.5 c05b023-c05b024 5494776-5555640 4.14 3.16 3.73
qPH-7-8 Chr.7 c07b084-c07b085 21714345-21892410 7.39 3.53 4.87
qPH-9-9 Chr.9 c09b007-c09b008 983209-988753 3.31 2.35 2.07
qPH-9-10 Chr.9 c09b165-c09b166 49049868-49379087 3.42 6.12 14.41
T5 E1 qPH-1-3 Chr.1 c01b107-c01b108 31556531-31855243 8.23 5.22 7.57
qPH-2-1 Chr.2 c02b089-c02b090 27836775-28229243 6.45 -5.11 7.19
qPH-2-3 Chr.2 c02b115-c02b116 37968852-38141819 4.14 2.67 1.90
qPH-3-7 Chr.3 c03b053-c03b054 9220324-9287696 9.78 -4.16 4.57
qPH-5-5 Chr.5 c05b052-c05b053 12174846-13011016 5.45 3.99 4.15
qPH-7-9 Chr.7 c07b100-c07b101 26617489-26678123 6.11 5.24 7.68
qPH-8-3 Chr.8 c08b057-c08b058 8950445-9240501 2.59 2.01 1.13
qPH-9-11 Chr.9 c09b006-c09b007 803316-983209 8.99 4.02 4.38
qPH-9-12 Chr.9 c09b146-c09b147 45421642-45469731 4.13 -4.85 6.43
qPH-9-13 Chr.9 c09b175-c09b176 54557509-54694792 4.65 4.58 5.76
E2 qPH-2-2 Chr.2 c02b142-c02b143 44084471-44171197 5.42 5.93 12.09
qPH-5-6 Chr.5 c05b073-c05b074 30713393-30861542 3.07 5.19 9.14
qPH-7-8 Chr.7 c07b084-c07b085 21714345-21892410 8.55 4.52 7.03

Table 4

Conditional QTL for plant height detected in YRRIL population at different fertility periods"

阶段
Stages
环境
Environments
数量性状位点
QTL
染色体
Chromosome
标记区间
Marker interval
物理区间
Physical interval
(bp)
LOD 加性效应
Additive effect
贡献率
R2
(%)
0—T1 E1 qPH-3-1 Chr.3 c03b143-c03b144 49232103-49249434 5.20 0.70 4.13
qPH-3-2 Chr.3 c03b144-c03b145 49236212-49263886 5.01 0.71 4.27
qPH-4-1 Chr.4 c04b091-c04b092 32103966-32392762 4.90 0.55 2.60
qPH-7-1 Chr.7 c07b111-c07b112 28718452-28977042 10.15 0.97 7.85
qPH-8-1 Chr.8 c08b154-c08b155 35794684-36110021 3.78 -0.91 7.20
qPH-8-2 Chr.8 c08b176-c08b177 38668781-38953634 6.36 0.86 6.29
qPH-9-1 Chr.9 c09b120-c09b121 41372093-41585138 4.49 -0.54 2.44
E2 qPH-4-2 Chr.4 c04b111-c04b112 34316068-34803353 2.98 1.48 2.95
qPH-7-2 Chr.7 c07b143-c07b144 34974931-35164751 2.52 2.37 7.56
T1—T2 E1 qPH-3-8 Chr.3 c03b132-c03b133 47561089-47780734 4.74 1.87 8.16
qPH-5-7 Chr.5 c05b043-c05b044 8131712-8175114 2.56 1.05 2.41
qPH-5-8 Chr.5 c05b108-c05b109 43783548-44258277 2.56 1.02 2.35
qPH-9-2 Chr.9 c09b009-c09b010 1065098-1132102 8.38 -1.87 8.16
qPH-9-14 Chr.9 c09b170-c09b171 51639430-52289028 4.58 1.39 4.56
qPH-9-15 Chr.9 c09b171-c09b172 51729253-52624644 3.45 1.21 3.47
E2 qPH-3-5 Chr.3 c03b106-c03b107 40990588-42411342 6.34 2.16 10.16
qPH-7-10 Chr.7 c07b088-c07b089 22843640-23052954 3.35 1.52 5.21
qPH-9-16 Chr.9 c09b014-c09b015 1849233-1941826 6.51 -2.22 10.60
T2—T3 E1 qPH-5-9 Chr.5 c05b019-c05b020 4766716-4845453 3.32 3.39 6.97
E2 qPH-1-4 Chr.1 c01b106-c01b107 31517802-31614766 6.25 6.27 14.24
qPH-1-3 Chr.1 c01b107-c01b108 31556531-31855243 6.53 6.37 14.69
qPH-3-9 Chr.3 c03b043-c03b044 6910556-7238657 4.80 -2.86 2.92
qPH-3-5 Chr.3 c03b106-c03b107 40990588-42411342 7.11 -3.62 4.41
qPH-3-10 Chr.3 c03b140-c03b141 49122420-49193085 3.29 -2.34 1.97
qPH-7-11 Chr.7 c07b052-c07b053 17638287-17791653 5.67 3.31 3.41
qPH-8-4 Chr.8 c08b072-c08b073 12913834-13599376 3.89 2.54 2.33
qPH-9-7 Chr.9 c09b008-c09b009 988753-1082109 6.42 3.46 4.22
T3—T4 E1 qPH-3-11 Chr.3 c03b126-c03b127 46785100-47002469 3.63 -3.55 3.20
qPH-6-1 Chr.6 c06b032-c06b033 3556319-3630370 10.48 -6.06 9.86
qPH-6-2 Chr.6 c06b065-c06b066 12542879-17978220 5.69 6.13 10.09
qPH-8-5 Chr.8 c08b044-c08b045 6087263-6623116 2.58 3.04 2.46
qPH-9-11 Chr.9 c09b006-c09b007 803316-983209 8.96 5.75 8.54
E2 qPH-5-6 Chr.5 c05b073-c05b074 30713393-30861542 3.69 2.51 3.53
qPH-6-3 Chr.6 c06b119-c06b120 32486143-32533796 5.62 3.29 6.40
qPH-9-17 Chr.9 c09b164-c09b165 49027777-49049868 3.35 2.49 3.42
qPH-9-10 Chr.9 c09b165-c09b166 49049868-49379087 3.40 2.42 3.31
T4—T5 E1 qPH-7-12 Chr.7 c07b103-c07b104 27561783-27659941 3.00 2.47 7.00
qPH-9-18 Chr.9 c09b177-c09b178 54969651-55252443 3.35 2.82 7.98
E2 qPH-1-5 Chr.1 c01b122-c01b123 34477733-34973198 3.02 -1.06 6.28

Fig. 3

Distribution of the main effect QTL on the whole genome for plant height in foxtail millet Black represents the unconditional main effect QTL; Green represents the conditional main effect QTL"

Fig. 4

GO and KEGG enrichment analysis of the QTL interval for the main effect of foxtail millet plant height A: GO enrichment analysis of multi-period major QTL; B: Multi-period major QTL KEGG metabolic pathway; C: GO enrichment analysis of single-period major QTL; D: Single-period major QTL KEGG metabolic pathway"

Table 5

Candidate genes within the confidence interval of major QTL for plant height"

数量性状位点
QTL
染色体
Chromosome
候选基因
Candidate genes
GO注释
GO annotation
拟南芥同源基因
Homologous genes in Arabidopsis
功能注释
Functional annotation
qPH-2-2 Chr.2 Seita.2G366600.1 GO:0016020,
GO:0009765
AT3G61470.1 捕光天线蛋白;叶绿素a/b结合蛋白2
LHCA2; light-harvesting complex I chlorophyll a/b binding protein 2
qPH-1-2 Chr.1 Seita.1G242300.1 GO:0055114,
GO:0016491
AT4G21200.1 赤霉素2-氧化酶8 Gibberellin 2-oxidase 8
qPH-1-3 Chr.1 Seita.1G240300.1 AT2G37040.1 PHE解氨酶1 PHE ammonia lyase 1
Seita.1G240400.1 AT2G37040.1 PHE解氨酶1 PHE ammonia lyase 1
Seita.1G240500.1 AT2G37040.1 PHE解氨酶1 PHE ammonia lyase 1
Seita.1G240600.1 AT2G37040.1 PHE解氨酶1 PHE ammonia lyase 1
Seita.1G240200.1 AT2G37040.1 PHE解氨酶1 PHE ammonia lyase 1
Seita.1G238300.1 GO:0008152,
GO:0003824
AT2G20420.1 ATP柠檬酸裂解酶(ACL)家族蛋白
ATP citrate lyase (ACL) family protein
qPH-2-1 Chr.2 Seita.2G183600.1 GO:0006412,
GO:0005840,
GO:0003735
AT2G36170.1 泛素超群;核糖体蛋白L40e
Ubiquitin supergroup; Ribosomal protein L40e
Seita.2G183800.1 GO:0006412,
GO:0005840,
GO:0003735,
GO:0005515
AT2G36170.1 泛素超群;核糖体蛋白L40e
Ubiquitin supergroup; Ribosomal protein L40e
Seita.2G183700.1 GO:0006412,
GO:0005840,
GO:0003735
AT2G36170.1 泛素超群;核糖体蛋白L40e
Ubiquitin supergroup; Ribosomal protein L40e
Seita.2G185400.1 GO:0009058,
GO:0008909
AT1G18870.1 异分支酸合酶2 Isochorismate synthase 2
qPH-3-5 Chr.3 Seita.3G329200.1 AT2G16920.1 泛素结合酶 23 Ubiquitin-conjugating enzyme 23
Seita.3G329400.1 AT2G16920.1 泛素结合酶 23 Ubiquitin-conjugating enzyme 23
Seita.3G329600.1 AT2G16920.1 泛素结合酶 23 Ubiquitin-conjugating enzyme 23
Seita.3G329800.1 AT2G16920.1 泛素结合酶 23 Ubiquitin-conjugating enzyme 23
Seita.3G329900.1 AT2G16920.1 泛素结合酶 23 Ubiquitin-conjugating enzyme 23
qPH-6-2 Chr.6 Seita.6G105300.1 GO:0055114,
GO:0051287,
GO:0016616
AT5G15490.1 UDP-葡萄糖6-脱氢酶家族蛋白
UDP-glucose 6-dehydrogenase family protein
Seita.6G110200.1 GO:0016157,
GO:0005985
AT5G20280.1 蔗糖磷酸合酶1F
Sucrose phosphate synthase 1F
Seita.6G105100.1 GO:0055114,
GO:0016616,
GO:0006694,
GO:0003854
AT1G15950.1 肉桂酰基辅酶a还原酶1
Cinnamoyl coa reductase 1
qPH-7-5 Chr.7 Seita.7G234000.1 GO:0055114,
GO:0016491,
GO:0008270
AT4G39330.1 肉桂醇脱氢酶9
Cinnamyl alcohol dehydrogenase 9
qPH-7-7 Chr.7 Seita.7G143300.1 GO:0031625,
GO:0006511
AT2G04660.1 后期促进复合体/环体2
Anaphase-promoting complex/cyclosome 2
qPH-9-10 Chr.9 Seita.9G439100.1 GO:0008641 AT5G06460.1 泛素激活酶2 Ubiquitin activating enzyme 2
Seita.9G440900.1 GO:0006529,
GO:0004066
AT5G65010.1 天冬酰胺合成酶2 Asparagine synthetase 2
[1]
李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 459-470. doi: 10.3864/j.issn.0578-1752.2021.03.001.
LI S G, LIU F, LIU M, CHENG R H, XIA E J, DIAO X M. Current status and future prospective of foxtail millet production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 459-470. doi: 10.3864/j.issn.0578-1752.2021.03.001. (in Chinese)
[2]
贾小平, 袁玺垒, 李剑峰, 张博, 张小梅, 郭秀璞, 陈春燕. 不同光温条件谷子资源主要农艺性状的综合评价. 中国农业科学, 2018, 51(13): 2429-2441. doi: 10.3864/j.issn.0578-1752.2018.13.001.
JIA X P, YUAN X L, LI J F, ZHANG B, ZHANG X M, GUO X P, CHEN C Y. Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions. Scientia Agricultura Sinica, 2018, 51(13): 2429-2441. doi: 10.3864/j.issn.0578-1752.2018.13.001. (in Chinese)
[3]
景铱彬. 谷子 谷子 “JG21×GBS” RIL群体重要农艺性状QTL定位分析[D]. 太谷: 山西农业大学, 2022.
JING Y B. Mapping analysis of QTL for agronomic traits in foxtail millet “JG21×GBS” RIL population[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[4]
李志江, 刁现民. 谷子分子标记与功能基因组研究进展. 中国农业科技导报, 2009, 11(4): 16-22.
LI Z J, DIAO X M. Research progress on molecular marker and functional genomic of foxtail millet, Setaria italica Beauv. Journal of Agricultural Science and Technology, 2009, 11(4): 16-22. (in Chinese)
[5]
刘宾, 赵亮, 张坤普, 朱占玲, 田宾, 田纪春. 小麦株高发育动态QTL定位. 中国农业科学, 2010, 43(22): 4562-4570. doi: 10.3864/j.issn.0578-1752.2010.22.002.
LIU B, ZHAO L, ZHANG K P, ZHU Z L, TIAN B, TIAN J C. Genetic dissection of plant height at different growth stages in common wheat. Scientia Agricultura Sinica, 2010, 43 (22): 4562-4570. doi: 10.3864/j.issn.0578-1752.2010.22.002. (in Chinese)
[6]
杨坤. 谷子SSR标记连锁图谱构建及几个主要性状QTL分析[D]. 石家庄: 河北师范大学, 2008.
YANG K. Construction of SSR based linkage map and QTL analysis of several important traits in foxtail millet, Setaria italica Beauv[D]. Shijiazhuang: Hebei Normal University, 2008. (in Chinese)
[7]
王晓宇, 刁现民, 王节之, 王春芳, 王根全, 郝晓芬, 梁增浩, 王雪梅, 赵芳芳. 谷子SSR分子图谱构建及主要农艺性状QTL定位. 植物遗传资源学报, 2013, 14(5): 871-878.

doi: 10.13430/j.cnki.jpgr.2013.05.017
WANG X Y, DIAO X M, WANG J Z, WANG C F, WANG G Q, HAO X F, LIANG Z H, WANG X M, ZHAO F F, Construction of genetic map and QTL analysis of some main agronomic traits in millet. Journal of Plant Genetic Resources, 2013, 14(5): 871-878. (in Chinese)
[8]
李海权, 耿玲玲, 李振侠, 王永芳, 相金英, 刁现民, 刘国庆. 谷子重要农艺性状QTL初步定位//2015年学术年会论文摘要集. 北京: 中国作物学会, 2015.
LI H Q, GENG L L, LI Z X, WANG Y F, XIANG J Y, DIAO X M, LIU G Q. The preliminary location study on the main agronomic characters in foxtail millet//Abstracts of Papers of Annual Meeting in 2015. Beijing: The Crop Science Society of China, 2015. (in Chinese)
[9]
谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012.
XIE L L. QTL mapping and analysis for the related traits of photoperiod sensitivity in Setaria italica[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese)
[10]
王海岗. 山西谷子种质资源遗传多样性与主要农艺性状的QTL关联分析[D]. 太谷: 山西农业大学, 2019.
WANG H G. Genetic diversity and association analysis of major agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] of Shanxi province[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[11]
郭淑青. 谷子重要农艺性状遗传分析与QTL定位[D]. 杨凌: 西北农林科技大学, 2022.
GUO S Q. Genetic analysis and QTL mapping on agriculturally important traits in foxtail millet[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
[12]
WANG Z L, WANG J, PENG J X, DU X F, JIANG M S, LI Y F, HAN F, DU G H, YANG H Q, LIAN S C, YONG J P, CAI W, CUI J D, HAN K N, YUAN F, CHANG F, YUAN G B, ZHANG W N, ZHANG L Y, PENG S Z, ZOU H F, GUO E H. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P. Beauv). Molecular Breeding, 2019, 39(2): 1-13.
[13]
HE Q, ZHI H, TANG S, XING L, WANG S Y, WANG H G, ZHANG A Y, LI Y H, GAO M, ZHANG H J, CHEN G Q, DAI S T, LI J X, YANG J J, LIU H F, ZHANG W, JIA Y C, LI S J, LIU J R, QIAO Z J, GUO E H, JIA G Q, LIU J, DIAO X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density Bin map. Theoretical and Applied Genetics, 2021, 134(2): 557-572.

doi: 10.1007/s00122-020-03714-w pmid: 33128073
[14]
ZHANG K, FAN G Y, ZHANG X X, ZHAO F, WEI W, DU G H, FENG X L, WANG X M, WANG F, SONG G L, ZOU H F, ZHANG X L, LI S D, NI X M, ZHANG G Y, ZHAO Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3, 2017, 7(5): 1587-1594.
[15]
杜晓芬, 钱枰励, 唐楚楚, 杜德杰, 韩康妮, 李禹欣, 王智兰, 王军. 基于InDel标记的谷子株高QTL定位. 核农学报, 2024, 38(2): 217-230.

doi: 10.11869/j.issn.1000-8551.2024.02.0217
DU X F, QIAN P L, TANG C C, DU D J, HAN K N, LI Y X, WANG Z L, WANG J. QTL mapping for plant height in foxtail millet based on InDel markers. Journal of Nuclear Agricultural Sciences, 2024, 38(2): 217-230. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2024.02.0217
[16]
李美霞, 沈玮囡, 杨睿, 梁子英, 孙风丽, 奚亚军, 王竹林, 刘曙东. 小麦籽粒干物质积累的动态QTL定位. 西北植物学报, 2014, 34(6): 1105-1111.
LI M X, SHEN W N, YANG R, LIANG Z Y, SUN F L, XI Y J, WANG Z L, LIU S D. Dynamic QTL analysis for kernel dry matter accumulation in wheat. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1105-1111. (in Chinese)
[17]
YAN J, ZHU J, HE C, BENMOUSSA M, WU P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150(3): 1257-1265.
[18]
吴为人, 李维明, 卢浩然. 数量性状基因座的动态定位策略. 生物数学学报, 1997, 12(S1): 490-495.
WU W R, LI W M, LU H R. Strategy of dynamic mapping of quantitative trait loci. Journal of Biomathematics, 1997, 12(S1): 490-495. (in Chinese)
[19]
ZHU J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141(4): 1633-1639.

doi: 10.1093/genetics/141.4.1633 pmid: 8601500
[20]
田宾, 刘宾, 朱占玲, 谢全刚, 田纪春. 小麦籽粒淀粉积累动态的条件和非条件QTL定位. 中国农业科学, 2011, 44(22): 4551-4559. doi: 10.3864/j.issn.0578-1752.2011.22.001.
TIAN B, LIU B, ZHU Z L, XIE Q G, TIAN J C. Conditional and unconditional QTL mapping of grain starch accumulation in wheat. Scientia Agricultura Sinica, 2011, 44(22): 4551-4559. doi: 10.3864/j.issn.0578-1752.2011.22.001. (in Chinese)
[21]
孙健. 水稻耐盐相关性状的发育动态QTL分析[D]. 哈尔滨: 东北农业大学, 2013.
SUN J. Dynamic QTL analysis of salt tolerance-related traits at different developmental stages in rice[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese)
[22]
严建兵, 汤华, 黄益勤, 石永刚, 李建生, 郑用琏. 不同发育时期玉米株高QTL的动态分析. 科学通报, 2003, 48(18): 1959-1964.
YAN J B, TANG H, HUANG Y Q, SHI Y G, LI J S, ZHENG Y L. QTL mapping for the developing of the plant height traits in maize. Chinese Science Bulletin, 2003, 48(18): 1959-1964. (in Chinese)
[23]
刘宗华, 汤继华, 王春丽, 田国伟, 卫晓轶, 胡彦民, 崔党群. 氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位. 作物学报, 2007, 33(5): 782-789.
LIU Z H, TANG J H, WANG C L, TIAN G W, WEI X Y, HU Y M, CUI D Q. QTL analysis of plant height under N-stress and N-input at different stages in maize. Acta Agronomica Sinica, 2007, 33(5): 782-789. (in Chinese)
[24]
张国宏, 杨德龙, 栗孟飞, 李兴茂, 倪胜利, 幸华. 小麦株高发育动态QTL定位及其与水分环境互作遗传分析. 农业生物技术学报, 2012, 20(9): 996-1008.
ZHANG G H, YANG D L, LI M F, LI X M, NI S L, XING H. Genetic analysis of QTL mapping for developmental behaviors of plant height and QTL × water regimes interactions in wheat (Triticum aestivum L.). Journal of Agricultural Biotechnology, 2012, 20(9): 996-1008. (in Chinese)
[25]
江建华, 张晚霞, 刘晓丽, 刘强明, 卢超, 党小景, 赵其兵, 洪德林. 多环境下粳稻株高动态QTL分析. 中国水稻科学, 2012, 26(1): 55-64.
JIANG J H, ZHANG W X, LIU X L, LIU Q M, LU C, DANG X J, ZHAO Q B, HONG D L. QTL dissection of plant height at different growth stages under multi environments in japonica rice. Chinese Journal of Rice Science, 2012, 26(1): 55-64. (in Chinese)
[26]
何慈信, 朱军, 严菊强, Mebrouk Benmoussa, 吴平. 水稻穗干物质重发育动态的QTL定位. 中国农业科学, 2000, 33(1): 24-32. doi: 10.3864/j.issn.0578-1752.2000-33-1-27-35.
HE C X, ZHU J, YAN J Q, BENMOUSSA M, WU P. QTL mapping for developmental behavior of panicle dry weight in rice. Scientia Agricultura Sinica, 2000, 33(1): 24-32. doi: 10.3864/j.issn.0578-1752.2000-33-1-27-35. (in Chinese)
[27]
滕卫丽, 郭志文, 郑立娜, 付雪, 王博, 董莹莹, 张丹洋, 刘赫禹, 冯文婧, 赵雪, 韩英鹏, 李文滨. 不同发育时期大豆豆荚性状QTL动态分析. 东北农业大学学报, 2020, 51(10): 1-9.
TENG W L, GUO Z W, ZHENG L N, FU X, WANG B, DONG Y Y, ZHANG D Y, LIU H Y, FENG W J, ZHAO X, HAN Y P, LI W B. Dynamic QTL analysis of pod traits in soybean at different developmental stages. Journal of Northeast Agricultural University, 2020, 51(10): 1-9. (in Chinese)
[28]
周蓉, 陈海峰, 王贤智, 张晓娟, 单志慧, 吴学军, 邱德珍, 伍宝朵, 沙爱华, 杨中路, 周新安. 不同发育阶段大豆株高和茎粗QTL的动态分析. 植物遗传资源学报, 2010, 11(3): 349-359.

doi: 10.13430/j.cnki.jpgr.2010.03.017
ZHOU R, CHEN H F, WANG X Z, ZHANG X J, SHAN Z H, WU X J, QIU D Z, WU B D, SHA A H, YANG Z L, ZHOU X A. Dynamic analysis of QTL for plant height and stem diameter at different developmental stages in soybean. Journal of Plant Genetic Resources, 2010, 11(3): 349-359. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2010.03.017
[29]
何雨琦, 余坤江, 李远红, 王倩, 杨旭, 王显亚, 田恩堂. 甘蓝型油菜株高发育动态QTL分析. 中国油料作物学报, 2023, 45(4): 684-693.

doi: 10.19802/j.issn.1007-9084.2022147
HE Y Q, YU K J, LI Y H, WANG Q, YANG X, WANG X Y, TIAN E T. QTL analysis of plant height development dynamics in Brassica napus L. Chinese Journal of Oil Crop Sciences, 2023, 45(4): 684-693. (in Chinese)
[30]
谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义. 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012, 38(10): 1802-1809.

doi: 10.3724/SP.J.1006.2012.01802
XIE T T, CHEN Y B, HUANG J X, ZHANG Y F, XU A X, CHEN F, NI X Y, ZHAO J Y. Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agronomica Sinica, 2012, 38(10): 1802-1809. (in Chinese)
[31]
GUO S Q, CHAI S H, GUO Y, SHI X, HAN F, QU T, XING L, YANG Q H, GAO J F, GAO X L, FENG B L, SONG H, YANG P. Mapping of major QTL and candidate gene analysis for hull colour in foxtail millet (Setaria italica (L.) P. Beauv.). BMC Genomics, 2023, 24(1): 458.
[32]
陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LU P. Descriptors and Data Standard for Foxtail Millet [Setaria italica (L.) Beauv.]. Beijing: China Agriculture Press, 2006. (in Chinese)
[33]
KANEHISA M, SATO Y, FURUMICHI M, MORISHIMA K, TANABE M. New approach for understanding genome variations in KEGG. Nucleic Acids Research, 2019, 47(D1): D590-D595.
[34]
姜振峰, 赵彩桐, 李佳男, 孙士祥, 刘志华, 李文滨. 不同生长习性大豆株高形成规律分析. 东北农业大学学报, 2019, 50(12): 33-42.
JIANG Z F, ZHAO C T, LI J N, SUN S X, LIU Z H, LI W B. Analysis on plant height formation with different growth habits of soybean. Journal of Northeast Agricultural University, 2019, 50(12): 33-42. (in Chinese)
[35]
黄中文, 王伟, 徐新娟, 李金英, 卢为国. 大豆动态株高及其生长速率与产量的相关分析. 河南科技学院学报(自然科学版), 2010, 38(2): 16-19.
HUANG Z W, WANG W, XU X J, LI J Y, LU W G. Analysis of correlation for plant height and it's relative growth rate at different developmental stages with yield in soybean. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2010, 38(2): 16-19. (in Chinese)
[36]
陈杨, 王磊, 白由路, 卢艳丽, 倪露, 王玉红, 徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021.22.005.
CHEN Y, WANG L, BAI Y L, LU Y L, NI L, WANG Y H, XU M Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021.22.005. (in Chinese)
[37]
王声锋, 段爱旺, 徐建新. 冬小麦株高和叶面积指数变化动态分析及模拟模型. 灌溉排水学报, 2010, 29(4): 97-100.
WANG S F, DUAN A W, XU J X. Dynamic changes and simulation model of plant height and leaf area index of winter wheat. Journal of Irrigation and Drainage, 2010, 29(4): 97-100. (in Chinese)
[38]
孙德生, 李文滨, 张忠臣, 陈庆山, 杨庆凯. 大豆株高QTL发育动态分析. 作物学报, 2006, 32(4): 509-514.
SUN D S, LI W B, ZHANG Z C, CHEN Q S, YANG Q K. Analysis of QTL for plant height at different developmental stages in soybean. Acta Agronomica Sinica, 2006, 32(4): 509-514. (in Chinese)
[39]
王玉文, 王节之, 赵太存. 谷子生育期及其构成与产量的关系. 山西农业科学, 1995, 23(2): 31-33.
WANG Y W, WANG J Z, ZHAO T C. The relationship between growth stages and corresponding components and yields of millet. Journal of Shanxi Agricultural Sciences, 1995, 23(2): 31-33. (in Chinese)
[40]
FELDMAN M J, PAUL R E, BANAN D, BARRETT J F, SEBASTIAN J, YEE M C, JIANG H, LIPKA A E, BRUTNELL T P, DINNENY J R, LEAKEY A D B, BAXTER I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genetics, 2017, 13(6): e1006841.
[41]
MAURO-HERRERA M, DOUST A N. Development and genetic control of plant architecture and biomass in the panicoid grass, Setaria, PLoS ONE, 2016, 11(3): e0151346.
[42]
NI X M, XIA Q J, ZHANG H B, CHENG S, LI H, FAN G Y, GUO T, HUANG P, XIANG H T, CHEN Q C, LI N, ZOU H F, CAI X M, LEI X J, WANG X M, ZHOU C S, ZHAO Z H, ZHANG G Y, DU G H, CAI W, QUAN Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. GigaScience, 2017, 6(2): 1-8.

doi: 10.1093/gigascience/giw005 pmid: 28369461
[43]
惠索祯, 常俊楠, 邱牡丹, 李磊, 王建龙. 利用CRISPR/Cas9基因编辑技术定点编辑水稻赤霉素2氧化酶基因OsGA2ox10. 分子植物育种, 2020, 18(18): 6016-6024.
HUI S Z, CHANG J N, QIU M D, LI L, WANG J L. Gene editing of rice gibberellin 2 oxidase gene OsGA2ox10 by using CRISPR/Cas9 gene editing technology. Molecular Plant Breeding, 2020, 18(18): 6016-6024. (in Chinese)
[44]
HUANG J, TANG D, SHEN Y, QIN B X, HONG L L, YOU A Q, LI M, WANG X, YU H X, GU M H, CHENG Z K. Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). Journal of Genetics and Genomics, 2010, 37(1): 23-36.
[45]
ISHIMARU K, ONO K, KASHIWAGI T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta, 2004, 218(3): 388-395.

doi: 10.1007/s00425-003-1119-z pmid: 14534788
[46]
晁毛妮, 胡海燕, 付丽娜, 温青玉, 胡根海, 骆雨锋, 李娅楠, 王清连. 陆地棉蔗糖磷酸合成酶基因家族的鉴定及表达分析. 棉花学报, 2020, 32(1): 30-41.

doi: 10.11963/1002-7807.cmnwql.20191224
CHAO M N, HU H Y, FU L N, WEN Q Y, HU G H, LUO Y F, LI Y N, WANG Q L. Identification and expression analysis of sucrose phosphate synthase gene family in upland cotton (Gossypium hirsutum L.). Cotton Science, 2020, 32(1): 30-41. (in Chinese)
[47]
SUN J Q, HUANG S Y, LU Q, LI S, ZHAO S Z, ZHENG X J, ZHOU Q, ZHANG W X, LI J, WANG L L, ZHANG K, ZHENG W Y, FENG X Z, LIU B H, KONG F J, XIANG F N. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nature Communications, 2023, 14(1): 6262.
[48]
PIETRZYKOWSKA M, SUORSA M, SEMCHONOK D A, TIKKANEN M, BOEKEMA E J, ARO E M, JANSSON S. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. The Plant Cell, 2014, 26(9): 3646-3660.
[49]
赵奇, 茹京娜, 李宜统, 王超, 徐兆师, 王睿辉. 小麦Lhc基因家族鉴定与表达模式分析. 植物遗传资源学报, 2022, 23(6): 1766-1781.
ZHAO Q, RU J N, LI Y T, WANG C, XU Z S, WANG R H. Identification and expression pattern analysis of Lhc gene family members in wheat. Journal of Plant Genetic Resources, 2022, 23(6): 1766-1781. (in Chinese)
[50]
张秀省, 杜鑫, 吴照群, 梁景辉, 王玉文, 杨海灵. 水稻苯丙氨酸解氨酶(PAL)基因家族成员响应MeJA诱导的表达模式. 分子植物育种, 2022, 14(1): 1-19.
ZHANG X S, DU X, WU Z Q, LIANG J H, WANG Y W, YANG H L. Expression patterns of members of the rice phenylalanine ammonia lyase (PAL) gene family in response to MeJA induction. Molecular Plant Breeding, 2022, 14(1): 1-19. (in Chinese)
[51]
谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展. 遗传, 2020, 42(9): 858-869.
GU X Y, LIU Y, LIU L J. Progress on the biosynthesis and signal transduction of phytohormone salicylic acid. Hereditasn (Beijing), 2020, 42(9): 858-869. (in Chinese)
[52]
FATLAND B L, NIKOLAU B J, WURTELE E S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. The Plant Cell, 2005, 17(1): 182-203.
[53]
李长宁, 农倩, 谭秦亮, Manoj Kumar SRIVASTAVA, 杨丽涛, 李杨瑞. 甘蔗ATP柠檬酸裂解酶基因的克隆与表达分析. 作物学报, 2012, 38(11): 2024-2033.

doi: 10.3724/SP.J.1006.2012.02024
LI C N, NONG Q, TAN Q L, SRIVASTAVA M K, YANG L T, LI Y R. Cloning and expression analysis of ATP-citrate lyase genes from sugarcane. Acta Agronomica Sinica, 2012, 38(11): 2024-2033. (in Chinese)
[54]
蓝兴国, 李晓屿, 杨佳, 王艳红, 李玉花. 羽衣甘蓝泛素结合酶ubc7基因分离、原核表达及纯化. 中国农学通报, 2013, 29(34): 76-80.
LAN X G, LI X Y, YANG J, WANG Y H, LI Y H. Isolation, prokaryotic expression and purification of ubc7 from stigma of ornamental kale (Brassica oleracea var. acephala). Chinese Agricultural Science Bulletin, 2013, 29(34): 76-80. (in Chinese)
[55]
MA Q H. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany, 2007, 58(8): 2011-2021.
[56]
FANG X, LIU X, ZHANG Y, HUANG K, ZHANG Y, LI Y, NIE J, SHE H, RUAN R, YUAN X, YI Z. Effects of uniconazole or gibberellic acid application on the lignin metabolism in relation to lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Journal of Agronomy and Crop Science, 2018, 204(4): 414-423.
[57]
赵明珠, 王丽丽, 马作斌, 唐志强, 张丽颖, 王昌华, 付亮, 高虹, 何娜, 王远征, 郑文静. 基于RNA-seq的水稻DEP1突变体的转录组分析. 分子植物育种, 2023, 25(6): 1-10.
ZHAO M Z, WANG L L, MA Z B, TANG Z Q, ZHANG L Y, WANG C H, FU L, GAO H, HE N, WANG Y Z, ZHENG W J. Transcriptome analysis of rice DEP1 mutants by using RNA-seq. Molecular Plant Breeding, 2023, 25(6): 1-10. (in Chinese)
[58]
刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展. 遗传, 2023, 45(5): 367-378.
LIU Y Q, LI W W, LIU X Y, CHU C C. Molecular mechanism of tillering response to nitrogen in rice. Hereditas (Beijing), 2023, 45(5): 367-378. (in Chinese)
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[4] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[5] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[6] DU YanWei, YAN XiaoGuang, ZHAO JinFeng, JIA SuQing, WANG GaoHong, YU AiLi, ZHANG Peng. Cloning and Functional Verification of SiCIPK21 Gene in Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(22): 4416-4430.
[7] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[8] ZHANG JianLong, XING WenWen, YE ShaoBo, ZHANG Chao, ZHENG DeCong. Oat Plant Height Estimation Based on a Dual Output Regression Convolutional Neural Network [J]. Scientia Agricultura Sinica, 2024, 57(20): 3974-3985.
[9] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[10] MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729.
[11] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[12] SHI Na, LU Yang, SUI Li, WANG JiaJiang, ZHAO Yu, LI QiYun, ZHANG ZhengKun. Study on the Synergistic Control Effect of Metarhizium rileyi and Harmonia axyridis Toward Aphids [J]. Scientia Agricultura Sinica, 2024, 57(17): 3398-3407.
[13] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[14] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[15] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!