Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3568-3585.doi: 10.3864/j.issn.0578-1752.2024.18.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Residual Effects of Tillage Regime on Soil Moisture Dynamics, Grain Filling Characteristics and Yield of Summer Maize in Wheat-Maize Double Cropping System

LIU ShuiMiao1(), GUAN XiaoKang1(), ZHAO ZhiHeng1, WANG JingHui1, LIU ShiLong1, GAO PeiMeng1, WANG YanLi2, WU PengNian2, GAO ChenKai1, LI YuMing1, SHAO Jing1, YU HaoLin1, WANG TongChao1, WEN PengFei1   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450046
    2 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2024-01-29 Accepted:2024-07-19 Online:2024-09-16 Published:2024-09-29
  • Contact: GUAN XiaoKang

Abstract:

【Objective】 The Huang-Huai-Hai Plain is a typical annual rotation area of winter wheat and summer maize in China, and the effect of pre-season tillage on the yield of summer maize in this area was studied, so as to provide a theoretical basis for optimizing the tillage mode under the wheat-maize double cropping system to improve the high and stable yield of summer maize. 【Method】 Based on the 6-year long-term positioning experiment, three pre-sowing tillage modes of winter wheat were set up, including Deep tillage (DT), No-tillage (NT), and Rotation tillage (RT) with deep tillage for one year and two years, to explore the tillage mode with the greatest potential for increasing summer maize yield. 【Result】 RT and DT treatments significantly increased the soil water storage of 0-40 cm soil in tillage disturbance during the tillage period of summer maize at the grain filling stage, which was 4.89% to 11.02% (2022) and 4.43% to 6.06% (2023) higher than that under DT treatment, and 8.16% to 16.69% (2022) and 6.78% to 17.23% (2023) higher than that under NT treatments, respectively. RT treatment could maintain a high leaf area index at the maize grain filling stage, and the leaf area index under RT treatment increased by 1.41% to 14.28% (2022) and 9.03% to 14.46% (2023) compared with DT treatment before and during the grain filling stage, respectively and increased by 14.80% to 27.56% (2022) and 21.25% to 29.39% (2023) compared with NT treatment, respectively. Compared with DT and NT treatments, the contribution rate of dry matter transfer after anthesis to grain under RT treatment increased by 3.77%, 40.36% (2022) and 7.26%, 19.91% (2023), respectively. The results of logistic equation simulation showed that the parameters of the 3 grain filling stages were roughly in the order of rapid growth stage>gradual growth stage>slow growth stage, and the three grain positions showed the lower grain>the middle grain>the upper grain, and the changes of the parameters in the 3 treatments showed RT>DT>NT, in which the RT treatment reached the maximum grouting rate in advance, and the average grouting rate was the highest, thereby increasing the theoretical maximum 100-grain weight. In 2022 and 2023, the yield under RT was significantly increased by 8.92%, 14.15%, 6.25% and 19.45% compared with DT and NT treatments, respectively, and in 2022 and 2023, the 100-grain weight RT and DT treatments were significantly increased by 2.71%, 6.03%, 9.02% and 12.56% compared with NT treatments, respectively. According to the structural equation model of yield formation, the direct effect and indirect effect of 0-40 cm soil water storage on yield were 0.420 and 0.551, respectively. 0-40 cm soil water storage not only directly promoted yield formation, but also affected yield through aboveground biomass and average grain filling rate. 【Conclusion】 In conclusion, soil water storage was an important driving factor for increasing yield, and RT could increase soil water storage at summer maize filling stage, thereby increasing leaf area index with higher activity, delaying leaf senescence time, increasing dry matter accumulation, optimizing grain filling characteristics, promoting the increase of dry matter to grain filling rate, and ultimately increasing summer maize yield.

Key words: tillage regime, summer maize, soil water storage, dry matter transfer, grain filling, yield, wheat

Fig. 1

Rainfall and temperature during the growth period of summer maize from 2022 to 2023"

Table 1

Sampling time of summer maize in the two experimental years"

生育时期 Growing stage 2022 2023
苗期 Seeding stage 07-07 07-07
拔节期 Jointing stage 07-20 07-20
吐丝期 Silking stage 08-10 08-10
灌浆期 Grain filling stage 08-17
08-24
09-01
09-07
09-14
09-21
08-17
08-24
09-01
09-07
09-14
09-21
成熟期 Ripening stage 09-27 09-28

Fig. 2

Effects of different tillage treatments on soil water storage in 0-100 cm soil profile DT, RT and NT represent deep tillage, rotation tillage and no-tillage, respectively. The different lower case indicated significant difference among three treatments (P<0.05). The same below"

Fig. 3

Effects of different tillage treatments on leaf area index of summer maize"

Fig. 4

Effects of different tillage treatments on summer maize biomass"

Table 2

Effects of different tillage treatments on dry matter accumulation and transport after anthesis"

年份
Year
处理
Treatment
花后干物质积累量
PDMA (kg·hm-2)
干物质转移量
DMT (kg·hm-2)
干物质转运率
DMTE (%)
干物质转移对籽粒贡献率
DMTC (%)
收获指数
HI
2022 DT 16333.21±1124.21a 3401.30±209.57b 23.51±1.27b 29.19±3.25a 0.39±0.02b
RT 16414.53±1513.76a 3667.13±135.75a 25.42±2.07a 30.29±3.98a 0.42±0.04a
NT 14863.20±627.03a 2368.30±394.16c 17.47±3.53c 21.58±3.53b 0.37±0.01b
2023
DT 14121.20±223.39b 3283.37±104.65b 28.51±1.01b 25.77±0.93a 0.45±0.01a
RT 15713.93±121.04a 3722.25±91.71a 34.03±0.92a 27.64±1.24a 0.46±0.01a
NT 13563.62±127.76c 2405.33±109.97c 17.22±0.76c 23.05±1.53b 0.38±0.02b

Fig. 5

Dynamics of summer maize grain filling characteristics by Logistic fitting curves under different tillage treatments"

Table 3

Grain filling characteristics of summer maize under different tillage treatments"

年份
Year
粒位
Grain position
处理
Treatment
A
(g)
Tmax
(d)
Wmax
(g·d-1)
Gmax
(g·d-1)
Gmean
(g·d-1)
P
(d)
2022 上部
Upper
DT 28.41±0.201b 27.68±0.182b 14.21±0.101b 0.99±0.017ab 0.65±0.011ab 42.55±1.049b
RT 29.04±0.023a 27.45±0.072b 14.52±0.009a 1.02±0.009a 0.68±0.001a 43.17±0.081a
NT 26.75±0.021c 28.19±0.018a 13.38±0.012c 0.97±0.007b 0.64±0.001b 41.38±0.015c
中部
Middle
DT 30.33±0.009b 26.76±0.011b 15.16±0.004b 1.03±0.002b 0.68±0.002b 44.12±0.027b
RT 32.28±0.004a 26.48±0.004c 16.14±0.007a 1.04±0.054a 0.69±0.004a 45.80±0.058a
NT 28.98±0.013c 27.78±0.012a 14.49±0.005c 0.97±0.058c 0.64±0.005c 44.44±0.017c
下部
Lower
DT 30.59±0.019b 26.60±0.009b 15.29±0.009b 1.03±0.003b 0.68±0.003b 44.44±0.056b
RT 33.40±0.008a 26.27±0.011c 16.52±0.002a 1.06±0.000a 0.70±0.000a 47.62±0.006a
NT 29.79±0.012c 27.64±0.001a 14.89±0.003c 1.01±0.003c 0.67±0.002c 44.78±0.061c
2023 上部
Upper
DT 28.25±0.053b 28.39±0.125a 14.13±0.025b 0.97±0.005b 0.65±0.003b 43.80±0.398b
RT 29.15±0.032a 27.53±0.009b 14.58±0.015a 1.03±0.002a 0.69±0.002a 42.55±0.206ab
NT 26.39±0.114c 28.26±0.121a 13.20±0.048c 0.95±0.009c 0.63±0.009c 41.67±0.462a
中部
Middle
DT 31.03±0.076b 26.64±0.170b 15.52±0.040b 1.05±0.002b 0.70±0.001b 44.31±0.072ab
RT 31.46±0.134a 26.13±0.236c 15.73±0.066a 1.06±0.005a 0.71±0.003a 44.44±0.275a
NT 29.79±0.112c 27.25±0.085a 14.90±0.056c 1.01±0.011c 0.67±0.002c 43.91±0.119b
下部
Lower
DT 31.79±0.069b 26.25±0.055b 15.90±0.032b 1.06±0.006b 0.70±0.004b 45.11±0.378b
RT 33.60±0.031a 26.12±0.235b 16.80±0.015a 1.08±0.010a 0.72±0.007a 46.51±0.506a
NT 30.05±0.037c 26.95±0.024a 15.03±0.021c 1.01±0.003c 0.68±0.002c 44.44±0.250c

Table 4

Duration, average grain filling rate and accumulation of summer maize under different tillage treatments"

年份
Year
粒位
Grain
position
处理
Treatment
籽粒灌浆渐增期
Grain-filling pyramid period
籽粒灌浆速增期
Grain-filling fast increase period
籽粒灌浆缓增期
Grain-filling slowly increase period
T1 (d) G1 (g·d-1) W1 (g) T2 (d) G2 (g·d-1) W2 (g) T3 (d) G3 (g·d-1) W3 (g)
2022 上部
Upper
DT 18.21±0.134b 0.26±0.001b 6.00±0.042a 18.68±0.921a 0.81±0.013b 22.41±0.115b 23.25±0.573ab 0.24±0.005ab 28.13±0.048b
RT 18.11±0.075b 0.34±0.001a 6.14±0.04a 18.95±0.071a 0.90±0.002a 22.90±0.038a 23.58±0.044a 0.25±0.001a 28.75±0.042a
NT 19.11±0.018a 0.24±0.000c 5.65±0.03b 18.17±0.014b 0.78±0.003c 22.10±0.067b 22.61±0.008b 0.23±0.002b 26.48±0.046c
中部
Middle
DT 17.08±0.005c 0.39±0.000b 6.64±0.002b 19.51±0.024b 0.87±0.000b 25.13±0.005b 24.10±0.015b 0.25±0.000b 30.28±0.002b
RT 16.35±0.003b 0.42±0.000a 6.82±0.002a 20.26±0.051a 0.92±0.001a 25.46±0.013a 25.21±0.031a 0.26±0.000a 31.96±0.013a
NT 18.39±0.005a 0.26±0.000c 6.12±0.002c 19.36±0.016c 0.85±0.001c 22.86±0.019c 24.08±0.009b 0.23±0.001c 28.69±0.019c
下部
Lower
DT 16.84±0.303b 0.39±0.017b 6.76±0.004b 19.51±0.049b 0.90±0.000b 25.19±0.016b 24.28±1.303b 0.25±0.001b 31.62±0.045b
RT 16.32±0.005b 0.45±0.000a 6.98±0.001a 20.91±0.006a 0.93±0.000a 26.06±0.015a 26.01±0.004a 0.27±0.001a 32.71±0.016a
NT 17.88±0.003a 0.34±0.000c 6.22±0.001c 19.65±0.053b 0.85±0.001c 23.23±0.009c 24.46±0.033b 0.24±0.000b 29.16±0.011c
2023 上部
Upper
DT 18.48±0.134a 0.32±0.001b 5.97±0.011b 18.68±0.349a 0.85±0.004b 22.28±0.041b 23.25±0.217b 0.24±0.001b 27.97±0.049b
RT 18.19±0.035b 0.34±0.001a 6.16±0.006a 19.23±0.181b 0.90±0.002a 22.99±0.024a 23.93±0.112a 0.25±0.000a 28.86±0.030a
NT 18.70±0.182a 0.30±0.001c 5.58±0.020c 18.29±0.406a 0.83±0.008c 20.81±0.075c 22.76±0.252c 0.23±0.002c 26.13±0.095c
中部
Middle
DT 16.89±0.154b 0.39±0.003b 6.56±0.017b 18.98± 0.063b 0.92±0.002a 24.47±0.064b 24.78±0.039ab 0.25±0.000b 30.72±0.081b
RT 16.38±0.208c 0.41±0.002a 6.65±0.027a 19.51±0.242a 0.93±0.004a 24.81±0.104a 25.14±0.150a 0.26±0.001a 31.15±0.130a
NT 17.50±0.110a 0.36±0.001c 6.30±0.047c 18.57±0.104b 0.88±0.008b 23.50±0.178c 24.33±0.065b 0.24±0.002c 29.49±0.223c
下部
Lower
DT 16.17±1.104a 0.41±0.015b 6.62±0.013b 19.81±0.332c 0.93±0.005b 24.70±0.060b 24.85±0.104a 0.26±0.002b 31.01±0.064b
RT 15.91±0.305b 0.45±0.005a 7.10±0.006a 20.42±0.445a 0.95±0.009a 26.50±0.024a 25.41±0.276a 0.27±0.003a 33.26±0.029a
NT 17.20±0.043a 0.38±0.000b 6.56±0.022b 19.51±0.220b 0.92±0.006b 24.47±0.085b 24.38±0.137b 0.26±0.001b 30.72±0.106c

Table 5

Effects of different tillage treatments on ear traits and yield of summer maize"

年份
Year
处理
Treatment
穗长
Ear length
(cm)
穗粗
Ear diameter
(mm)
穗数 (穗/hm2)
Ears numbers (ear/hm2)
穗粒数 (粒/穗)
Grain number
(per/ear)
百粒重
100 grain weight
(g)
产量
Yield
(kg·hm-2)
2022 DT 17.30±0.32a 47.45±0.68a 82332.81±4168.75a 483.33±40.69ab 32.88±0.32b 11490.40±124.82b
RT 16.96±0.36a 49.02±1.33a 85931.83±4188.78a 526.50±13.07a 33.77±0.42a 12515.06±103.27a
NT 16.56±0.49a 48.30±1.43a 81290.63±2084.37a 463.17±32.63b 31.85±0.73b 10963.44±254.20b
2023 DT 16.87±2.00a 50.75±0.98a 82680.21±3660.04a 538.66±33.31ab 31.83±0.34b 11742.75±116.53b
RT 17.43±1.09a 51.01±0.87a 84764.58±2406.82a 540.89±18.68a 34.70±0.55a 12476.98±319.24a
NT 16.57±0.40a 50.66±1.99a 81985.42±2406.82a 472.18±36.59b 30.83±0.13b 10444.61±289.92c

Fig. 6

Construction of structural equation model for summer maize yield under different tillage treatments *P<0.05;**P<0.01. (a) : P(>Chisq)=0.59,CFI=1.0,RMSEA=0.000. (b) : P(>Chisq)=0.57,CFI=1.0,RMSEA=0.000. (c) : P(>Chisq)=0.73,CFI=1.0,RMSEA=0.000"

[1]
齐智娟, 宋芳, 张忠学, 刘明, 尹致皓, 李骜. 保护性耕作对寒地黑土土壤水热效应与玉米产量的影响. 农业机械学报, 2022, 53(12): 380-389.
QI Z J, SONG F, ZHANG Z X, LIU M, YIN Z H, LI A. Effects of different conservation tillage methods on soil hydrothermal condition as well as maize yield in cold black soil region. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 380-389. (in Chinese)
[2]
张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展. 作物学报, 2023, 49(4): 879-892.

doi: 10.3724/SP.J.1006.2023.21034
ZHANG J X, GE J Z, MA W, DING Z S, WANG X B, LI C F, ZHOU B Y, ZHAO M. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain. Acta Agronomica Sinica, 2023, 49(4): 879-892. (in Chinese)
[3]
王育红, 席玲玲, 周新, 沈东风. 深耕对夏玉米产量形成及土壤理化性质的影响. 山西农业大学学报(自然科学版), 2018, 38(2): 9-14.
WANG Y H, XI L L, ZHOU X, SHEN D F. Effects of deep tillage treatments on summer maize yield and soil physicochemical properties. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(2): 9-14. (in Chinese)
[4]
高飞, 李霞, 任佰朝, 董树亭, 刘鹏, 赵斌, 张吉旺. 小麦玉米周年生产中耕作方式对夏玉米根系特性和产量的影响. 中国农业科学, 2017, 50(11): 2141-2149. doi: 10.3864/j.issn.0578-1752.2017.11.019.
GAO F, LI X, REN B C, DONG S T, LIU P, ZHAO B, ZHANG J W. Root characteristics and grain yield of summer maize under different winter wheat-summer maize tillage systems. Scientia Agricultura Sinica, 2017, 50(11): 2141-2149. doi: 10.3864/j.issn.0578-1752.2017.11.019. (in Chinese)
[5]
何海军, 寇思荣, 王晓娟. 干旱胁迫对不同株型玉米光合特性及产量性状的影响. 干旱地区农业研究, 2011, 29(3): 63-66, 74.
HE H J, KOU S R, WANG X J. Effects of drought stress on photosynthetic characteristics and yield components of different plant types of corn. Agricultural Research in the Arid Areas, 2011, 29(3): 63-66, 74. (in Chinese)
[6]
张冬梅, 张伟, 姜春霞, 王晓娟, 刘化涛, 杨柯, 闫六英, 刘恩科, 翟广谦. 旱地玉米不同耕作覆盖措施的土壤环境及产量效应. 中国农业大学学报, 2019, 24(6): 26-37.
ZHANG D M, ZHANG W, JIANG C X, WANG X J, LIU H T, YANG K, YAN L Y, LIU E K, ZHAI G Q. Effects of different tillage and mulch treatments on the soil environment and yield of dryland maize. Journal of China Agricultural University, 2019, 24(6): 26-37. (in Chinese)
[7]
赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014, 47(17): 3359-3371. doi: 10.3864/j.issn.0578-1752.2014.17.004.
ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2014, 47(17): 3359-3371. doi: 10.3864/j.issn.0578-1752.2014.17.004. (in Chinese)
[8]
JI B, ZHAO Y, MU X, LIU K, LI C. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant, Soil and Environment, 2013, 59(7): 295-302.
[9]
刘丹, 张霞, 李军, 王旭东. 渭北旱塬农田不同耕作模式对土壤性状、玉米产量和水分利用效率的影响. 应用生态学报, 2018, 29(2): 573-582.

doi: 10.13287/j.1001-9332.201802.023
LIU D, ZHANG X, LI J, WANG X D. Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China. Chinese Journal of Applied Ecology, 2018, 29(2): 573-582. (in Chinese)

doi: 10.13287/j.1001-9332.201802.023
[10]
张玉娇, 王浩, 王淑兰, 王瑞, 李军, 王小利. 小麦/玉米轮作旱地长期轮耕的保墒增产效应. 农业工程学报, 2018, 34(12): 126-136.
ZHANG Y J, WANG H, WANG S L, WANG R, LI J, WANG X L. Soil moisture preservation and improving of crop yield in dry land under long-term wheat/maize rotation. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 126-136. (in Chinese)
[11]
聂胜委, 张玉亭, 汤丰收, 张巧萍, 何宁, 郭庆, 王洪庆, 韦本辉. 粉垄耕作后效对夏玉米群体微环境的影响. 山西农业科学, 2016, 44(3): 348-352.
NIE S W, ZHANG Y T, TANG F S, ZHANG Q P, HE N, GUO Q, WANG H Q, WEI B H. Effects of later effect of smashing ridge tillage on summer maize’s micro environment. Journal of Shanxi Agricultural Sciences, 2016, 44(3): 348-352. (in Chinese)
[12]
仝星星, 孙武, 李松坚, 张洪生, 刘树堂, 姜雯. 砂姜黑土农田年内轮耕对夏玉米氮素和干物质积累、转运的影响. 华北农学报, 2018, 33(4): 189-195.

doi: 10.7668/hbnxb.2018.04.027
TONG X X, SUN W, LI S J, ZHANG H S, LIU S T, JIANG W. Effects of different annual tillage treatments on the accumulation and translocation of nitrogen and dry matter of summer maize in Shajiang black soil. Acta Agriculturae Boreali-Sinica, 2018, 33(4): 189-195. (in Chinese)

doi: 10.7668/hbnxb.2018.04.027
[13]
刘元元, 王良, 钱欣, 李宗新, 高英波, 张慧, 刘树堂, 刘开昌, 赵文娟. 麦茬耕作方式对免耕直播夏玉米产量建成的影响. 玉米科学, 2023, 31(3): 113-119.
LIU Y Y, WANG L, QIAN X, LI Z X, GAO Y B, ZHANG H, LIU S T, LIU K C, ZHAO W J. Effect of wheat stubble tillage methods on the yield formation of no-tillage summer maize. Journal of Maize Sciences, 2023, 31(3): 113-119. (in Chinese)
[14]
蔡丽君, 边大红, 田晓东, 曹立燕, 崔彦宏. 耕作方式对土壤理化性状及夏玉米生长发育和产量的影响. 华北农学报, 2014, 29(5): 232-238.

doi: 10.7668/hbnxb.2014.05.039
CAI L J, BIAN D H, TIAN X D, CAO L Y, CUI Y H. Effect of tillage methods on soil physical and chemical properties, growth and grain yield of summer maize. Acta Agriculturae Boreali-Sinica, 2014, 29(5): 232-238. (in Chinese)
[15]
KUMAR S, SHIVANI U, MISHRA S, SINGH V P. Effect of tillage and irrigation on soil-water-plant relationship and productivity of winter maize (Zea mays) in North Bihar. Indian Journal of Agricultural Sciences, 2006, 76(9): 526-530.
[16]
张国合, 常建智, 李彦昌, 闫丽慧, 许冬莲, 张素芬, 艾振光. 不同耕作方式对夏玉米生长发育及产量的影响. 河南农业科学, 2013, 42(11): 14-16.
ZHANG G H, CHANG J Z, LI Y C, YAN L H, XU D L, ZHANG S F, AI Z G. Effect of different tillage methods on growth and yield of summer maize. Journal of Henan Agricultural Sciences, 2013, 42(11): 14-16. (in Chinese)
[17]
钱春荣, 王荣焕, 赵久然, 于洋, 郝玉波, 姜宇博, 宫秀杰, 李梁, 葛选良. 玉米果穗不同位势子粒灌浆特性分析. 玉米科学, 2017, 25(3): 80-86.
QIAN C R, WANG R H, ZHAO J R, YU Y, HAO Y B, JIANG Y B, GONG X J, LI L, GE X L. Analysis on characteristics of grain-filling at different positions on a maize ear. Journal of Maize Sciences, 2017, 25(3): 80-86. (in Chinese)
[18]
李霞, 任佰朝, 范霞, 赵斌, 董树亭, 刘鹏, 张吉旺. 冬小麦-夏玉米生产体系中播前耕作对夏玉米产量形成的影响. 中国农业科学, 2015, 48(6): 1074-1083. doi: 10.3864/j.issn.0578-1752.2015.06.04.
LI X, REN B C, FAN X, ZHAO B, DONG S T, LIU P, ZHANG J W. Effects of tillage before sowing of winter wheat and summer maize on yield formation of summer maize. Scientia Agricultura Sinica, 2015, 48(6): 1074-1083. doi: 10.3864/j.issn.0578-1752.2015.06.04. (in Chinese)
[19]
ZHAI L C, XU P, ZHANG Z B, LI S K, XIE R Z, ZHAI L F, WEI B H. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Soil and Tillage Research, 2017, 170: 167-174.
[20]
张继卫, 王玉凤, 张翼飞, 李庆, 杨克军, 唐子淳. 耕作方式对松嫩平原半干旱区玉米子粒灌浆特性及产量的影响. 湖北农业科学, 2021, 60(13): 26-30.
ZHANG J W, WANG Y F, ZHANG Y F, LI Q, YANG K J, TANG Z C. Effect of tillage methods on grain filling characteristics and yield of maize in semi-arid area of Songnen Plain. Hubei Agricultural Sciences, 2021, 60(13): 26-30. (in Chinese)
[21]
WANG Y Q, ZHANG Y H, WANG Z M, TAO H B, ZHOU S L, WANG P. Effects of winter wheat season tillage on soil properties and yield of summer maize. Plant, Soil and Environment, 2017, 63(1): 22-28.
[22]
张笑培, 周新国, 王静丽, 樊向阳, 黄仲冬, 杨慎骄, 王和洲. 耕作方式对豫东夏玉米产量和水分利用效率的影响. 灌溉排水学报, 2017, 36(9): 13-19.
ZHANG X P, ZHOU X G, WANG J L, FAN X Y, HUANG Z D, YANG S J, WANG H Z. Impact of tillage on yield and water use efficiency of summer maize in eastern henan province. Journal of Irrigation and Drainage, 2017, 36(9): 13-19. (in Chinese)
[23]
王万宁, 强小嫚, 刘浩, 孙景生, 马筱建, 崔永生. 麦前深松对夏玉米土壤物理性状和生长特性的影响. 水土保持学报, 2017, 31(6): 229-236.
WANG W N, QIANG X M, LIU H, SUN J S, MA X J, CUI Y S. Effects of subsoiling before sowing of winter wheat on soil physical properties and growth characteristics of summer maize. Journal of Soil and Water Conservation, 2017, 31(6): 229-236. (in Chinese)
[24]
历艳璐, 王俊鹏, 于欣志, 魏宏磊, 陈麒宇, 赵洪祥, 徐晨, 边少锋, 张治安. 冷凉区不同地膜覆盖对玉米干物质和氮素积累与分配的影响. 作物杂志, 2022(5): 124-129.
LI Y L, WANG J P, YU X Z, WEI H L, CHEN Q Y, ZHAO H X, XU C, BIAN S F, ZHANG Z A. Effects of mulching different plastic films on accumulation and distribution of dry matter and nitrogen in maize in cold and cool areas. Crops, 2022(5): 124-129. (in Chinese)
[25]
付江鹏, 贺正, 贾彪, 刘志, 李振洲, 刘慧芳. 水肥一体化施氮水平对玉米籽粒灌浆和脱水过程的影响. 中国农业气象, 2019, 40(12): 772-782.

doi: 10.3969/j.issn.1000-6362.2019.12.004
FU J P, HE Z, JIA B, LIU Z, LI Z Z, LIU H F. Effect of integrated fertilization level of water and fertilizer on maize grain filling and dehydration process. Chinese Journal of Agrometeorology, 2019, 40(12): 772-782. (in Chinese)
[26]
司政邦, 李军, 周婷婷. 耕作与施肥模式对渭北旱塬春玉米田蓄水保墒与玉米产量的影响. 干旱地区农业研究, 2016, 34(2): 24-31.
SI Z B, LI J, ZHOU T T. Effects of different tillage and fertilization combinations on soil water conservation and yield increment in Weibei Highland. Agricultural Research in the Arid Areas, 2016, 34(2): 24-31. (in Chinese)
[27]
柏炜霞, 李军, 王玉玲, 王丽. 渭北旱塬小麦玉米轮作区不同耕作方式对土壤水分和作物产量的影响. 中国农业科学, 2014, 47(5): 880-894. doi:10.3864/j.issn.0578-1752.2014.05.005.
BAI W X, LI J, WANG Y L, WANG L. Effects of different tillage methods on soil water and crop yield of winter wheat-spring maize rotation region in Weibei highland. Scientia Agricultura Sinica, 2014, 47(5): 880-894. doi:10.3864/j.issn.0578-1752.2014.05.005. (in Chinese)
[28]
张海林, 陈阜, 秦耀东, 朱文珊. 覆盖免耕夏玉米耗水特性的研究. 农业工程学报, 2002, 18(2): 36-40.
ZHANG H L, CHEN F, QIN Y D, ZHU W S. Water consumption characteristics for summer corn under under no-tillage with mulch. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 36-40. (in Chinese)
[29]
李明, 李朝苏, 刘淼, 吴晓丽, 魏会廷, 汤永禄, 熊涛. 耕作播种方式对稻茬小麦根系发育、土壤水分和硝态氮含量的影响. 应用生态学报, 2020, 31(5): 1425-1434.

doi: 10.13287/j.1001-9332.202005.027
LI M, LI C S, LIU M, WU X L, WEI H T, TANG Y L, XIONG T. Effects of different tillage and sowing practices on root growth, soil moisture, and soil nitrate nitrogen content of wheat after rice. Chinese Journal of Applied Ecology, 2020, 31(5): 1425-1434. (in Chinese)

doi: 10.13287/j.1001-9332.202005.027
[30]
王玉凤, 李庆, 张翼飞, 付健, 薛盈文, 郭伟, 杨克军. 耕作方式对三江平原玉米生长发育及水分利用影响. 玉米科学, 2022, 30(3): 116-125.
WANG Y F, LI Q, ZHANG Y F, FU J, XUE Y W, GUO W, YANG K J. Effects of tillage on growth and water use of maize in Sanjiang Plain. Journal of Maize Sciences, 2022, 30(3): 116-125. (in Chinese)
[31]
仝星星, 宋希云, 刘树堂, 姜雯. 小麦-玉米轮作耕作方式对玉米灌浆成熟期叶片衰老生理特性的影响. 核农学报, 2015, 29(5): 954-960.

doi: 10.11869/j.issn.100-8551.2015.05.0954
TONG X X, SONG X Y, LIU S T, JIANG W. Effects of tillage managements in wheat and maize rotation crop system on leaf senescence biological characteristics during grain filling in maize. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 954-960. (in Chinese)

doi: 10.11869/j.issn.100-8551.2015.05.0954
[32]
王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响. 中国农业科学, 2023, 56(7): 1283-1294. doi: 10.3864/j.issn.0578-1752.2023.07.007.
WANG P F, YU A Z, WANG Y L, SU X X, LI Y, H Q, CHAI J, YANG H W. Effects of returning green manure to field combined with reducing nitrogen application on the dry matter accumulation, distribution and yield of maize. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294. doi: 10.3864/j.issn.0578-1752.2023.07.007. (in Chinese)
[33]
LIN P, HUA Q, LI C F, ZHAO M. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Research, 2016, 198: 258-268.
[34]
徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44(3): 414-422.
XU T J, T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G. Photosynthetic characteristics, day matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinica, 2018, 44(3): 414-422. (in Chinese)
[35]
郭海斌, 张军刚, 王文文, 薛志伟, 王成业, 许波. 深松耕作对夏玉米增密增产的调控机制. 江苏农业科学, 2023, 51(9): 88-96.
GUO H B, ZHANG J G, WANG W W, XUE Z W, WANG C Y, XU B. Regulation mechanism of subsoiling tillage on density and yield increase of summer maize. Jiangsu Agricultural Sciences, 2023, 51(9): 88-96. (in Chinese)
[36]
齐翔鲲, 安思危, 侯楠, 吴凤婕, 王玉凤, 杨克军, 付健. 耕作和秸秆还田方式对半干旱区黑土玉米养分积累分配与产量的影响. 植物营养与肥料学报, 2022, 28(12): 2214-2226.
QI X K, AN S W, HOU N, WU F J, WANG Y F, YANG K J, FU J. Effects of tillage and straw returning method on the nutrient accumulation, distribution and yield of maize in black soil of semi-arid region. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2214-2226. (in Chinese)
[37]
史忠强, 江晓东, 王芸, 宁堂原, 韩宾, 李增嘉. 少免耕对夏玉米灌浆过程和产量的影响. 山东农业科学, 2007, 39(1): 50-52, 56.
SHI Z Q, JIANG X D, WANG Y, NING T Y, HAN B, LI Z J. Effects of minimum and No tillage on seed filling and yield of summer maize. Shandong Agricultural Sciences, 2007, 39(1): 50-52, 56. (in Chinese)
[38]
卫晓轶, 魏锋, 洪德峰, 马俊峰, 马毅, 张学舜. 不同耕作方式对夏玉米灌浆及产量性状的影响. 河南农业科学, 2013, 42(8): 21-23.
WEI X Y, WEI F, HONG D F, MA J F, MA Y, ZHANG X S. Effect of tillage system on grain filling and yield traits of summer maize. Journal of Henan Agricultural Sciences, 2013, 42(8): 21-23. (in Chinese)
[39]
李澳旗, 张俊, 崔晓路, 赵璐, 刘杰, 胡田田. 不同灌水量下尿素添加适宜氮肥增效剂促进夏玉米灌浆增产. 农业工程学报, 2023, 39(16): 99-110.
LI A Q, ZHANG J, CUI X L, ZHAO L, LIU J, HU T T. Nitrogen fertilizer synergist in urea under irrigation for high yield of summer maize at the filling stage. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 99-110. (in Chinese)
[40]
WANG L Q, YU X F, GAO J L, MA D L, LI L, HU S P. Regulation of subsoiling tillage on the grain filling characteristics of maize varieties from different eras. Scientific Reports, 2021, 11(1): 20430.
[41]
闫丽慧, 王昌亮, 常建智, 王芬霞, 李彦昌, 王海亮, 艾振光. 气象因子对黄淮海区粒收玉米子粒灌浆与脱水特性的影响. 玉米科学, 2022, 30(6): 78-84, 92.
YAN L H, WANG C L, CHANG J Z, WANG F X, LI Y C, WANG H L, AI Z G. Effects of meteorological factors on grain filling and dehydration characteristics of maize suitable for machine harvesting in Huang-Huai-Hai. Journal of Maize Sciences, 2022, 30(6): 78-84, 92. (in Chinese)
[42]
肖珊珊, 张翼飞, 杨克军, 明立伟, 杜嘉瑞, 徐荣琼, 孙逸珊, 李伟庆, 李桂彬, 李泽松, 李佳宇. 不同熟期品种间作对春玉米籽粒灌浆、脱水特性及产量的影响. 中国农业科学, 2022, 55(12): 2294-2310. doi: 10.3864/j.issn.0578-1752.2022.12.003.
XIAO S S, ZHANG Y F, YANG K J, MING L W, DU J R, XU R Q, SUN Y S, LI W Q, LI G B, LI Z S, LI J Y. Effects of intercropping with different maturity varieties on grain filling, dehydration characteristics and yield of spring maize. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310. doi: 10.3864/j.issn.0578-1752.2022.12.003. (in Chinese)
[43]
赵雪, 胡晗, 李芳, 林珊, 陈先敏, 吴巩, 李斌彬, 周顺利. 玉米机械粒收品种籽粒灌浆特性及对种植密度和施氮量的响应. 中国农业大学学报, 2023, 28(5): 12-24.
ZHAO X, HU H, LI F, LIN S, CHEN X M, WU G, LI B B, ZHOU S L. Grain filling characteristics of mechanical grain harvest variety maize and its response to plant density and nitrogen fertilizer rate. Journal of China Agricultural University, 2023, 28(5): 12-24. (in Chinese)
[44]
王若男, 任伟, 李叶蓓, 张萍, 陈璐洁, 陶洪斌, 王璞. 灌浆期低温对夏玉米光合性能及产量的影响. 中国农业大学学报, 2016, 21(2): 1-8.
WANG R N, REN W, LI Y B, ZHANG P, CHEN L J, TAO H B, WANG P. Effects of low temperature during grain filling stage on photosynthetic characteristics and yield of summer maize. Journal of China Agricultural University, 2016, 21(2): 1-8. (in Chinese)
[45]
李敖, 张元红, 温鹏飞, 王瑞, 董朝阳, 宁芳, 李军. 耕作、施氮和密度及其互作对旱地春玉米土壤水分及产量形成的影响. 中国农业科学, 2020, 53(10): 1959-1970. doi: 10.3864/j.issn.0578-1752.2020.10.004.
LI A, ZHANG Y H, WEN P F, WANG R, DONG C Y, NING F, LI J. Effect of tillage, nitrogen application, planting density and their interaction on soil moisture and yield formation of spring maize in dryland. Scientia Agricultura Sinica, 2020, 53(10): 1959-1970. doi: 10.3864/j.issn.0578-1752.2020.10.004. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[7] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[8] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[9] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[10] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[11] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[12] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[13] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[14] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[15] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!