Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (15): 2901-2913.doi: 10.3864/j.issn.0578-1752.2024.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits

BAI BingNan1(), QIAO Dan2, GE Qun2, LUAN YuJuan3, LIU XiaoFang3, LU QuanWei3, NIU Hao2, GONG JuWu2, GONG WanKui2, ELAMEER ELSAMMAN2, YAN HaoLiang2, LI JunWen2, LIU AiYing2, SHI YuZhen2, WANG HaiZe1(), YUAN YouLu2,4()   

  1. 1 College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, Heilongjiang
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan
    3 Anyang Institute of Technology, Anyang 455000, Henan
    4 School of Advanced Agricultural Sciences, Kashi University, Kashi 844000, Xinjiang
  • Received:2024-01-16 Accepted:2024-03-11 Online:2024-08-05 Published:2024-08-05
  • Contact: WANG HaiZe, YUAN YouLu

Abstract:

Objective】Exploring the genetic loci and related genes that control cottonseed size traits to lay a foundation for subsequent study on the molecular mechanism cottonseed size formation. 【Method】The upland cotton recombinant inbred line (RIL) population composed of 300 lines was used as the research material. Seven phenotypic traits including cottonseed index (SI), seed length-cutting acreage (SLA), seed length-cutting perimeter (SLP), seed length (SL), seed width (SW), length-width ratio (LWR) and seed roundness (SR) were evaluated in four environments. The RIL population was genotyped by liquid phase chip strategy. The high-quality single nucleotide polymorphism (SNP) markers and phenotypic data were subjected to perform genome-wide association study (GWAS), and quantitative trait nucleotides (QTNs) associated with cottonseed size-related traits were mined. The genetic effects of QTNs were analyzed to identify candidate genes. 【Result】Seven cottonseed size-related traits showed a continuous normal distribution in four environments, which expressed a sizable phenotypic variation. The coefficient of variation ranged from 1.82% to 10.70%. The influencing effect on trait formation were basically as genotype>environment>genotype × environment, indicating suitability for GWAS analysis of these results. Correlation analysis showed that the seed index was significantly correlated with SLA, SLP, SL and SW, and LWR was significantly correlated with SR, indicating the possible existence of pleiotropic loci. GWAS was performed using the 3VmrMLM model, and a total of 47 QTNs were associated with these seven traits. A total of 11 QTNs were associated on chromosome A07, of which three physical loci in the region of 71.99-72.87 Mb, A07:71993462, A07:72067994 and A07:72198802 were very close and simultaneously associated with SI, SLA, SLP, SL and SW in four environments. The average value of R2 between markers was>0.8 (P<0.001), showing a large linkage disequilibrium. Genetic effect analysis showed that there were two haplotypes in this region. Among these cottonseed size relating traits, haplotype Ⅱ and haplotype I were significantly different, indicating that these loci directly affected cottonseed size traits and could be used for molecular marker-assisted selection. The expression patterns of the genes in the interval were analyzed using TM-1 transcriptome data. The results revealed that Gh_A07G1767 was preferentially expressed and Gh_A07G1766 specifically expressed at the stage of cottonseed development. These results speculated that these genes may play an important role in the growth and development of cottonseed.【Conclusion】47 QTNs were identified, and two candidate genes related to cottonseed development were screened.

Key words: cotton, cottonseed, genome-wide association analysis, quantitative trait nucleotides, candidate genes

Table 1

Genetic variation of seed related traits in cotton population"

性状
Trait
环境
Environment
亲本Parents 重组自交系RIL
C60 ZR 范围
Range
均值±标准差
Mean±SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
籽指SI (g) 20AY 9.95 9.35 8.45-15.35 11.06±1.16 10.44 0.46 0.21
21AY 12.30 12.30 9.55-16.70 12.60±1.30 10.28 0.28 -0.21
20WX 11.83 10.10 8.05-15.15 10.66±1.14 10.70 0.66 0.50
21WX 10.18 9.83 7.75-14.58 10.20±1.08 10.57 0.60 0.52
BLUE 9.01-15.68 11.39±1.12 9.88 0.49 0.18
面积SLA (mm²) 20AY 26.58 26.72 23.85-37.26 29.10±2.22 7.61 0.56 0.29
21AY 30.56 31.10 27.21-40.42 32.97±2.67 8.11 0.37 -0.29
20WX 29.75 27.95 24.83-38.83 29.52±2.26 7.65 0.66 0.69
21WX 26.90 26.92 23.31-35.81 28.77±2.22 7.72 0.53 0.06
BLUE 25.36-37.66 29.98±2.16 7.20 0.56 0.11
周长SLP (mm) 20AY 21.13 21.39 20.05-25.40 22.14±0.91 4.13 0.54 0.33
21AY 22.88 22.77 21.36-26.70 23.39±1.02 4.38 0.43 -0.09
20WX 22.35 21.76 20.43-25.90 22.44±0.94 4.21 0.60 0.49
21WX 21.13 21.40 19.47-25.10 21.93±0.94 4.28 0.51 0.23
BLUE 20.60-25.51 22.47±0.90 3.99 0.58 0.24
长度SL (mm) 20AY 8.28 8.28 7.70-9.85 8.56±0.37 4.35 0.54 0.35
21AY 8.85 8.89 8.06-10.49 9.01±0.42 4.68 0.43 0.15
20WX 8.61 8.49 7.80-10.15 8.58±0.40 4.66 0.60 0.62
21WX 8.18 8.31 7.45-9.86 8.46±0.40 4.68 0.51 0.38
BLUE 7.87-10.01 8.67±0.37 4.29 0.57 0.37
宽度SW (mm) 20AY 4.39 4.42 4.15-5.19 4.64±0.18 3.96 0.27 -0.21
21AY 4.73 4.78 4.43-5.56 5.01±0.22 4.34 0.06 -0.26
20WX 4.74 4.55 4.31-5.25 4.73±0.18 3.89 0.21 -0.28
21WX 4.49 4.45 4.10-5.19 4.65±0.18 3.88 0.20 -0.07
BLUE 4.26-5.25 4.74±0.17 3.67 0.21 -0.20
长宽比LWR 20AY 1.89 1.88 1.68-2.05 1.86±0.06 3.40 0.17 0.18
21AY 1.88 1.87 1.60-2.04 1.81±0.07 3.93 0.04 0.14
20WX 1.82 1.87 1.62-2.02 1.82±0.07 3.98 -0.01 -0.17
21WX 1.83 1.88 1.66-2.05 1.83±0.07 3.82 0.18 -0.07
BLUE 1.66-2.03 1.83±0.06 3.49 0.11 0.02
圆度SR 20AY 0.75 0.73 0.70-0.78 0.74±0.01 1.82 -0.27 -0.16
21AY 0.73 0.75 0.70-0.80 0.76±0.01 1.97 -0.10 0.12
20WX 0.92 0.74 0.65-0.78 0.74±0.02 2.63 -0.63 1.60
21WX 0.82 0.74 0.71-0.79 0.75±0.07 2.05 -0.18 -0.13
BLUE 0.71-0.78 0.75±0.01 1.74 -0.17 0.01

Fig. 1

Statistical analysis of cottonseed related traits in RIL population a: Seed related traits acquisition; b: Principal component analysis of seed related traits; c-i: Histogram of seed related traits of cotton varieties"

Table 2

Analysis of variance of kernel size-related traits in RIL populations"

变异来源
Source of variance
基因型 Genotype 环境 Environment 基因型×环境 Genotype×Environment 误差平方和占比
Percentage of
squared error (%)
F
F value
百分比Percentage (%) P F
F value
百分比Percentage (%) P F
F value
百分比Percentage (%) P
籽指SI 15.74 46.53 <0.001 2180.02 37.95 <0.001 1.04 7.51 0.707 7.22
面积SLA 19.23 49.86 <0.001 1156.58 30.09 <0.001 1.12 8.70 0.036 10.28
周长SLP 23.90 58.95 <0.001 918.10 22.72 <0.001 1.09 8.07 0.082 9.78
长度SL 22.23 60.40 <0.001 694.81 18.94 <0.001 1.02 8.35 0.351 10.78
宽度SW 18.67 46.49 <0.001 1350.34 33.73 <0.001 1.28 9.56 <0.001 9.88
长宽比LWR 20.55 68.54 <0.001 155.23 5.19 <0.001 1.19 11.86 0.003 13.24
圆度SR 8.66 45.02 <0.001 232.47 12.12 <0.001 1.21 18.87 0.001 21.05

Fig. 2

Correlation analysis of cottonseed traits in RIL population"

Fig. 3

Mapping of population SNP genetic data a-b: Distribution of SNPs among 26 chromosomes; c: LD decay map of GWAS population; d: Principal component analysis of group structure"

Fig. 4

Associated SNPs and haplotypes on chromosome A07 for cotton seed related traits a: LD analysis of chromosome A07; b: Haplotypes of associated SNPs; c-i: Different related traits between haplotypes"

Fig. 5

Expressions of candidate genes associated to the adjacent developmental stages in cotton ovule"

Table 3

Candidate genes related to the seed size and shape in cotton"

候选基因
Candidate gene
基因注释
Gene annotation
表达量增加的时期(胚珠)
Stage with increasing expression (ovule)
Gh_A07G1760 CASP样蛋白5C2 CASP-like protein 5C2 开花后35 d 35 DPA
Gh_A07G1761 NA 开花后1 d 1 DPA
Gh_A07G1762 NA 开花后20 d 20 DPA
Gh_A07G1763 NA 开花后0 d 0 DPA
Gh_A07G1764 NA 开花后3 d 3 DPA
Gh_A07G1765 NA 开花后10 d 10 DPA
Gh_A07G1766 MYB家族转录因子APL MYB family transcription factor APL 开花后20 d 20 DPA
Gh_A07G1767 9次跨膜超家族蛋白成员 Transmembrane 9 superfamily member 全期Whole stage
Gh_A07G1768 NA 全期Whole stage
[1]
WANG L Y, HE S P, DIA S, SUN G F, LIU X Y, WANG X Y, PAN Z E, JIA Y H, WANG L R, PANG B Y, SUN X Z, SONG X L, DU X M. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Industrial Crops and Products, 2021, 159: 113028.
[2]
CHEN Z J, SCHEFFLER B E, DENNIS E, TRIPLETT B A, ZHANG T Z, GUO W Z, CHEN X Y, STELLY D M, RABINOWICZ P D, TOWN C D, ARIOLI T, BRUBAKER C, CANTRELL R G, LACAPE J M, ULLOA M, PENG C E, GINGLE A R, HAIGLER C H, PERCY R, SAHA S, WILKINS T, WRIGHT R J, VAN DEYNZE A, ZHU Y X, YU S X, ABDURAKHMONOV I, KATAGERI I, KUMAR P A, MEHBOOB U R, ZAFAR Y, YU J Z, KOHEL R J, WENDEL J F, PATERSON A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 2007, 145(4): 1303-1310.

doi: 10.1104/pp.107.107672 pmid: 18056866
[3]
GONG J W, KONG D P, LIU C W, LI P T, LIU P, XIAO X H, LIU R X, LU Q W, SHANG H H, SHI Y Z, LI J W, GE Q, LIU A Y, DENG X Y, FAN S M, PAN J T, CHEN Q J, YUAN Y L, GONG W K. Multi-environment evaluations across ecological regions reveal that the kernel oil content of cottonseed is equally determined by genotype and environment. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2529-2544.
[4]
覃珊. 胚中特异性下调细胞分裂素氧化酶基因(GhCKX)促进棉花种子发育[D]. 重庆: 西南大学, 2009.
QIN S. Ovule-specific down-regulation of GhCKX gene promoted seed development of cotton (Gossypium hirsutum L.)[D]. Chongqing: Southwest University, 2009. (in Chinese)
[5]
TURLEY R, CHAPMAN K. Ontogeny of cotton seeds: Gametogenesis, embryogenesis, germination, and seedling growth. Physiology of Cotton, 2010: 332-341.
[6]
吴璐瑶. 陆海群体种子大小相关性状QTL定位及候选基因鉴定[D]. 郑州: 郑州大学, 2022.
WU L Y. QTL mapping of seed size-related traits in land-sea populations and identification of candidate genes[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese)
[7]
SHAM P, BADER J S, CRAIG I, O'DONOVAN M, OWEN M. DNA Pooling: A tool for large-scale association studies. Nature Reviews Genetics, 2002, 3(11): 862-871.

doi: 10.1038/nrg930 pmid: 12415316
[8]
XU G Y, DENG K L, YU J J, LI Q L, LI L, XIANG A N, LING Y H, ZHANG C W, ZHAO F M. Genetic effects analysis of QTLs for rice grain size based on CSSL-Z403 and its dissected single and dual-segment substitution lines. International Journal of Molecular Sciences, 2023, 24(15): 12013.
[9]
SHI H, YUN P, ZHU Y, WANG L, LI P B, LOU G M, XIA D, ZHANG Q L, XIAO J H, LI X H, HE Y Q, GAO G J. Fine mapping of qTGW2b and qGL9, two minor QTL conferring grain size and weight in rice. Molecular Breeding, 2022, 42(11): 68.
[10]
JIANG A H, LIU J Q, GAO W R, MA R H, TAN P T, LIU F, ZHANG J. Construction of a genetic map and QTL mapping of seed size traits in soybean. Frontiers in Genetics, 2023, 14: 1248315.
[11]
LUO S L, JIA J, LIU R Q, WEI R Q, GUO Z B, CAI Z D, CHEN B, LIANG F W, XIA Q J, NIAN H, CHENG Y B. Identification of major QTLs for soybean seed size and seed weight traits using a RIL population in different environments. Frontiers in Plant Science, 2023, 13: 1094112.
[12]
张泽源, 李玥, 赵文莎, 顾晶晶, 张傲琰, 张海龙, 宋鹏博, 吴建辉, 张传量, 宋全昊, 简俊涛, 孙道杰, 王兴荣. 小麦粒重相关性状的QTL定位及分子标记的开发. 中国农业科学, 2023, 56(21): 4137-4149. doi:10.3864/j.issn.0578-1752.2023.21.001.
ZHANG Z Y, LI Y, ZHAO W S, GU J J, ZHANG A Y, ZHANG H L, SONG P B, WU J H, ZHANG C L, SONG Q H, JIAN J T, SUN D J, WANG X R. QTL Mapping and molecular marker development of traits related to grain weight in wheat. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149. doi:10.3864/j.issn.0578-1752.2023.21.001. (in Chinese)
[13]
ZUO J R, LI J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics, 2014, 48: 99-118.

doi: 10.1146/annurev-genet-120213-092138 pmid: 25149369
[14]
WANG W W, SUN Y, YANG P, CAI X Y, YANG L, MA J R, OU Y C, LIU T P, ALI I, LIU D J, ZHANG J, TENG Z H, GUO K, LIU D X, LIU F, ZHANG Z S. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019, 20(1): 599.
[15]
DUAN P G, XU J S, ZENG D L, ZHANG B L, GENG M F, ZHANG G Z, HUANG K, HUANG L J, XU R, GE S, QIAN Q, LI Y H. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant, 2017, 10(5): 685-694.
[16]
SI L Z, CHEN J Y, HUANG X H, GONG H, LUO J H, HOU Q Q, ZHOU T Y, LU T T, ZHU J J, SHANGGUAN Y Y, CHEN E W, GONG C X, ZHAO Q, JING Y F, ZHAO Y, LI Y, CUI L L, FAN D L, LU Y Q, WENG Q J, WANG Y C, ZHAN Q L, LIU K Y, WEI X H, AN K, AN G, HAN B. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48(4): 447-456.
[17]
BHAT J A, ADEBOYE K A, GANIE S A, BARMUKH R, HU D Z, VARSHNEY R K, YU D Y. Genome-wide association study, haplotype analysis, and genomic prediction reveal the genetic basis of yield-related traits in soybean (Glycine max L.). Frontiers in Genetics, 2022, 13: 953833.
[18]
YU H T, HAO Y C, LI M Y, DONG L H, CHE N X, WANG L J, SONG S, LIU Y N, KONG L R, SHI S B. Genetic architecture and candidate gene identification for grain size in bread wheat by GWAS. Frontiers in Plant Science, 2022, 13: 1072904.
[19]
LI X W, WANG M, ZHANG R Y, FANG H, FU X Y, YANG X H, LI J S. Genetic architecture of embryo size and related traits in maize. The Crop Journal, 2022, 10(1): 204-215.
[20]
马艳明, 娄鸿耀, 张胜军, 王威, 郭营, 倪中福, 刘杰. 新疆冬小麦品种资源主要产量性状全基因组关联分析. 中国农业科学, 2023, 56(18): 3487-3499. doi:10.3864/j.issn.0578-1752.2023.18.001.
MA Y M, LOU H Y, ZHANG S J, WANG W, GUO Y, NI Z F, LIU J. Genome-wide association analysis of yield traits in Xinjiang winter wheat germplasm. Scientia Agricultura Sinica, 2023, 56(18): 3487-3499. doi:10.3864/j.issn.0578-1752.2023.18.001. (in Chinese)
[21]
柯会锋, 孙正文, 王国宁, 孟成生, 吴立强. 棉籽大小与形状关联标记发掘及候选基因筛选. 中国农业科技导报, 2022, 24(11): 76-86.

doi: 10.13304/j.nykjdb.2022.0341
KE H F, SUN Z W, WANG G N, MENG C S, WU L Q. Mining and screening of associated markers and candidate genes related to seed size and shape in cotton. Journal of Agricultural Science and Technology, 2022, 24(11): 76-86. (in Chinese)

doi: 10.13304/j.nykjdb.2022.0341
[22]
ZHAO J, BAI W Q, ZENG Q W, SONG S Q, ZHANG M, LI X B, HOU L, XIAO Y H, LUO M, LI D M, LUO X Y, PEI Y. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Molecular Breeding, 2015, 35(2): 60.
[23]
肖杰, 高趁光, 王娜, 王怡, 许喜棠, 王成社, 谢彦周. 基于SmartGrain软件的小麦籽粒形态测量方法. 麦类作物学报, 2014, 34(11): 1572-1576.
XIAO J, GAO C G, WANG N, WANG Y, XU X T, WANG C S, XIE Y Z. A measuring method for seed shape of common wheat (Tritium aestivum) based on SmartGrain software. Journal of Triticeae Crops, 2014, 34(11): 1572-1576. (in Chinese)
[24]
NIU H, KUANG M, HUANG L Y, SHANG H H, YUAN Y L, GE Q. Lint percentage and boll weight QTLs in three excellent upland cotton (Gossypium hirsutum): ZR014121, CCRI60, and EZ60. BMC Plant Biology, 2023, 23(1): 179.
[25]
LI M, ZHANG Y W, ZHANG Z C, XIANG Y, LIU M H, ZHOU Y H, ZUO J F, ZHANG H Q, CHEN Y, ZHANG Y M. A compressed variance component mixed model for detecting QTNs, and QTN-by- environment and QTN-by-QTN interactions in genome-wide association studies. Molecular Plant, 2022, 15(4): 630-650.
[26]
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc.TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
[27]
YANG Z H, WU X, YANG Y M, QU Y W, XU J R, WU D P, LI D M, HAN Y P, ZHAO X, LI Y G. Identification of QTNs, QEIs interactions and genes for isoflavones in soybean seeds. Industrial Crops and Products, 2023, 197: 116631.
[28]
李蓓, 姚金波, 李燕, 朱守鸿, 房圣涛, 陈伟, 张永山. 棉花籽指数量性状位点(QTL)的初步定位. 中国棉花, 2022, 49(3): 5-8.

doi: 10.11963/cc20210192
LI B, YAO J B, LI Y, ZHU S H, FANG S T, CHEN W, ZHANG Y S. Preliminary mapping of quantitative trait loci (QTL) for seed index of cotton. China Cotton, 2022, 49(3): 5-8. (in Chinese)

doi: 10.11963/cc20210192
[29]
WU W R, LI W M, LU H R. Number of selfings required to produce a population of recombinant inbred lines. Journal of Fujian Agricultural University, 1997(2): 129-132. (in Chinese)
[30]
ZHANG J F, LU Y, ADRAGNA H, HUGHS E. Genetic improvement of new Mexico acala cotton germplasm and their genetic diversity. Crop Science, 2005, 45(6): 2363-2373.
[31]
WEST M A L, HARADA J J. Embryogenesis in higher plants: An overview. The Plant Cell, 1993, 5(10): 1361-1369.

pmid: 12271035
[32]
杨书贤. 棉花GhDA1-1AGhGW2-2D调控种子大小的功能鉴定[D]. 郑州: 郑州大学, 2021.
YANG S X. Functional verification ofGhDA1-1A and GhGW2-2D regulating seed size in cotton[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese)
[33]
CHLUBA-DE TAPIA J, DE TAPIA M, JÄGGIN V, EBERLE A N. Cloning of a human multispanning membrane protein cDNA: Evidence for a new protein family. Gene, 1997, 197(1/2): 195-204.
[34]
VERNAY A, LAMRABET O, PERRIN J, COSSON P. TM9SF 4 levels determine sorting of transmembrane domains in the early secretory pathway. Journal of Cell Science, 2018, 131(21): 220830.
[35]
钮洁, 李萌. 珙桐种子发育相关的MYB基因家族成员的鉴定及表达分析. 分子植物育种, 2022, 1-14. [2024-03-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20221130.1743.020.html.
NIU J, LI M. Identification and expression analysis of MYB gene family members associated with davidia involucrata baill. Molecular Plant Breeding, 2022, 1-14. [2024-03-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20221130.1743.020.html. in Chinese)
[36]
SHIN R, BURCH A Y, HUPPERT K A, TIWARI S B, MURPHY A S, GUILFOYLE T J, SCHACHTMAN D P. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. The Plant Cell, 2007, 19(8): 2440-2453.
[37]
CAO Y P, LI K, LI Y L, ZHAO X P, WANG L H. MYB transcription factors as regulators of secondary metabolism in plants. Biology, 2020, 9(3): 61.
[38]
AMBAWAT S, SHARMA P, YADAV N R, YADAV R C. MYB transcription factor genes as regulators for plant responses: An overview. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321.

doi: 10.1007/s12298-013-0179-1 pmid: 24431500
[39]
YI Y, LIN C, PENG X Y, ZHANG M S, WU J M, MENG C M, GE S C, LIU Y F, SU Y. R3-MYB proteins OsTCL1 and OsTCL2 modulate seed germination via dual pathways in rice. The Crop Journal, 2023, 11(6): 1752-1761.
[40]
ZHANG Y J, LIANG W Q, SHI J X, XU J, ZHANG D B. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2013, 55(11): 1166-1178.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[4] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[5] LI KaiLi, WEI YunXiao, CHONG ZhiLi, MENG ZhiGang, WANG Yuan, LIANG ChengZhen, CHEN QuanJia, ZHANG Rui. Red and Blue Light Promotes Cotton Callus Induction and Proliferation [J]. Scientia Agricultura Sinica, 2024, 57(4): 638-649.
[6] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[7] ZHANG YongLi, ZHANG Ning, XU Jiao, XU DouDou, CHENG Fang, ZHANG ChengLong, WU BiBo, GONG YangCang, HE YunXin, WEI ShangZhi, TU XiaoJu, LIU AiYu, ZHOU ZhongHua. Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(22): 4444-4458.
[8] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[9] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[10] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[11] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[12] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[13] ZHAO WeiSong, GUO QingGang, CUI NaQi, LU XiuYun, LI SheZeng, MA Ping. Effects of Exogenous Addition of L-Proline on the Occurrence of Cotton Verticillium Wilt and Its Soil Microbial Community in Rhizosphere [J]. Scientia Agricultura Sinica, 2024, 57(11): 2143-2160.
[14] LOU Hui, ZHU JinCheng, HAN ZeGang, ZHANG Wei. Identification and Functional Analysis of the 5-Oxoprolinase Genes in Fusarium oxysporum [J]. Scientia Agricultura Sinica, 2024, 57(10): 1915-1929.
[15] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!