Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3719-3729.doi: 10.3864/j.issn.0578-1752.2024.19.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region

MAI ChunYan1,3(), LIU YiKe2, LIU HongWei3, LI HongJie3, YANG Li3, WU PeiPei3, ZHOU Yang3(), ZHANG HongJun3()   

  1. 1 Management Committee of Xinxiang Experimental Station, Chinese Academy of Agricultural Sciences, Xinxiang 453731, Henan
    2 Food Institute Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Beijing 100081
  • Received:2024-03-20 Accepted:2024-06-03 Online:2024-10-01 Published:2024-10-09
  • Contact: ZHOU Yang, ZHANG HongJun

Abstract:

【Objective】To develop high-yielding and FHB-resistant wheat cultivars in the Yellow and Huai River Valley Winter Wheat Zone (YHWZ), simultaneously improving of yield and resistance was conducted in this study.【Method】Using the elite parent dwarf male sterile (DMS) wheat combined with double haploid (DH) technology and molecular marker assisted selection (MAS) of Fhb1 (DMS wheat molecular breeding strategy), DH lines were developed using Sumai 3 as a donor (FHB- resistant parent) and Zhoumai 16’s DMS wheat, Zhoumai 16, Lunxuan 136 and Lunxuan 6 as recipient parents. The agronomic traits (plant height, heading date, yield, etc.) and FHB resistance were evaluated for these DH lines.【Result】A total of 51 Fhb1-DH lines characterized by facultative growth habit, semi-dwarf and white grains were selected using this strategy. The average number of infected spikelets of 51 lines were 5.7 and 7.3 at the 2020Henan and 2020Beijing sites, respectively, and average disease severities were 27.7% and 35.2%, which is not different from moderately susceptible control Huaimai 20. There was no significant difference in grain yield per hm2 between the mean performance of the 51 lines and the control Zhoumai 18. DH116 (Lunxuan 20), a promising line from the 51 lines, was further evaluated for FHB resistance and agronomic traits in multiple environments. The resistance of Lunxuan 20 to FHB was significantly improved, and no significant difference was found in the number of infected spikelets or disease severity between Lunxuan 20 and moderately or highly resistant controls at four sites. Lunxuan 20 showed slightly greater grain yield per hm2, and significantly higher number of spikelets per spike and thousand grain weight (P<0.05), earlier heading date and shorter plant height (P<0.05) than the control Zhoumai 18 in two environments. The grain yield per hm2 of Lunxuan 20 was 4.6% and 1.7% higher than the control cultivar Bainong 207 in the two list trials of Henan Province, and 3.5% higher than Bainong 207 in the demonstration trial. Resistance of Lunxuan 20 to FHB ranged from moderate susceptibility to moderate resistance in two-year list tests using the single-floret injection and spray inoculation methods. Lunxuan 20 carries the semi-dwarfing gene Rht-D1b at the Rht-D1 locus, and the recessive alleles vrn-A1, vrn-B1 and vrn-D1 associated with the winter growth habit at the Vrn-A1, Vrn-B1 and Vrn-D1 loci. Based on the wheat 660K single nucleotide polymorphisms (SNPs), 64.7% of the SNPs were shared by Lunxuan 20 and its parents, and the direct genetic contributions of Zhoumai 16, Lunxuan 136, Lunxuan 6 and Sumai 3 to Lunxuan 20 were 69.8%, 12.6%, 6.1% and 11.5%, respectively.【Conclusion】A high-yielding and FHB-resistant wheat cultivar Lunxuan 20 was bred using the DMS wheat molecular breeding strategy.

Key words: wheat, Fusarium head blight, Fhb1, dwarf sterile wheat, double haploid, Yellow and Huai River Valley Winter Wheat Zone

Fig. 1

Dwarfing male sterile (DMS) wheat-Zhoumai 16 and breeding procedure of Lunxuan 20 A: Plants (Zhoumai 16, DMS wheat-Zhoumai 16 and normal male fertile (NMF) plant, from left to right, the same as below); B: Floret; C: Kernel (15 days after flowering); D: Breeding procedure of Lunxuan 20. MAS: Marker-assisted selection; DH: Double haploid; FHB: Fusarium head blight"

Table 1

Fusarium head blight (FHB) resistance of fifty-one DH lines carrying Fhb1 gene"

类别
Type
2020河南2020Henan 2020北京2020Beijing
病小穗数NDS 严重度DS (%) 病小穗数NDS 严重度DS (%)
平均值±标准差
Mean±SD
范围
Range
平均值±标准差
Mean±SD
范围
Range
平均值±标准差
Mean±SD
范围
Range
平均值±标准差
Mean±SD
范围
Range
对照Controls
苏麦3号Sumai 3 1.3±0.6d 1.0-2.0 6.0±1.7d 4.6-9.4 1.6±1.0d 0.5-5.8 8.1±4.8d 2.4-29.1
扬麦158 Yangmai 158 4.0±0.7c 3.3-4.7 17.5±3.1c 14.0-21.0 3.3±0.7c 1.3-6.5 17.5±3.5c 6.7-35.1
淮麦20 Huaimai 20 5.8±3.7b 2.4-14.4 29.1±19.2b 12.6-74.9 7.0±2.2b 3.7-10.8 40.0±9.5b 20.6-61.0
周麦16 Zhoumai 16 11.1±3.7a 6.9-17.0 50.2±18.2a 29.2-82.3 13.8±2.7a 6.9-21.3 64.6±12.4a 31.6-95.5
51份Fhb1系51 Fhb1-lines 5.7±3.7b 1.2-18.1 27.7±17.5b 6.3-77.2 7.3±1.8b 0.7-14.6 35.2±5.6b 3.6-75.0

Table 2

Performances of heading date, plant height and grain yield of DH lines carrying Fhb1 gene"

类别
Type
抽穗期Heading date (d) 株高Plant height (cm) 产量Grain yield (t·hm-2)
平均值±标准差
Mean±SD
范围
Range
平均值±标准差
Mean±SD
范围
Range
平均值±标准差
Mean±SD
范围
Range
受体亲本Recipient parents
周麦16 Zhoumai 16 179.0±0.0b 179.0-179.0 75.3±1.5d 74.0-77.0 8.1±0.2b 7.9-8.3
轮选136 Lunxuan 136 178.3±0.6b 178.0-179.0 81.0±2.0c 79.0-83.0 8.8±0.3a 8.6-9.1
轮选6号Lunxuan 6 177.7±0.6b 177.0-178.0 72.6±0.7e 72.0-74.0 8.7±0.2ab 8.6-8.9
供体Donor
苏麦3号Sumai 3 174.0±1.0c 173.0-175.0 126.7±3.5a 123.0-130.0 3.8±0.4c 3.5-4.2
对照Control
周麦18 Zhoumai 18 180.7±0.6a 180.0-181.0 84.7±2.1b 83.0-87.0 8.5±0.1ab 8.4-8.6
51份Fhb1系51 Fhb1-lines 178.2±2.4b 176.0-180.0 80.7±4.2bc 74.0-83.0 8.3±0.9ab 5.7-9.9

Fig. 2

Performances of FHB resistance of Lunxuan 20 and control cultivars A-E: Resistance to FHB of Sumai 3 (A), Yangmai 158 (B), Huaimai 20 (C), Zhoumai 16 (D) and Lunxuan 20 (E) evaluated by single-floret inoculation in 2021Henan. F-I: Performances of FHB resistance of Lunxuan 20 and control cultivars at the 2021Henan (F), 2021Beijing (G), 2022Henan (H) and 2022Beijing (I) sites. Different letters indicate significant differences at level 0.05. The same as below"

Fig. 3

Comparison of agronomic traits between Lunxuan 20 and control Zhoumai 18"

Fig. 4

Performances of plot (A), spike (B) and kernel (C) of Lunxuan 20"

Table 3

Agronomic traits and FHB resistance of Lunxuan 20 in the list and demonstration trials"

年份
Year
生育期
GP (d)
株高
PH (cm)
每平方米穗数
SN
每穗粒数
KNPS
千粒重
KW (g)
每公顷产量
GY (t)
比对照增产
CK+(%)
赤霉病抗性
FHB resistance
2021区试 2021 LT 221.4 81.8 521.7 34.8 49.8 7.1 4.6 中抗MR
2022区试 2022 LT 215.9 74.9 541.2 34.9 50.6 8.0 1.7 中感MS
平均 Mean 218.7 78.4 531.5 34.9 50.2 7.6 3.2 -
2023生试 2023 DT 221.2 76.5 548.7 35.3 50.1 7.5 3.5 -

Table 4

Allelic variation at the loci associated with plant height and vernalization identified in Lunxuan 20 and its parents"

亲本/品种Parent/Cultivar Rht-B1 Rht-D1 Vrn-A1 Vrn-B1 Vrn-D1
亲本Parents
周麦16 Zhoumai 16 Rht-B1a Rht-D1b vrn-A1 vrn-B1 vrn-D1
轮选136 Lunxuan 136 Rht-B1a Rht-D1b vrn-A1 vrn-B1 vrn-D1
轮选6号Lunxuan 6 Rht-B1a Rht-D1b vrn-A1 vrn-B1 vrn-D1
苏麦3号Sumai 3 Rht-B1a Rht-D1a vrn-A1 vrn-B1 Vrn-D1a
品种Cultivar
轮选20 Lunxun 20 Rht-B1a Rht-D1b vrn-A1 vrn-B1 vrn-D1

Fig. 5

Genomic composition of Lunxuan 20"

[1]
GAO F M, MA D Y, YIN G H, RASHEED A, DONG Y, XIAO Y G, XIA X C, WU X X, HE Z H. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern Yellow and Huai Valley since 1950. Crop Science, 2017, 57(2): 760-773.
[2]
MA Z Q, XIE Q, LI G Q, JIA H Y, ZHOU J Y, KONG Z X, LI N, YUAN Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 2020, 133(5): 1541-1568.
[3]
张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44(4): 505-511.
ZHANG H J, SU Z Q, BAI G H, ZHANG X, MA H X, LI T, DENG Y, MAI C Y, YU L Q, LIU H W, YANG L, LI H J, ZHOU Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai River Valley Winter Wheat Region with functional marker selection of Fhb1 gene. Acta Agronomica Sinica, 2018, 44(4): 505-511. (in Chinese)
[4]
张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40(10): 858-873.
ZHANG A M, YANG W L, LI X, SUN J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas, 2018, 40(10): 858-873. (in Chinese)
[5]
DAI X R, HUANG Y W, XUE X H, YU S, LI T, LIU H W, YANG L, ZHOU Y, LI H J, ZHANG H J. Effects of Fhb1, Fhb2 and Fhb5on Fusarium head blight resistance and the development of promising lines in winter wheat. International Journal of Molecular Sciences, 2022, 23(23): 15047.
[6]
马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用. 作物学报, 2022, 48(3): 747-758.

doi: 10.3724/SP.J.1006.2022.11019
MA H B, LIU D T, FENG G H, WANG J, ZHU X C, ZHANG H Y, LIU J, LIU L W, YI Y. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai River Valley Winter Wheat Region of China. Acta Agronomica Sinica, 2022, 48(3): 747-758. (in Chinese)
[7]
代旭冉, 黄义文, 李腾, 邓云, 苏研, 买春艳, 于立强, 于广军, 李辉利, 刘宏伟, 杨丽, 周阳, 张宏军, 李洪杰. 利用Fhb1基因分子标记辅助回交育种法改良黄淮冬小麦赤霉病抗性. 麦类作物学报, 2021, 41(9): 1081-1089.
DAI X R, HUANG Y W, LI T, DENG Y, SU Y, MAI C Y, YU L Q, YU G J, LI H L, LIU H W, YANG L, ZHOU Y, ZHANG H J, LI H J. Improvement of resistance to Fusarium head blight by Fhb1molecular marker-assisted backcrossing in the Huang-Huai River Valley Winter Wheat Region. Journal of Triticeae Crops, 2021, 41(9): 1081-1089. (in Chinese)
[8]
董冬. 小麦SSR标记辅助遗传背景选择技术研究[D]. 北京: 中国农业科学院, 2011.
DONG D. Studies on SSR marker assisted selection for genetic background in wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[9]
周阳, 张宏军, 王晨阳, 李洪杰, 买春艳, 杨丽, 刘宏伟, 于立强, 于广军, 刘秉华. 矮败小麦技术体系在黄淮冬麦区南片抗赤霉病育种中的应用. 作物学报, 2022, 48(11): 2683-2690.

doi: 10.3724/SP.J.1006.2022.21017
ZHOU Y, ZHANG H J, WANG C Y, LI H J, MAI C Y, YANG L, LIU H W, YU L Q, YU G J, LIU B H. Application of dwarf-male-sterile wheat in breeding program for Fusarium head blight resistance in Southern Yellow-Huai River Valleys Winter Wheat Region. Acta Agronomica Sinica, 2022, 48(11): 2683-2690. (in Chinese)
[10]
LIU B H, YANG L. Breeding of dwarfing-sterile wheat and its potential values in wheat breeding. Chinese Science Bulletin, 1991, 36(18): 1562-1564.
[11]
XIE G Q, ZHANG M C, CHAKRABORTY S, LIU C J. The effect of 3BS locus of Sumai 3 on Fusarium head blight resistance in Australian wheats. Australian Journal of Experimental Agriculture, 2007, 47(5): 603-607.
[12]
ZHU Z W, HAO Y F, MERGOUM M, BAI G H, HUMPHREYS G, CLOUTIER S, XIA X C, HE Z H. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal, 2019, 7(6): 730-738.
[13]
SU Z Q, BERNARDO A, TIAN B, CHEN H, WANG S, MA H X, CAI S B, LIU D T, ZHANG D D, LI T, TRICK H, ST AMAND P, YU J M, ZHANG Z Y, BAI G H. A deletion mutation in TaHRC confers Fhb1resistance to Fusarium head blight in wheat. Nature Genetics, 2019, 51(7): 1099-1105.
[14]
LI G Q, ZHOU J Y, JIA H Y, GAO Z X, FAN M, LUO Y J, ZHAO P T, XUE S L, LI N, YUAN Y, MA S W, KONG Z X, JIA L, AN X, JIANG G, LIU W X, CAO W J, ZHANG R R, FAN J C, XU X W, LIU Y F, KONG Q Q, ZHENG S H, WANG Y, QIN B, CAO S Y, DING Y X, SHI J X, YAN H S, WANG X, RAN C F, MA Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019, 51(7): 1106-1112.
[15]
许豪, 王益林, 于士男, 郝晓鹏, 高铭爽, 郑继周, 唐建卫, 李巧云, 高艳, 董纯豪, 袁雨豪, 殷贵鸿. 河南省抗赤霉病小麦新品种基因型、丰产性、农艺与品质性状测定. 河南农业大学学报, 2023, 57(2): 186-196.
XU H, WANG Y L, YU S N, HAO X P, GAO M S, ZHENG J Z, TANG J W, LI Q Y, GAO Y, DONG C H, YUAN Y H, YIN G H. Determination of genotype, high yield, agronomic and quality traits of new wheat varieties resistant to Fusarium head blight in Henan Province. Journal of Henan Agricultural University, 2023, 57(2): 186-196. (in Chinese)
[16]
张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299. 作物学报, 2022, 48(9): 2221-2227.
ZHANG Y D, LI G Q, KONG Z X, WANG Y Q, LI X L, RU Z G, JIA H Y, MA Z Q. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding. Acta Agronomica Sinica, 2022, 48(9): 2221-2227. (in Chinese)
[17]
GUO X R, SHI Q H, LIU Y, SU H D, ZHANG J, WANG M, WANG C H, WANG J, ZHANG K B, FU S L, HU X J, JING D L, WANG Z, LI J B, ZHANG P Z, LIU C, HAN F P. Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. The Plant Journal, 2023, 114(6): 1475-1489.
[18]
CUTHBERT P A, SOMERS D J, THOMAS J, CLOUTIER S, BRULÉ-BABEL A. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 112(8): 1465-1472.
[19]
SU Z Q, JIN S J, ZHANG D D, BAI G H. Development and validation of diagnostic markers for Fhb1region, a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 2018, 131(11): 2371-2380.
[20]
LI T, ZHANG H J, HUANG Y W, SU Z Q, DENG Y, LIU H W, MAI C Y, YU G J, LI H L, YU L Q, ZHU T Q, YANG L, LI H J, ZHOU Y. Effects of the Fhb1gene on Fusarium head blight resistance and agronomic traits of winter wheat. The Crop Journal, 2019, 7(6): 799-808.
[21]
BAI G, KOLB F L, SHANER G, DOMIER L L. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology, 1999, 89(4): 343-348.

doi: 10.1094/PHYTO.1999.89.4.343 pmid: 18944781
[22]
MENG L Z, LIU H W, YANG L, MAI C Y, YU L Q, LI H J, ZHANG H J, ZHOU Y. Effects of the Vrn-D1b allele associated with facultative growth habit on agronomic traits in common wheat. Euphytica, 2016, 211(1): 113-122.
[23]
ZHANG H J, XUE X H, GUO J, HUANG Y W, DAI X R, LI T, HU J H, QU Y F, YU L Q, MAI C Y, LIU H W, YANG L, ZHOU Y, LI H J. Association of the recessive allele vrn-D1with winter frost tolerance in bread wheat. Frontiers in Plant Science, 2022, 13: 879768.
[24]
SONG L Q, WANG R H, YANG X J, ZHANG A M, LIU D C. Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 2023, 13(3): 642.
[25]
ELIBY S, BEKKUZHINA S, KISHCHENKO O, ISKAKOVA G, KYLYSHBAYEVA G, JATAYEV S, SOOLE K, LANGRIDGE P, BORISJUK N, SHAVRUKOV Y. Developments and prospects for doubled haploid wheat. Biotechnology Advances, 2022, 60: 108007.
[26]
REN J J, WU P H, TRAMPE B, TIAN X L, LÜBBERSTEDT T, CHEN S J. Novel technologies in doubled haploid line development. Plant Biotechnology Journal, 2017, 15(11): 1361-1370.

doi: 10.1111/pbi.12805 pmid: 28796421
[27]
SERAJAZARI M, TORKAMANEH D, GORDON E, LEE E, BOOKER H, PAULS K P, NAVABI A. Identification of Fusarium head blight resistance markers in a genome-wide association study of CIMMYT spring synthetic hexaploid derived wheat lines. BMC Plant Biology, 2023, 23(1): 290.
[28]
WANG H W, SUN S L, GE W Y, ZHAO L F, HOU B Q, WANG K, LYU Z F, CHEN L Y, XU S S, GUO J, LI M, SU P S, LI X F, WANG G P, BO C Y, FANG X J, ZHUANG W W, CHENG X X, WU J W, DONG L H, CHEN W Y, LI W, XIAO G L, ZHAO J X, HAO Y C, XU Y, GAO Y, LIU W J, LIU Y H, YIN H Y, LI J Z, LI X, ZHAO Y, WANG X Q, NI F, MA X, LI A F, XU S S, BAI G H, NEVO E, GAO C X, OHM H, KONG L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368(6493): eaba5435.
[29]
ZHANG Y D, YANG Z B, MA H C, HUANG L Y, DING F, DU Y Y, JIA H Y, LI G Q, KONG Z X, RAN C F, GU Z Z, MA Z Q. Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Frontiers in Plant Science, 2021, 12: 694023.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!