Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (15): 3053-3070.doi: 10.3864/j.issn.0578-1752.2024.15.011

• HORTICULTURE • Previous Articles     Next Articles

Identification of Key Genes in the Flavonoid Synthesis Pathway of Meconopsis integrifolia Based on WGCNA

CHEN XiaoJuan1(), WANG HaiJu1, WANG FuMin1, YONG QingQing1, HUANG ShunMan1, QU Yan1,2,3()   

  1. 1 College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224
    2 Southwest Engineering and Technology Research Center of Landscape Architecture, National Forestry and Grassland Administration, Kunming 650224
    3 Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Kunming 650224
  • Received:2023-12-29 Accepted:2024-04-22 Online:2024-08-05 Published:2024-08-05
  • Contact: QU Yan

Abstract:

Objective】Flavonoids are known for their anti-inflammatory, anti-cancer, and antibacterial properties, and are one of the main medicinal components of Meconopsis integrifolia. By analyzing the spatial metabolome information and transcriptome data from various parts (roots, stems, leaves and petals) of M. integrifolia, the key genes regulating the flavonoid synthesis could be excavated. This research could provide valuable insights into the mechanism underlying flavonoids synthesis in M. integrifolia, paving the way for genetic breeding aimed at enhancing flavonoid content. 【Method】Transcriptome sequencing was conducted on the root, stem, leave and petal of M. integrifolia to analyze the distribution of flavonoids across different parts using spatial metabolomic data. The weighted gene co-expression network analysis (WGCNA) was employed to identify key modules and key genes closely related to flavonoid synthesis. To validate the reliability of the transcriptome data, 12 genes were selected for qRT-PCR analysis. 【Result】Flavonoids accumulation in M. integrifolia varied across different parts, with petals being the primary site of accumulation, where 8 main flavonoids were identified. Transcriptome sequencing revealed a total of 20 085 expressed genes, among which 286 genes expressed were exclusively expressed in flowers, showing 3.6-4.2 times more expression than that in other plant parts. Using WGCNA to categorize highly expressed differential genes, a total of 14 co-expression modules were identified, and the key modules, including MEturquoise and MEgreen, were significantly associated with 8 main flavonoids (P<0.05). KEGG analysis demonstrated that the genes within these two modules were primarily enriched in metabolism-related pathways, with some genes enriched in pathways related to flavonoid synthesis. MEturquoise and MEgreen comprised 18 and 6 genes related to flavonoid synthesis, respectively, and screened 14 core structural genes (5 CHSs, 2 HIDHs, 2 CCoAOMTs and FLS, CYP75B1, CHI, HCT, and CYP73A) and one transcription factor HB2, which were predominantly highly expressed in petals or stems. The consistent gene expression trends between qRT-PCR and transcriptome data were observed, which showed that the analysis results derived from the transcriptome data were reliable. 【Conclusion】The accumulation of flavonoids and gene expression patterns in different organs of M. integrifolia varied significantly, and 14 core structural genes and one transcription factor were screened to be closely related to the accumulation of flavonoids across different organs. These genes might play a key role in regulating the synthesis and differential accumulation of flavonoids in different organs of M. integrifolia.

Key words: Meconopsis integrifolia, flavonoids, medicinal, key genes, WGCNA

Fig. 1

Sampling site and spatial metabolome cleavage of M. integrifolia The red horizontal lines represent the spatial metabolome cleavage mode and cleavage site"

Fig. 2

Flow chart of the embedding flow chart of M. integrifolia samples"

Table 1

qRT-PCR validation primers"

基因/基因ID Gene/Gene ID 上游引物 Forward primer sequence (5′-3′) 下游引物 Reverse primer sequence (5′-3′)
CHS5 GATCATCGGAGCAGACCCTG ACCAGGATGAGCGATCCAGA
CHS8 TCATCGGAGCAGACCCTGAT TACAGTGGAGTGGGCTTTGG
CYP75B1 TACAGTGGAGTGGGCTTTGG GGAAGGGAAAGTGGCGTTGA
FLS GTTGCCGCTCGAAGAAAAGG CTCCTCGTTTGCTTCCCTGT
CCoAOMT1 CAGCAATCGACGTTAGTCGG CGATGCCACCAACTCTCAAC
HIDH1 GGCAGCGTTAAACTGGGTTC TTCAGGGTTAGTTCCGGCTC
HB2 CTTCTCGGAGCGGTGGTAAT ACTTGGTCCTTGCCCTTCTG
HCT3 CTGATGGAGCGTCTGGTCTC AGTGTGTTGAGCTGGTCTCG
QYY_transcript_10050 TGACGCACAAATTGCATCCG TCACAACAGCATCTCCGTCC
QYY_transcript_10042 CAGGTCGTTTTGGTGTGACG CTTTGCCCTGGGATTGACCT
QYY_transcript_10301 TGACGGAAGCACTCAGGATG CTCCACAGCAGCCTTTGTTG
QYY_transcript_10319 TGGCCAAGACATTTGAGGGT GACACCTCCAACTACGGCAT
GAPDH TTCCGTGTTCCTACCGTTGA TCCCTTCATCTTACCCTCGG

Fig. 3

Heat map peak intensities of 8 flavonoids in different parts of M. integrifolia The relative quantitative values of each substance in different tissues are expressed by the peak intensity values of the target peaks normalized by the Root Mean Square, with higher values indicating higher contents of the target in this region"

Table 2

Quality information of transcriptome sequencing of M. integrifolia"

样品
Sample
原始序列
Raw reads
过滤序列
Clean reads
过滤碱基
Clean base (G)
错误率
Error rate (%)
Q30
(%)
GC含量
GC content (%)
QYY1-P 48823172 47635926 7.15 0.03 92.59 41.23
QYY2-P 46197126 44753484 6.71 0.03 92.39 41.18
QYY3-P 48061136 46960540 7.04 0.03 92.97 41.03
QYY1-R 47342122 45955834 6.89 0.03 92.82 41.81
QYY2-R 46427954 45210284 6.78 0.03 93.45 41.65
QYY3-R 47136742 45743182 6.86 0.03 93.42 42.13
QYY1-S 47689492 46405540 6.96 0.03 93.03 41.98
QYY2-S 47008018 45681508 6.85 0.03 92.3 41.62
QYY3-S 48115292 46505116 6.98 0.03 93.61 41.83
QYY1-L 43879048 42694332 6.4 0.03 93.92 42.89
QYY2-L 47482914 46435172 6.97 0.03 93.46 42.1
QYY3-L 47789072 46216224 6.93 0.03 93.27 42.7
总计 Total 565952088 550197142 82.52 - - -

Table 3

Annotations of transcripts in public databases"

数据库
Database
注释到的基因数量
Number of genes
占比
Percentage (%)
KEGG 16322 81.26
Nr 18891 94.06
SwissProt 16369 81.50
TrEMBL 19109 95.14
KOG 12894 64.20
GO 12894 64.20
Pfam 17683 88.04
至少在一个数据库中被注释
Annotated in at least one Database
20085 100.00
合计Unigenes数 Total Unigenes 20085 100.00

Fig. 4

PCA analysis of genes expressed in different parts of M. integrifolia"

Fig. 5

Differentially expressed genes in different parts of M. integrifolia A; Venn diagram of genes expressed in different parts of M. integrifolia and histogram of the total number of genes in each part of M. integrifolia; B: Comparative differentially expressed gene analysis in different parts of M. integrifolia"

Fig. 6

KEGG classification of differentially expressed genes (DEGs) significantly enriched (P<0.05) in M. integrifolia"

Fig. 7

Modules of gene co-expression in different parts of M. integrifolia A. Division of gene co-expression modules; B. Number of genes in each module; C. Number of genes in each module"

Fig. 8

Heat map of correlation between gene modules and major flavonoid components A: Cathayanon B; B: Pelargonidin 3-(6-p-coumaroyl) glucoside; C: Bilobetin; D: Quercetin-3-O-(6''-acetyl) glucosyl-(1→3)-Galactoside; E: Delphinidin-3,5- diglucoside; F: 4',4''',5,5'',7,7''-Hexahydroxy-3', 6''-biflavanone; G: 7,4'- Di-O-methylapigenin; H: Quercetin-3-O-(6''-O-feruloyl) glucoside-7-O-(6''- malonyl) glucoside"

Fig. 9

KEGG pathways in the top 20 enriched genes in the module MEturquoise and MEgreen"

Table 4

Structural genes associated with flavonoid synthesis within MEturquoise and MEgreen in the module"

模块 Module 基因 Gene 基因 Gene ID 基因 Gene 基因 Gene ID
MEturquoise CHS1 QYY_transcript_7862 CYP75B1 QYY_transcript_13636
CHS2 QYY_transcript_16509 HCT1 QYY_transcript_16740
CHS3 QYY_transcript_17459 FLS QYY_transcript_21239
CHS4 QYY_transcript_24260 CCoAOMT1 QYY_transcript_23710
CHS5 QYY_transcript_18432 HIDH1 QYY_transcript_21081
CHS6 QYY_transcript_19383 HIDH2 QYY_transcript_20408
CHS7 QYY_transcript_17766 HIDH3 QYY_transcript_21805
CHS8 QYY_transcript_18116 F3H QYY_transcript_19623
CHS9 QYY_transcript_20289 CHI1 QYY_transcript_23390
MEgreen CHI2 QYY_transcript_21688 CCoAOMT2 QYY_transcript_22442
HCT2 QYY_transcript_16576 CCoAOMT3 QYY_transcript_21971
HCT3 QYY_transcript_17410 CYP73A QYY_transcript_12639

Fig. 10

Hub genes interaction network diagram A: Module MEturquoise hub gene interaction network diagram; B: Expression of hub genes in module Meturquoise; C: Module MEgreen hub gene interaction network diagram; D: Expression of hub genes in module MEgreen. The darker the red color in Figures A and C, the higher the gene connectivity"

Table 5

Functional annotation of hub genes within the nonflavonoid synthesis pathway"

核心基因
Hub gene
核心基因在拟南芥的
同源基因
Hub gene in A. thaliana
基因功能
Gene function
QYY_transcript_8026 AT2G34410.2 编码已知参与新型隐球菌多糖O-乙酰化的蛋白质Cas1p的同源物。该蛋白质在高尔基体中表达,并参与次生壁生物合成过程中木聚糖的乙酰化
Encodes a homolog of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. The protein is expressed in the Golgi and is involved in the acetylation of xylan during secondary wall biosynthesis
QYY_transcript_7230 AT5G03760.1 编码农杆菌介导的植物遗传转化所需的β-甘露聚糖合酶涉及细菌和宿主植物之间的复杂相互作用。3' UTR参与转录调控,该基因在根的伸长区表达
Encodes a beta-mannan synthase that is required for agrobacterium-mediated plant genetic transformation involves a complex interaction between the bacterium and the host plant. 3' UTR is involved in transcriptional regulation and the gene is expressed in the elongation zone of the root
QYY_transcript_22662 AT4G05530.1 编码短链脱氢酶/还原酶(SDR)酶家族的过氧化物酶体成员。IBR1功能的丧失导致对吲哚-3-丁酸的抗性增加,而不影响植物对IAA、NAA和2,4-D的反应。该酶可能负责催化IBA向IAA的β氧化样转化中的脱氢步骤
Encodes a peroxisomal member of the short-chain dehydrogenase/reductase (SDR) family of enzymes. Loss of IBR1 function causes increased resistance to indole-3-butyric acid without affecting plant responses to IAA, NAA, and 2,4-D. This enzyme may be responsible for catalyzing a dehydrogenation step in the beta- oxidation-like conversion of IBA to IAA
QYY_transcript_20137 AT4G24330.1 假设性蛋白质(DUF1682)
Hypothetical protein (DUF1682); (source:Araport11)
QYY_transcript_21126 AT5G17770.1 编码NADH:细胞色素(Cyt)b5还原酶,该酶对NADH对重组Cyt b5(AtB5-A)的还原具有严格的特异性,而当NADPH用作电子供体时,未观察到Cyt b5还原
Encodes NADH:cytochrome (Cyt) b5 reductase that displayed strict specificity to NADH for the reduction of a recombinant Cyt b5 (AtB5-A), whereas no Cyt b5 reduction was observed when NADPH was used as the electron donor
QYY_transcript_7030 - -

Table 6

Key transcription factor within two key modules"

模块
Module
基因
Gene
基因ID
Gene ID
转录因子家族
Transcription factor family
功能
Function
MEturquoise COL13 QYY_transcript_15942 C2C2-CO-like 拟南芥:与HY5COL3形成HY5-COL3-COL13模块调控拟南芥下胚轴的伸长[22]
A. thaliana: COL13 forms a HY5-COL3-COL13 module with HY5 and COL3 to regulate the elongation of hypocotyls in A. thaliana
COL5-1 QYY_transcript_19756 C2C2-CO-like 拟南芥:过表达COL5可诱导短日照生长拟南芥开花[23]
A. thaliana: Overexpression of COL5 can induce short-day growth of A. thaliana
COL5-2 QYY_transcript_20889 C2C2-CO-like 拟南芥:过表达COL5可诱导短日照生长拟南芥开花[23]
A. thaliana: Overexpression of COL5 can induce short-day growth of A. thaliana
HB2 QYY_transcript_18216 HB-HD-ZIP 拟南芥:负向调控茶树花青素合成酶基因CsANS,同时AtHB2可能与AtPAP1在结合AtTTG1上存在竞争,进而影响AtPAP1参与的类黄酮合成[24]
A. thaliana: AtHB2 negatively regulates the tea tree anthocyanin synthetase gene CsANS, and AtHB2 may compete with AtPAP1 for binding to AtTTG1, which in turn affects the flavonoid synthesis involved in AtPAP1
MYBH QYY_transcript_19945 MYB-related 拟南芥:通过增强生长素积累来调节下胚轴伸长[25]
A. thaliana: MYBH regulates hypocotyl elongation by enhancing auxin accumulation
NAC22 QYY_transcript_20070 NAC 水稻:提高对干旱和盐害的耐性[26]
O. Sativa: Increased tolerance to drought and salinity
BBX19 QYY_transcript_22992 DBB 拟南芥:BBX19PRR相互作用以协调昼夜节律[27]
A. thaliana: BBX19 interacts with PRR to harmonize circadian rhythms
ARF6 QYY_transcript_3258 B3-ARF 拟南芥:ARF6ARF8共同促进茉莉酸的产生和花的成熟[28]
A. thaliana: ARF6 and ARF8 work together to promote the production of jasmonic acid and the maturation of flowers
PRR95 QYY_transcript_6993 Pseudo ARR-B 水稻:作为转录抑制因子负调控编码叶绿体定位的Mg2+转运蛋白的OsMGT3的节律表达[29]
O. sativa: As a transcriptional repressor, it negatively regulates the rhythmic expression of OsMGT3, which encodes a chloroplast-localized Mg2+ transporter
ZHD1 QYY_transcript_15114 zf-HD 水稻:过表达OsZHD1可诱导水稻叶片轴向卷曲和下垂[30]
O. sativa: Overexpression of OsZHD1 induces axial curling and drooping of rice leaves
- QYY_transcript_20217 其他Others 未知功能 Unknown features
MEgreen HB13 QYY_transcript_20535 HB-HD-ZIP 拟南芥:参与生物和非生物抗性途径[31]
A. thaliana: Involved in biotic and abiotic resistance pathways

Fig. 11

Transcription factors and structural gene interaction network diagram related to flavonoid synthesis A: Network diagram of transcription factor interaction with structural genes within the module MEturquoise; B: Network diagram of transcription factor interaction with structural genes within module MEgreen"

Fig. 12

qRT-PCR and RNAseq expression analysis of 12 differentially expressed genes Different lowercase letters indicate significant difference (P<0.05)"

[1]
WILLIAMS C A, GRAYER R J. Anthocyanins and other flavonoids. Natural Product Reports, 2004, 21(4): 539-573.

doi: 10.1039/b311404j pmid: 15282635
[2]
BUER C S, IMIN N, DJORDJEVIC M A. Flavonoids: New roles for old molecules. Journal of Integrative Plant Biology, 2010, 52(1): 98-111.

doi: 10.1111/j.1744-7909.2010.00905.x
[3]
KOZŁOWSKA A, SZOSTAK-WEGIEREK D. Flavonoids: Food sources and health benefits. Roczniki Panstwowego Zakladu Higieny, 2014, 65(2): 79-85.
[4]
吴海峰, 丁立生, 王环, 张晓峰. 绿绒蒿属植物化学成分及药理活性研究进展. 天然产物研究与开发, 2011, 23(1): 163-168.
WU H F, DING L S, WANG H, ZHANG X F. Advances in the research of phytochemistry and pharmacology of Meconopsis vig. Natural Product Research and Development, 2011, 23(1): 163-168. (in Chinese)
[5]
YUAN Y D, ZUO J J, ZHANG H Y, ZU M T, YU M Y, LIU S A. Transcriptome and metabolome profiling unveil the accumulation of flavonoids in Dendrobium officinale. Genomics, 2022, 114(3): 110324.
[6]
LIU Y H, LI Y M, LIU Z, WANG L, BI Z Z, SUN C, YAO P F, ZHANG J L, BAI J P, ZENG Y T. Integrated transcriptomic and metabolomic analysis revealed altitude-related regulatory mechanisms on flavonoid accumulation in potato tubers. Food Research International, 2023, 170: 112997.
[7]
帝玛尔∙丹增彭措. 晶珠本草. 北京: 科技出版社, 1735: 6-7, 114-115.
DIMAER∙DANZENGPENGCUO. Crysta Materia Medica. Beijing: Science & Technology Press, 1735: 6-7, 114-115. (in Chinese)
[8]
中国科学院西北高原生物研究所. 藏药志. 西宁: 青海人民出版社, 1991.
Northwest Institute of Plateau Biology, Chinese Academy of Sciences. Tibetan Medicine Annals. Xining: Qinghai People’s Publishing House, 1991. (in Chinese)
[9]
黄艳菲, 蔡旭, 冉波, 李文兵, 杨正明, 张绍山, 刘圆. 基于谱效关系的藏药材全缘叶绿绒蒿全草(非花入药部位)抗氧化质量标志物初步研究. 中草药, 2020, 51(17): 4521-4530.
HUANG Y F, CAI X, RAN B, LI W B, YANG Z M, ZHANG S S, LIU Y. Preliminary discovery of quality marker of herb Meconopsis integrifolia (non flower parts) based on spectrum-effect relationship. Chinese Traditional and Herbal Drugs, 2020, 51(17): 4521-4530. (in Chinese)
[10]
FAN J P, WANG P, WANG X B, TANG W, LIU C L, WANG Y Q, YUAN W J, KONG L L, LIU Q H. Induction of mitochondrial dependent apoptosis in human leukemia K562 cells by Meconopsis integrifolia: A species from traditional Tibetan medicine. Molecules, 2015, 20(7): 11981-11993.
[11]
SONG Y T, ZHANG G Y, CHEN N, ZHANG J G, HE C Y. Metabolomic and transcriptomic analyses provide insights into the flavonoid biosynthesis in sea buckthorn (Hippophae rhamnoides L.). LWT-Food Science and Technology, 2023, 187: 115276.
[12]
赵海霞, 肖欣, 董玘鑫, 吴花拉, 李成磊, 吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析. 中国农业科学, 2022, 55(9): 1723-1736. doi: 10.3864/j.issn.0578-1752.2022.09.003.
ZHAO H X, XIAO X, DONG Q X, WU H L, LI C L, WU Q. Optimization of callus genetic transformation system and its application in FtCHS1 overexpression in Tartary buckwheat. Scientia Agricultura Sinica, 2022, 55(9): 1723-1736. doi: 10.3864/j.issn.0578-1752.2022.09.003. (in Chinese)
[13]
秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46(7): 1033-1051.

doi: 10.3724/SP.J.1006.2020.94130
QIN T Y, SUN C, BI Z Z, LIANG W J, LI P C, ZHANG J L, BAI J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. (in Chinese)
[14]
彭佳伟, 张叶, 寇单单, 杨丽, 刘晓飞, 张学英, 陈海江, 田义. ‘仓方早生’桃及其早熟芽变不同发育时期果实的转录组分析. 中国农业科学, 2023, 56(5): 964-980. doi: 10.3864/j.issn.0578-1752.2023.05.012.
PENG J W, ZHANG Y, KOU D D, YANG L, LIU X F, ZHANG X Y, CHEN H J, TIAN Y. Transcriptome analysis of peach fruits at different developmental stages in peach Kurakato wase and early-ripening mutant. Scientia Agricultura Sinica, 2023, 56(5): 964-980. doi: 10.3864/j.issn.0578-1752.2023.05.01. (in Chinese)
[15]
韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因. 作物学报, 2022, 48(7): 1645-1657.

doi: 10.3724/SP.J.1006.2022.14107
HAN S L, HUO Y Q, LI H, HAN H R, HOU S Y, SUN Z X, HAN Y H, LI H Y. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet. Acta Agronomica Sinica, 2022, 48(7): 1645-1657. (in Chinese)
[16]
孙成龙, 刘伟, 郭兰萍, 王晓. 基于MALDI质谱成像技术分析莲子中代谢物的组织分布. 分析测试学报, 2021, 40(1): 86-91.
SUN C L, LIU W, GUO L P, WANG X. Analysis on tissue distribution of metabolites in Lotus seed by MALDI mass spectrometry imaging technique. Journal of Instrumental Analysis, 2021, 40(1): 86-91. (in Chinese)
[17]
BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2015, 12: 59-60.

doi: 10.1038/nmeth.3176 pmid: 25402007
[18]
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550.
[19]
VARET H, BRILLET-GUÉGUEN L, COPPÉE J Y, DILLIES M A. SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-seq data. PLoS ONE, 2016, 11(6): e0157022.
[20]
ZHENG Y, JIAO C, SUN H H, ROSLI H G, POMBO M A, ZHANG P F, BANF M, DAI X B, MARTIN G B, GIOVANNONI J J, ZHAO P X, RHEE S Y, FEI Z J. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant, 2016, 9(12): 1667-1670.
[21]
陈丽琦, 严朋飞, 贾维嘉, 区智, 屈燕. 威氏绿绒蒿(Meconopsis wilsonii)花色相关基因MwF3H的克隆及表达分析. 基因组学与应用生物学, 2022, 41(4): 854-861.
CHEN L Q, YAN P F, JIA W J, OU Z, QU Y. Cloning and expression analysis of flower color related gene MwF3H from Meconopsis wilsonii. Genomics and Applied Biology, 2022, 41(4): 854-861. (in Chinese)
[22]
LIU B, LONG H, YAN J, YE L L, ZHANG Q, CHEN H M, GAO S J, WANG Y Q, WANG X J, SUN S L. A HY5-COL3-COL13 regulatory chain for controlling hypocotyl elongation in Arabidopsis. Plant, Cell & Environment, 2021, 44(1): 130-142.
[23]
HASSIDIM M, HARIR Y, YAKIR E, KRON I, GREEN R M. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta, 2009, 230(3): 481-491.
[24]
ZHANG X Y, JIANG X L, HE Y Q, LI L Y, XU P, SUN Z T, LI J M, XU J M, XIA T, HONG G J. AtHB2, a class II HD-ZIP protein, negatively regulates the expression of CsANS, which encodes a key enzyme in Camellia sinensis catechin biosynthesis. Physiologia Plantarum, 2019, 166(4): 936-945.
[25]
KWON Y, KIM J H, NGUYEN H N, JIKUMARU Y, KAMIYA Y, HONG S W, LEE H. A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. Journal of Experimental Botany, 2013, 64(12): 3911-3922.
[26]
HONG Y B, ZHANG H J, HUANG L, LI D Y, SONG F M. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 2016, 7: 4.

doi: 10.3389/fpls.2016.00004 pmid: 26834774
[27]
YUAN L, YU Y J, LIU M M, SONG Y, LI H M, SUN J Q, WANG Q, XIE Q G, WANG L, XU X D. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. The Plant Cell, 2021, 33(8): 2602-2617.

doi: 10.1093/plcell/koab133 pmid: 34164694
[28]
NAGPAL P, ELLIS C M, WEBER H, PLOENSE S E, BARKAWI L S, GUILFOYLE T J, HAGEN G, ALONSO J M, COHEN J D, FARMER E E, ECKER J R, REED J W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132(18): 4107-4118.

doi: 10.1242/dev.01955 pmid: 16107481
[29]
CHEN C Q, TIAN X Y, LI J, BAI S, ZHANG Z Y, LI Y, CAO H R, CHEN Z C. Two central circadian oscillators OsPRR59 and OsPRR95 modulate magnesium homeostasis and carbon fixation in rice. Molecular Plant, 2022, 15(10): 1602-1614.
[30]
XU Y, WANG Y H, LONG Q Z, HUANG J X, WANG Y L, ZHOU K N, ZHENG M, SUN J, CHEN H, CHEN S H, JIANG L, WANG C M, WAN J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239(4): 803-816.

doi: 10.1007/s00425-013-2009-7 pmid: 24385091
[31]
GAO D L, APPIANO M, HUIBERS R P, CHEN X, LOONEN A E H M, VISSER R G F, WOLTERS A M A, BAI Y L. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad- spectrum disease resistance. Plant Molecular Biology, 2014, 86(6): 641-653.
[32]
姜玥, 刘洋洋, 田海涛, 邓志鹏. 桑属植物中异戊烯基黄酮类化合物及其药理活性研究进展. 中草药, 2022, 53(21): 6948-6958.
JIANG Y, LIU Y Y, TIAN H T, DENG Z P. Research progress on prenylated flavonoids from Morus plants and their pharmacological activities. Chinese Traditional and Herbal Drugs, 2022, 53(21): 6948-6958. (in Chinese)
[33]
BAGCHI D, BAGCHI M, STOHS S J, DAS D K, RAY S D, KUSZYNSKI C A, JOSHI S S, PRUESS H G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 2000, 148(2/3): 187-197.
[34]
DI CARLO G, MASCOLO N, IZZO A A, CAPASSO F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sciences, 1999, 65(4): 337-353.

doi: 10.1016/s0024-3205(99)00120-4 pmid: 10421421
[35]
王聪. 7-去甲基银杏双黄酮对体外培养的人皮脂腺细胞胰岛素样生长因子1诱导皮脂生成的抑制作用[D]. 长春: 吉林大学, 2019.
WANG C. Inhibition of IGF-1-induced sebum production by bilobetin in cultured human sebocytes[D]. Changchun: Jilin University, 2019. (in Chinese)
[36]
徐叔云. 药理实验方法学. 3版. 北京: 人民卫生出版社, 2002.
XU S Y. Pharmacological Experimental Methodology. 3rd ed. Beijing: People’s Medical Publishing House, 2002. (in Chinese)
[37]
XIA X, GONG R, ZHANG C Y. Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals. BMC Plant Biology, 2022, 22(1): 401.
[38]
CHEN Y L, LI W W, JIA K, LIAO K, LIU L Q, FAN G Q, ZHANG S K, WANG Y T. Metabolomic and transcriptomice analyses of flavonoid biosynthesis in apricot fruits. Frontiers in Plant Science, 2023, 14: 1210309.
[39]
SONG J L, WANG Z Y, WANG Y H, DU J, WANG C Y, ZHANG X Q, CHEN S, HUANG X L, XIE X M, ZHONG T X. Overexpression of Pennisetum purpureum CCoAOMT contributes to lignin deposition and drought tolerance by promoting the accumulation of flavonoids in transgenic tobacco. Frontiers in Plant Science, 2022, 13: 884456.
[40]
ZHOU Y H, XU X D, CHEN Y Z, GAO J, SHI Q Y, TIAN L, CAO L. Combined metabolome and transcriptome analyses reveal the flavonoids changes and biosynthesis mechanisms in different organs of Hibiseu manihot L.. Frontiers in Plant Science, 2022, 13: 817378.
[1] YE JiaMin, ZHANG MingWei, LU Qi, ZHANG RuiFen, DENG Mei. Effects of Semi-Solid Fermentation with Lactobacillus on the Bitterness and Active Components of Shatianyu (Citrus grandis L. Osbeck) Fruit Powder [J]. Scientia Agricultura Sinica, 2024, 57(13): 2662-2673.
[2] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[3] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[4] CHEN MinDong, WANG Bin, LIU JianTing, LI YongPing, BAI ChangHui, YE XinRu, QIU BoYin, WEN QingFang, ZHU HaiSheng. Screening Regulatory Genes Related to Luffa Fruit Length and Diameter Development Based on Transcriptome and WGCNA [J]. Scientia Agricultura Sinica, 2023, 56(22): 4506-4522.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[7] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[8] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[9] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[10] CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet [J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
[11] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[12] CHEN HuaFeng,TIAN KeChuan,HUANG XiXia,Ablat Sulayman,HE JunMin,TIAN YueZhen,XU XinMing,FU XueFeng,ZHAO BingRu,ZHU Hua,Hanikezi Tulafu. Construction of Co-expression Network of lncRNA and mRNA Related to Hair Follicle Development of Subo Merino Sheep [J]. Scientia Agricultura Sinica, 2019, 52(19): 3471-3484.
[13] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
[14] LAI Ting, LIU Lei, ZHANG Ming-wei, ZHANG Rui-fen, ZHANG Yan, WEI Zhen-cheng, DENG Yuan-yuan. Effect of Lactic Acid Bacteria Fermentation on Phenolic Profiles and Antioxidant Activity of Dried Longan Flesh [J]. Scientia Agricultura Sinica, 2016, 49(10): 1979-1989.
[15] ZHANG Ling, XU Zong-da, TANG Teng-fei, ZHANG Hui, ZHAO Lan-yong. Analysis of Anthocyanins Related Compounds and Their Biosynthesis Pathways in Rosa rugosa ‘Zi zhi’ at Blooming Stages [J]. Scientia Agricultura Sinica, 2015, 48(13): 2600-2611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!