[1] |
KAMBUROVA V S, NIKITINA E V, SHERMATOV S E, BURIEV Z T, KUMPATLA S P, EMANI C, ABDURAKHMONOV I Y. Genome editing in plants: An overview of tools and applications. International Journal of Agronomy, 2017, 2017: 7315351.
|
[2] |
窦迎港, 甄珍. 基因编辑作物技术原理、商业化及检测研究进展. 作物杂志, 2023(2): 16-23.
|
|
DOU Y G, ZHEN Z. Progress in the technical principle, commercialization and testing research of gene edited crops. Crops, 2023(2): 16-23. (in Chinese)
|
[3] |
MENZ J, MODRZEJEWSKI D, HARTUNG F, WILHELM R, SPRINK T. Genome edited crops touch the market: A view on the global development and regulatory environment. Frontiers in Plant Science, 2020, 11: 586027.
|
[4] |
FU M X, CHEN L, CAI Y P, SU Q, CHEN Y Y, HOU W S. CRISPR/ Cas9-mediated mutagenesis of GmFAD2-1A and/orGmFAD2-1B to create high-oleic-acid soybean. Agronomy, 2022, 12(12): 3218.
|
[5] |
WALTZ E. Gene-edited CRISPR mushroom escapes US regulation. Nature, 2016, 532(7599): 293.
|
[6] |
MINAKO S, YATABE J, EZURA H, TAKAYAMA M, NAGATA H, KAWASAKI T. Ps-c23-11: Creation of tomatoes with high gaba accumulation by gene editing and their hypotensive effects. Journal of Hypertension, 2023, 41(Suppl 1): e407.
|
[7] |
WALTZ E. CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology, 2016, 34(6): 582.
|
[8] |
HUANG S W, WEIGEL D, BEACHY R N, LI J Y. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.
doi: 10.1038/ng.3484
pmid: 26813761
|
[9] |
李红杰, 贾亚男, 张彦军, 王兴荣, 陈丽梅. 国内外转基因与基因编辑作物监管现状. 中国农业大学学报, 2023, 28(9): 1-11.
|
|
LI H J, JIA Y N, ZHANG Y J, WANG X R, CHEN L M. Regulatory status of GM and gene-edited crops at domestic and abroad. Journal of China Agricultural University, 2023, 28(9): 1-11. (in Chinese)
|
[10] |
王梦雨, 王颢潜, 王旭静, 王志兴. 基因编辑产品检测技术研究进展. 生物技术进展, 2021, 11(4): 438-445.
|
|
WANG M Y, WANG H Q, WANG X J, WANG Z X. Research progress of gene editing products detection technology. Current Biotechnology, 2021, 11(4): 438-445. (in Chinese)
doi: 10.19586/j.2095-2341.2021.0037
|
[11] |
刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法. 遗传, 2018, 40(12): 1075-1091.
|
|
LIU C X, GENG L Z, XU J P. Detection methods of genome editing in plants. Hereditas, 2018, 40(12): 1075-1091. (in Chinese)
|
[12] |
ANDERSSON M, TURESSON H, NICOLIA A, FÄLT A S, SAMUELSSON M, HOFVANDER P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 2017, 36(1): 117-128.
doi: 10.1007/s00299-016-2062-3
pmid: 27699473
|
[13] |
HILIOTI Z, GANOPOULOS I, AJITH S, BOSSIS I, TSAFTARIS A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: The tomato LEC1-LIKE4 gene case. Plant Cell Reports, 2016, 35(11): 2241-2255.
|
[14] |
SUZUKI Y, SEKIYA T, HAYASHI K. Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Analytical Biochemistry, 1991, 192(1): 82-84.
pmid: 2048738
|
[15] |
GAUDET M, FARA A G, BERITOGNOLO I, SABATTI M. Allele- specific PCR in SNP genotyping//Komar A. Single Nucleotide Polymorphisms. Totowa, NJ: Humana Press, 2009.
|
[16] |
UGOZZOLI L, WALLACE R. Allele-specific polymerase chain reaction. Methods, 1991, 2(1): 42-48.
|
[17] |
HAYASHI K, HASHIMOTO N, DAIGEN M, ASHIKAWA I. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theoretical and Applied Genetics, 2004, 108(7): 1212-1220.
pmid: 14740086
|
[18] |
ZHENG X, YANG S, ZHANG D W, ZHONG Z H, TANG X, DENG K J, ZHOU J P, QI Y P, ZHANG Y. Effective screen of CRISPR/ Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports, 2016, 35(7): 1545-1554.
|
[19] |
OTA S, HISANO Y, MURAKI M, HOSHIJIMA K, DAHLEM T J, GRUNWALD D J, OKADA Y, KAWAHARA A. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes to Cells, 2013, 18(6): 450-458.
doi: 10.1111/gtc.12050
pmid: 23573916
|
[20] |
ELLIS J S, ZAMBON M C. Combined PCR-heteroduplex mobility assay for detection and differentiation of influenza a virus from different animal species. Journal of Clinical Microbiology, 2001, 39(11): 4097-4102.
|
[21] |
HARAYAMA T, RIEZMAN H. Detection of genome-edited mutant clones by a simple competition-based PCR method. PLoS ONE, 2017, 12(6): e0179165.
|
[22] |
KONIECZNY A, AUSUBEL F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 1993, 4(2): 403-410.
|
[23] |
麻艳超, 郭振清, 周丽艳, 陈普, 陆鸣, 东方阳, 王建设. SNP的检测方法及其在农作物遗传育种中的应用. 河北科技师范学院学报, 2014, 28(3): 24-28.
|
|
MA Y C, GUO Z Q, ZHOU L Y, CHEN P, LU M, DONGFANG Y, WANG J S. SNP and its application in crop genetics and breeding. Journal of Hebei Normal University of Science & Technology, 2014, 28(3): 24-28. (in Chinese)
|
[24] |
唐棣, 王志民. SNPs检测方法研究进展. 上海交通大学学报(农业科学版), 2007, 25(4): 405-418.
|
|
TANG D, WANG Z M. Advances in methods for SNP detection. Journal of Shanghai Jiaotong University (Agricultural Science), 2007, 25(4): 405-418. (in Chinese)
|
[25] |
HAYASHI M, UJIIE A, SERIZAWA H, SASSA H, KAKUI H, ODA T, KOBA T. Development of SCAR and CAPS markers linked to a recessive male sterility gene in lettuce (Lactuca sativa L.). Euphytica, 2011, 180(3): 429-436.
|
[26] |
NEFF M M, NEFF J D, CHORY J, PEPPER A E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. The Plant Journal, 1998, 14(3): 387-392.
|
[27] |
VOUILLOT L, THÉLIE A, POLLET N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3, 2015, 5(3): 407-415.
|
[28] |
ARAI T, MAJIMA H, WATANABE A, KAMEI K. A simple method to detect point mutations in Aspergillus fumigatus cyp51A gene using a surveyor nuclease assay. Antimicrobial Agents and Chemotherapy, 2020, 64(4): e02271-19.
|
[29] |
PILCH J, ASMAN M, JAMROZ E, KAJOR M, KOTRYS- PUCHALSKA E, GOSS M, KRZAK M, WITECKA J, GMIŃSKI J, SIEROŃ A L. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children. Pediatric Neurology, 2010, 43(5): 325-330.
doi: 10.1016/j.pediatrneurol.2010.05.023
pmid: 20933175
|
[30] |
QIU P, SHANDILYA H, D'ALESSIO J M, O’CONNOR K, DUROCHER J, GERARD G F. Mutation detection using Surveyor nuclease. BioTechniques, 2004, 36(4): 702-707.
doi: 10.2144/04364PF01
pmid: 15088388
|
[31] |
ALDERBORN A, KRISTOFFERSON A, HAMMERLING U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Research, 2000, 10(8): 1249-1258.
pmid: 10958643
|
[32] |
ROYO J L, HIDALGO M, RUIZ A. Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nature Protocols, 2007, 2(7): 1734-1739.
pmid: 17641638
|
[33] |
RONAGHI M, UHLÉN M, NYRÉN P. A sequencing method based on real-time pyrophosphate. Science, 1998, 281(5375): 363, 365.
|
[34] |
李葱葱, 高越, 沈晓玲, 李飞武, 赵新, 龙丽坤, 李亮, 王永, 兰青阔. 基于焦磷酸测序技术的基因编辑位点检测方法的建立. 中国农业大学学报, 2019, 24(9): 10-16.
|
|
LI C C, GAO Y, SHEN X L, LI F W, ZHAO X, LONG L K, LI L, WANG Y, LAN Q K. Pyrosequencing-based detection method for gene editing site. Journal of China Agricultural University, 2019, 24(9): 10-16. (in Chinese)
|
[35] |
LI Z, LIU Z B, XING A Q, MOON B P, KOELLHOFFER J P, HUANG L X, WARD R T, CLIFTON E, FALCO S C, CIGAN A M. Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 2015, 169(2): 960-970.
doi: 10.1104/pp.15.00783
pmid: 26294043
|
[36] |
SVITASHEV S, YOUNG J K, SCHWARTZ C, GAO H R, FALCO S C, CIGAN A M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 2015, 169(2): 931-945.
doi: 10.1104/pp.15.00793
pmid: 26269544
|
[37] |
WEISHEIT I, KROEGER J A, MALIK R, KLIMMT J, CRUSIUS D, DANNERT A, DICHGANS M, PAQUET D. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Reports, 2020, 31(8): 107689.
|
[38] |
DE ANDRADE C P, DE ALMEIDA L L, DE CASTRO L A, DRIEMEIER D, DA SILVA S C. Development of a real-time polymerase chain reaction assay for single nucleotide polymorphism genotyping codons 136, 154, and 171 of the prnp gene and application to Brazilian sheep herds. Journal of Veterinary Diagnostic Investigation, 2013, 25(1): 120-124.
doi: 10.1177/1040638712471343
pmid: 23345274
|
[39] |
PENG C, WANG H, XU X L, WANG X F, CHEN X Y, WEI W, LAI Y M, LIU G Q, GODWIN I D, LI J Q, ZHANG L, XU J F. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. The Plant Journal, 2018, 95(3): 557-567.
doi: 10.1111/tpj.13961
pmid: 29761864
|
[40] |
CHHALLIYIL P, ILVES H, KAZAKOV S A, HOWARD S J, JOHNSTON B H, FAGAN J. A real-time quantitative PCR method specific for detection and quantification of the first commercialized genome-edited plant. Foods, 2020, 9(9): 1245.
|
[41] |
WEIDNER C, EDELMANN S, MOOR D, LIESKE K, SAVINI C, JACCHIA S, SACCO M G, MAZZARA M, LÄMKE J, ECKERMANN K N, EMONS H, MANKERTZ J, GROHMANN L. Assessment of the real-time PCR method claiming to be specific for detection and quantification of the first commercialised genome-edited plant. Food Analytical Methods, 2022, 15(8): 2107-2125.
|
[42] |
张洪文, 赵圣博, 闫晓红, 李俊, 翟杉杉, 肖芳, 高鸿飞, 李允静, 吴刚, 武玉花. 一种基因编辑位点特异性PCR方法的开发和应用. 中国油料作物学报, 2021, 43(1): 77-89.
|
|
ZHANG H W, ZHAO S B, YAN X H, LI J, ZHAI S S, XIAO F, GAO H F, LI Y J, WU G, WU Y H. Development and application of a gene editing site-specific PCR method. Chinese Journal of Oil Crop Sciences, 2021, 43(1): 77-89. (in Chinese)
doi: 10.19802/j.issn.1007-9084.2020314
|
[43] |
ZHANG H W, LI J, ZHAO S B, YAN X H, SI N W, GAO H F, LI Y J, ZHAI S S, XIAO F, WU G, WU Y H. An editing-site-specific pcr method for detection and quantification of CAO1-edited rice. Foods, 2021, 10(6): 1209.
|
[44] |
RIRIE K M, RASMUSSEN R P, WITTWER C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 1997, 245(2): 154-160.
doi: 10.1006/abio.1996.9916
pmid: 9056205
|
[45] |
THOMAS H R, PERCIVAL S M, YODER B K, PARANT J M. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS ONE, 2014, 9(12): e114632.
|
[46] |
HOUSDEN B E, PERRIMON N. Detection of indel mutations in Drosophila by high-resolution melt analysis (HRMA). Cold Spring Harbor Protocols, 2016, 2016(9): pdb.prot090795.
|
[47] |
LI R, BA Y, SONG Y, CUI J J, ZHANG X J, ZHANG D B, YUAN Z, YANG L T. Rapid and sensitive screening and identification of CRISPR/Cas9 edited rice plants using quantitative real-time PCR coupled with high resolution melting analysis. Food Control, 2020, 112: 107088.
|
[48] |
杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022, 38(4): 58-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
|
|
YANG Q Q, TANG J Q, ZHANG C Q, GAO J P, LIU Q Q. Application and prospect of KASP marker technology in main crops. Biotechnology Bulletin, 2022, 38(4): 58-71. (in Chinese)
|
[49] |
SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33(1): 1-14.
|
[50] |
HE C L, HOLME J, ANTHONY J. SNP Genotyping: The KASP assay//FLEURY D, WHITFORD R. Crop Breeding. New York: Humana Press, 2014: 75-86.
|
[51] |
MEDRANO R F V, DE OLIVEIRA C A. Guidelines for the tetra- primer ARMS-PCR technique development. Molecular Biotechnology, 2014, 56(7): 599-608.
|
[52] |
邵婕, 杨正修, 邹强, 陆峥飞, 李凡. ARMS-PCR技术在玫瑰果鉴别中的应用. 食品工业, 2023, 44(1): 161-165.
|
|
SHAO J, YANG Z X, ZOU Q, LU Z F, LI F. Application of ARMS-PCR technology in identification of rosehip. The Food Industry, 2023, 44(1): 161-165. (in Chinese)
|
[53] |
吕瑞辰, 谭伟龙, 齐永, 朱长强, 艾乐乐, 韩招久. 利用ARMS-PCR等位基因分型方法对德国小蠊钠通道基因新突变的检测及分型研究. 中华卫生杀虫药械, 2022, 28(1): 68-71.
|
|
LÜ R C, TAN W L, QI Y, ZHU C Q, AI L L, HAN Z J. Detection and typing of new mutations in the Blattella germanica sodium channel gene using ARMS-PCR. Chinese Journal of Hygienic Insecticides & Equipments, 2022, 28(1): 68-71. (in Chinese)
|
[54] |
KHAN H N, WASIM M, AYESHA H, AWAN F R. Molecular genetic diagnosis of Wilson disease by ARMS-PCR in a Pakistani family. Molecular Biology Reports, 2018, 45(6): 2585-2591.
doi: 10.1007/s11033-018-4426-y
pmid: 30426382
|
[55] |
ZHANG S N, CAI Y, ZHANG J X, LIU X N, HE L H, CHENG L, HUA K, HUI W L, ZHU J L, WAN Y S, CUI Y L. Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: Simultaneous visual detection of both alleles. Nanoscale, 2020, 12(18): 10098-10105.
doi: 10.1039/d0nr00360c
pmid: 32350488
|
[56] |
MAHMOUDI S, BADALI H, REZAIE S, AZARNEZHAD A, BARAC A, KORD M, AHMADIKIA K, AALA F, ALI ASKARI F, MEIS J F, KHODAVAISY S. A simple and low cost tetra-primer ARMS-PCR method for detection triazole-resistant Aspergillus fumigatus. Molecular Biology Reports, 2019, 46(4): 4537-4543.
|
[57] |
DING L L, REN T, HUANG L Y, TESFAGABER W, ZHU Y M, LI F, SUN E C, BU Z G, ZHAO D M. Developing a duplex ARMS-qPCR method to differentiate genotype I and II African swine fever viruses based on their B646L genes. Journal of Integrative Agriculture, 2023, 22(5): 1603-1607.
|
[58] |
DOBOSY J R, ROSE S D, BELTZ K R, RUPP S M, POWERS K M, BEHLKE M A, WALDER J A. RNase H-dependent PCR (rhPCR): Improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnology, 2011, 11(1): 80.
|
[59] |
BROCCANELLO C, CHIODI C, FUNK A, MCGRATH J M, PANELLA L, STEVANATO P. Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods, 2018, 14(1): 28.
|
[60] |
AYALEW H, TSANG P W, CHU C G, WANG J Z, LIU S Y, CHEN C F, MA X F. Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS ONE, 2019, 14(5): e0217222.
|
[61] |
JIANG J, FEINDEL W, HARDING M, FEINDEL D, BAJEMA S, FENG J. Detection of Ilyonectria pseudodestructans from potato by RNase H-dependent PCR (rhPCR) and rh-quantitative PCR (rhqPCR). Plant Disease, 2023, 107(5): 1550-1556.
|
[62] |
TSO H H, GALINDO-GONZÁLEZ L, LOCKE T, STRELKOV S E. Protocol: rhPCR and SNaPshot assays to distinguish Plasmodiophora brassicae pathotype clusters. Plant Methods, 2022, 18(1): 91.
|
[63] |
RODGERS T W, OLSON J R, MOCK K E. Use of RNase H-dependent PCR for discrimination and detection of closely related species from environmental DNA. Methods in Ecology and Evolution, 2019, 10(7): 1091-1096.
|
[64] |
LABBÉ G, RANKIN M A, ROBERTSON J, MOFFAT J, GIANG E, LEE L K, ZIEBELL K, MACKINNON J, LAING C R, PARMLEY E J, AGUNOS A, DAIGNAULT D, BEKAL S, CHUI L D, MACDONALD K A, HOANG L, SLAVIC D, RAMSAY D, POLLARI F, NASH J H E, JOHNSON R P. Targeting discriminatory SNPs in Salmonella enterica serovar Heidelberg genomes using RNase H2-dependent PCR. Journal of Microbiological Methods, 2019, 157: 81-87.
|
[65] |
SYKES P J, NEOH S H, BRISCO M J, HUGHES E, CONDON J, MORLEY A A. Quantitation of targets for PCR by use of limiting dilution. BioTechniques, 1992, 13(3): 444-449.
pmid: 1389177
|
[66] |
HUDECOVA I. Digital PCR analysis of circulating nucleic acids. Clinical Biochemistry, 2015, 48(15): 948-956.
doi: 10.1016/j.clinbiochem.2015.03.015
pmid: 25828047
|
[67] |
MOCK U, HAUBER I, FEHSE B. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nature Protocols, 2016, 11(3): 598-615.
doi: 10.1038/nprot.2016.027
pmid: 26914317
|
[68] |
FINDLAY S D, VINCENT K M, BERMAN J R, POSTOVIT L M. A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS ONE, 2016, 11(4): e0153901.
|
[69] |
GAO R M, FEYISSA B A, CROFT M, HANNOUFA A. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta, 2018, 247(4): 1043-1050.
|
[70] |
PENG C, ZHENG M, DING L, CHEN X Y, WANG X F, FENG X P, WANG J M, XU J F. Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Frontiers in Plant Science, 2020, 11: 610790.
|
[71] |
MIYAOKA Y, CHAN A H, JUDGE L M, YOO J, HUANG M, NGUYEN T D, LIZARRAGA P P, SO P L, CONKLIN B R. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nature Methods, 2014, 11(3): 291-293.
doi: 10.1038/nmeth.2840
pmid: 24509632
|
[72] |
LI Y, LI S Y, WANG J, LIU G Z. CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 2019, 37(7): 730-743.
doi: S0167-7799(18)30360-3
pmid: 30654914
|
[73] |
SU W R, LI J R, JI C, CHEN C S, WANG Y Z, DAI H L, LI F Q, LIU P F. CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets. Nano Research, 2023, 16(7): 9940-9953.
|
[74] |
LI S Y, CHENG Q X, LIU J K, NIE X Q, ZHAO G P, WANG J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Research, 2018, 28(4): 491-493.
|
[75] |
SWARTS D C, JINEK M. Mechanistic insights into the cis- and trans-acting dnase activities of Cas12a. Molecular Cell, 2019, 73(3): 589-600.
doi: S1097-2765(18)30991-2
pmid: 30639240
|
[76] |
KIM J M, KIM D, KIM S, KIM J S. Genotyping with CRISPR-Cas- derived RNA-guided endonucleases. Nature Communications, 2014, 5(1): 3157.
|
[77] |
LIANG Z, CHEN K L, YAN Y, ZHANG Y, GAO C X. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnology Journal, 2018, 16(12): 2053-2062.
doi: 10.1111/pbi.12938
pmid: 29723918
|
[78] |
HUANG M Q, ZHOU X M, WANG H Y, XING D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Analytical Chemistry, 2018, 90(3): 2193-2200.
doi: 10.1021/acs.analchem.7b04542
pmid: 29260561
|
[79] |
ZHOU W H, HU L, YING L M, ZHAO Z, CHU P K, YU X F. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nature Communications, 2018, 9(1): 5012.
|
[80] |
CHANG W D, LIU W P, LIU Y, ZHAN F F, CHEN H F, LEI H T, LIU Y J. Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Mikrochimica Acta, 2019, 186(4): 243.
|
[81] |
ZHAI S S, YANG Y, WU Y H, LI J, LI Y J, WU G, LIANG J G, GAO H F. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta, 2023, 257: 124318.
|
[82] |
CHEN J S, MA E B, HARRINGTON L B, DA COSTA M, TIAN X R, PALEFSKY J M, DOUDNA J A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439.
doi: 10.1126/science.aar6245
pmid: 29449511
|
[83] |
LI S Y, CHENG Q X, WANG J M, LI X Y, ZHANG Z L, GAO S, CAO R B, ZHAO G P, WANG J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, 4(1): 20.
|
[84] |
LI L X, LI S Y, Wu N, WU J C, WANG G, ZHAO G P, WANG J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synthetic Biology, 2019, 8(10): 2228-2237.
doi: 10.1021/acssynbio.9b00209
pmid: 31532637
|
[85] |
WANG M Y, LIU X J, YANG J T, WANG Z X, WANG H Q, WANG X J. CRISPR/Cas12a-based biosensing platform for the on-site detection of single-base mutants in gene-edited rice. Frontiers in Plant Science, 2022, 13: 944295.
|
[86] |
WU H, HE J S, ZHANG F, PING J F, WU J. Contamination-free visual detection of CaMV35S promoter amplicon using CRISPR/ Cas12a coupled with a designed reaction vessel: Rapid, specific and sensitive. Analytica Chimica Acta, 2020, 1096: 130-137.
|
[87] |
ZHANG Y M, ZHANG Y, XIE K B. Evaluation of CRISPR/Cas12a- based DNA detection for fast pathogen diagnosis and GMO test in rice. Molecular Breeding, 2020, 40(1): 11.
|
[88] |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, ESSLETZBICHLER P, DY A J, JOUNG J, VERDINE V, DONGHIA N, DARINGER N M, FREIJE C A, MYHRVOLD C, BHATTACHARYYA R P, LIVNY J, REGEV A, KOONIN E V, HUNG D T, SABETI P C, COLLINS J J, ZHANG F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336): 438-442.
doi: 10.1126/science.aam9321
pmid: 28408723
|
[89] |
HARRINGTON L B, BURSTEIN D, CHEN J S, PAEZ-ESPINO D, MA E B, WITTE I P, COFSKY J C, KYRPIDES N C, BANFIELD J F, DOUDNA J A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362(6416): 839-842.
doi: 10.1126/science.aav4294
pmid: 30337455
|
[90] |
TENG F, GUO L, CUI T T, WANG X G, XU K, GAO Q Q, ZHOU Q, LI W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biology, 2019, 20(1): 132.
|
[91] |
GAO L Y, COX D B T, YAN W X, MANTEIGA J C, SCHNEIDER M W, YAMANO T, NISHIMASU H, NUREKI O, CROSETTO N, ZHANG F. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 2017, 35(8): 789-792.
doi: 10.1038/nbt.3900
pmid: 28581492
|
[92] |
KLEINSTIVER B P, SOUSA A A, WALTON R T, TAK Y E, HSU J Y, CLEMENT K, WELCH M M, HORNG J E, MALAGON-LOPEZ J, SCARFÒ I, MAUS M V, PINELLO L, ARYEE M J, JOUNG J K. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37(3): 276-282.
doi: 10.1038/s41587-018-0011-0
pmid: 30742127
|
[93] |
BUTCHER L M, MEABURN E, LIU L, FERNANDES C, HILL L, AL-CHALABI A, PLOMIN R, SCHALKWYK L, CRAIG I W. Genotyping pooled DNA on microarrays: A systematic genome screen of thousands of SNPs in large samples to detect QTLs for complex traits. Behavior Genetics, 2004, 34(5): 549-555.
doi: 10.1023/B:BEGE.0000038493.26202.d3
pmid: 15319578
|
[94] |
FASANO T, BOCCHI L, PISCIOTTA L, BERTOLINI S, CALANDRA S. Denaturing high-performance liquid chromatography in the detection of ABCA1 gene mutations in familial HDL deficiency. Journal of Lipid Research, 2005, 46(4): 817-822.
doi: 10.1194/jlr.D400038-JLR200
pmid: 15722566
|
[95] |
刘雅诚, 郝金萍, 严江伟, 唐晖, 王静, 任嘉诚. 用dHPLC技术检测线粒体DNA编码区单核苷酸多态性. 中国法医学杂志, 2006, 21(3): 142-146.
|
|
LIU Y C, HAO J P, YAN J W, TANG H, WANG J, REN J C. Detecting the polymorphisms in mitochondrial DNA coding area using denaturing high-performance liquid chromatography (dHPLC). Chinese Journal of Forensic Medicine, 2006, 21(3): 142-146. (in Chinese)
|
[96] |
BRAY M S, BOERWINKLE E, DORIS P A. High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: Practice, problems and promise. Human Mutation, 2001, 17(4): 296-304.
pmid: 11295828
|
[97] |
CLENDENEN T V, RENDLEMAN J, GE W Z, KOENIG K L, WIRGIN I, CURRIE D, SHORE R E, KIRCHHOFF T, ZELENIUCH- JACQUOTTE A. Genotyping of single nucleotide polymorphisms in DNA isolated from serum using sequenom MassARRAY technology. PLoS ONE, 2015, 10(8): e0135943.
|
[98] |
ZHANG S, VAN PELT C K, SCHULTZ G A. Electrospray ionization mass spectrometry-based genotyping: An approach for identification of single nucleotide polymorphisms. Analytical Chemistry, 2001, 73(9): 2117-2125.
|
[99] |
WAN Y, LAO R, LIU G, SONG S P, WANG L H, LI D, FAN C H. Multiplexed electrochemical DNA sensor for single-nucleotide polymorphism typing by using oligonucleotide-incorporated nonfouling surfaces. The Journal of Physical Chemistry B, 2010, 114(19): 6703-6706.
|
[100] |
LIU G, LAO R, XU L, XU Q, LI L Y, ZHANG M, SONG S P, FAN C H. Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfouling surface. Biosensors and Bioelectronics, 2013, 42: 516-521.
|
[101] |
XU L J, LEI Z C, LI J X, ZONG C, YANG C J, REN B. Label-free surface-enhanced raman spectroscopy detection of DNA with single-base sensitivity. Journal of the American Chemical Society, 2015, 137(15): 5149-5154.
|
[102] |
NGO H T, GANDRA N, FALES A M, TAYLOR S M, VO-DINH T. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosensors & Bioelectronics, 2016, 81: 8-14.
|
[103] |
GROHMANN L, KEILWAGEN J, DUENSING N, DAGAND E, HARTUNG F, WILHELM R, BENDIEK J, SPRINK T. Detection and identification of genome editing in plants: Challenges and opportunities. Frontiers in Plant Science, 2019, 10: 236.
doi: 10.3389/fpls.2019.00236
pmid: 30930911
|
[104] |
JOHNSON M P, HAUPT L M, GRIFFITHS L R. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Research, 2004, 32(6): e55.
|
[105] |
SIMEONOV A, NIKIFOROV T T. Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Research, 2002, 30(17): e91.
|
[106] |
ISHIGE T, ITOGA S, MATSUSHITA K. Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer//MAKOWSKI G S. Advances in Clinical Chemistry. Amsterdam: Elsevier, 2018: 53-72.
|
[107] |
HORWITZ W. Protocol for the design, conduct and interpretation of method-performance studies: Revised 1994 (Technical Report). Pure and Applied Chemistry, 1995, 67(2): 331-343.
|
[108] |
European Network of GMO Laboratories (ENGL). Definition of Minimum Performance Requirements for Analytical Methods of GMO, 2015, http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm.
|
[109] |
International Organization for Standardization (ISO). Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences. qPCR and dPCR, ISO 20395: 2019, https://www.iso.org/standard/67893.html.
|
[110] |
GATTO F, SAVINI C, SACCO M G, VINCIGUERRA D, BUTTINGER G, CORBISIER P, MAZZARA M, EMONS H. Single and multi- laboratory validation of a droplet digital PCR method. Food Control, 2022, 140: 109117.
|