Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3318-3334.doi: 10.3864/j.issn.0578-1752.2024.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Progress on Detection Methods for Gene-Edited Organisms

WU YuHua1(), ZHAI ShanShan1, PU HaoZhen1,2, GAO HongFei1, ZHANG Hua3, LI Jun1, LI YunJing1, XIAO Fang1, WU Gang1, XU LiQun3()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetically Modified Organism Traceability, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2 South-Central Minzu University, Wuhan 430074
    3 Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100025
  • Received:2024-02-26 Accepted:2024-04-26 Online:2024-09-01 Published:2024-09-04
  • Contact: WU YuHua, XU LiQun

Abstract:

Gene editing techniques have made gene edited (GE) organisms enter commercial applications from laboratories. In 2022, the Ministry of Agriculture and Rural Affairs specifically issued the “Guidelines for Safety Evaluation of Genetically Edited Plants for Agricultural Use (Trial)” for the safety evaluation of GE plants without introducing exogenous genes. In 2023, China granted the first biosafety certificate for GE soybean AE15-18-1, marking the official start of the commercialization process of GE crops in China. GE organisms are different from traditional genetically modified organisms (GMOs) containing exogenous DNA sequences, making common GM detection strategies inapplicable to the detection of GE organisms. As the industrialization of GE crops progresses positively, how to efficiently and accurately detect whether a product is gene-edited and its editing characteristics is an important basis for the commercial use and intellectual property protection of GE products. There is an urgent need to develop detection technologies suitable for GE products. With the goal of detecting whether the target sequence has been edited, many detection technologies have been developed based on PCR, sequencing, and other technologies, and are widely used in the screening of GE products in the research and development process. After industrialization, safety supervision and intellectual property protection require not only the detection of whether the sample has been edited but also the rapid identification of the nucleotide sequence characteristics of the sample to determine its origin and identity. Subsequently, precise quantification of the GE components is necessary to determine whether quantitative labeling is required. Currently, it is difficult to quickly identify the identity of GE products with only a few base insertions, deletions, and single nucleotide variations (SNV) using conventional PCR or sequencing technologies. It is even more challenging to accurately quantify the content of GE components. Aiming at the rapid identification of the DNA sequence characteristics after editing and precise quantification, based on the molecular characteristics of GE products, this paper reviews the application of the gel electrophoresis-based PCR method, the sequencing-based method, the real-time PCR-based method, the digital PCR-based method, the editing enzyme-based method, and the instrument-based method in detection of GE organisms, and expounds the advantages and disadvantages of each method during detection. This review initially explores the detection and quantification strategies suitable for GE organisms and provides a reference for subsequent development of detection methods for GE organisms.

Key words: gene editing, sequencing, real time PCR, digital PCR, editing enzyme

Table 1

Comparison of advantages and disadvantages of different methods for detection of GE product"

序号
No.
方法种类
Classification
方法名称
Method
优点
Advantage
缺点
Disadvantage
1 PCR-电泳检测方法
PCR-electrophoresis detection method
PCR-电泳法
PCR-electrophoresis method
只需常规设备,操作门槛低,适用于编辑产品的筛查
Requires only routine equipment, a low operational threshold, and suitable for the screening of edited products
操作步骤繁琐,PCR反应后,还需要电泳等操作;受限于电泳的分辨率,不能检测单碱基或相同大小片段的替换;不能进行特异基因编辑产品的识别检测
The procedure is quite cumbersome, requiring additional steps after PCR, such as electrophoresis; it is limited by the resolution of the electrophoresis, which cannot detect single base substitutions or replacements of identically sized fragments; and it cannot perform specific identification of gene- edited products
PCR-酶切-电泳法
PCR-digestion- electrophoresis method
操作步骤繁琐;依赖酶切位点的有无;不能进行特异编辑产品的识别检测
The operation steps are cumbersome; it relies on the presence or absence of enzyme sites; it cannot perform specific identification of GE products
2 基于测序的检测方法
Sequencing-based detection method
Sanger测序法
Sanger sequencing method
通用性强,可检测一切变异
Universal, capable of detecting all types of variations
通常依赖第三方测序公司,耗时
Relies on third-party sequencing companies, time- consuming
高通量测序法
High-throughput sequencing method
适用范围广,可检测脱靶及载体骨架残留
A broad range of applications, capable of detecting off-target as well as residual vector backbone
通常依赖第三方测序公司,耗时;数据分析复杂
Relies on third-party sequencing companies, time- consuming, and the data analysis is complex
焦磷酸测序法
Pyrophosphate sequencing method
准确性高,速度快
High accuracy and fast speed
通常依赖第三方测序公司,耗时;检测瞬时发光,通量受限;只能测短序列
Relies on third-party sequencing companies, time- consuming, detecting transient luminescence, the throughput is limited and only capable of measuring short sequences
3 基于实时荧光PCR的检测方法
Real-time PCR-based detection method
TaqMan探针法
TaqMan probe method
特异性强、灵敏度高、速度快、不易交错污染;设计不同的TaqMan探针,可进行编辑产品的筛查和特异识别;可定量检测
Strong specificity, high sensitivity, rapid speed, and low risk of cross-contamination; it allows for the screening and specific identification of GE products by designing different TaqMan probes; and it enables quantitative detection
1—2个碱基的变异,难以设计满足特异性要求的TaqMan探针
Variations of 1-2 bp make it difficult to design TaqMan probes that meet the specificity requirements
高分辨率熔解曲线法
High-resolution melting analysis
采用荧光染料,成本低;分析荧光曲线,速度快;可进行编辑产品的筛查
Using fluorescent dyes, low cost; analyzing the fluorescence curve is fast; allows for the screening of GE products
不能识别熔解曲线相似的不同产品;只能筛查样品是否被编辑,不能对特定的基因编辑产品进行鉴定
It cannot distinguish between different products with similar melting curves; it can only screen whether the sample has been edited, but cannot identify specific GE products
KASP方法
KASP method
采用通用性探针,成本低;检测荧光信号,速度快;适合单碱基变异基因编辑产品的检测;对野生型和编辑型同步检测
Using universal probes, low cost; rapid speed; suitable for the detection of GE products with SNV; and it allows for simultaneous detection of both wild-type and edited type
引物设计位点受限,部分序列难以设计特异性引物;只有一种野生型或编辑型模板时,有非特异性扩增信号,与低含量产品难区分
Primer design sites are limited, and it is difficult to design specific primers for some sequences; when only wild-type or edited template is present in PCR, there can be non-specific amplification, making it difficult to distinguish from low-level products
ARMs-qPCR法
ARMs-qPCR method
特异性提高,能识别单碱基变异基因编辑产品
Specificity is enhanced, allowing the identification of GE products with SNVs
引物设计位点受限,部分序列难以设计引物;引入错配碱基,导致方法的灵敏度下降
Primer design is site-limited, making it difficult to design primers for some sequences; the introduction of mismatched bases can lead to a decrease in the sensitivity of the method
rhPCR法
rhPCR method
特异性强,灵敏度高,速度快,能识别单碱基变异基因编辑产品
Strong specificity, high sensitivity, fast speed, capable of identifying GE products with SNVs
引物成本较高;对发生单碱基缺失的基因编辑产品,难以设计引物
Primer costs are relatively high; it is difficult to design primers for GE products with a single base deletion
4 基于数字PCR的检测方法
Digital PCR-based detection method
TaqMan探针法
TaqMan probe method
与基于实时荧光PCR的TaqMan探针法兼容;适用于基因编辑产品的精准定量检测;适用于评价动物细胞的编辑效率
Compatible with the TaqMan probe method based on qPCR; suitable for precise quantitative detection of GE products; suitable for evaluating the editing efficiency of animal cells
当前成本高;1—2个碱基的变异,难以设计满足特异性要求的TaqMan探针
Current costs are high; variations of 1-2 base pairs make it difficult to design TaqMan probes that meet the specificity requirements
5 基于可编程内切酶的检测方法
Cas-based detection method
基于Cas9的检测技术
Cas9-based method
能识别单碱基变异基因编辑产品
Capable of identifying GE products with SNVs
受限于突变位点附近PAM位点的有无;酶切产物需要进一步分析,操作步骤比较繁琐
Limited by the presence or absence of PAM sites near the mutation site; the digestion products require further analysis, making the operational steps more cumbersome
基于Cas12、Cas13、Cas14的检测技术
Cas12, Cas13 and Cas14-based method
能识别单碱基变异基因编辑产品;通过反式切割信号分子发出信号,适合与核酸预扩增集成,适用于现场检测
Capable of identifying GE products with SNVs; it emits fluorescent signal by a trans-cleavage of signaling molecule, suitable for on-site testing by integrating with pre-amplification of DNA
受限于突变位点附近PAM位点的有无
Limited by the presence or absence of PAM sites near the mutation site
6 基于仪器的检测方法
Instrument-based detection method
基因芯片法、质谱法等
Gene chip method, mass spectrometry, etc
自动化分析,通量高,速度快
Automated analysis, high throughput, and fast speed
设备昂贵,成本高昂
The equipment is expensive, resulting in high costs
[1]
KAMBUROVA V S, NIKITINA E V, SHERMATOV S E, BURIEV Z T, KUMPATLA S P, EMANI C, ABDURAKHMONOV I Y. Genome editing in plants: An overview of tools and applications. International Journal of Agronomy, 2017, 2017: 7315351.
[2]
窦迎港, 甄珍. 基因编辑作物技术原理、商业化及检测研究进展. 作物杂志, 2023(2): 16-23.
DOU Y G, ZHEN Z. Progress in the technical principle, commercialization and testing research of gene edited crops. Crops, 2023(2): 16-23. (in Chinese)
[3]
MENZ J, MODRZEJEWSKI D, HARTUNG F, WILHELM R, SPRINK T. Genome edited crops touch the market: A view on the global development and regulatory environment. Frontiers in Plant Science, 2020, 11: 586027.
[4]
FU M X, CHEN L, CAI Y P, SU Q, CHEN Y Y, HOU W S. CRISPR/ Cas9-mediated mutagenesis of GmFAD2-1A and/orGmFAD2-1B to create high-oleic-acid soybean. Agronomy, 2022, 12(12): 3218.
[5]
WALTZ E. Gene-edited CRISPR mushroom escapes US regulation. Nature, 2016, 532(7599): 293.
[6]
MINAKO S, YATABE J, EZURA H, TAKAYAMA M, NAGATA H, KAWASAKI T. Ps-c23-11: Creation of tomatoes with high gaba accumulation by gene editing and their hypotensive effects. Journal of Hypertension, 2023, 41(Suppl 1): e407.
[7]
WALTZ E. CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology, 2016, 34(6): 582.
[8]
HUANG S W, WEIGEL D, BEACHY R N, LI J Y. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.

doi: 10.1038/ng.3484 pmid: 26813761
[9]
李红杰, 贾亚男, 张彦军, 王兴荣, 陈丽梅. 国内外转基因与基因编辑作物监管现状. 中国农业大学学报, 2023, 28(9): 1-11.
LI H J, JIA Y N, ZHANG Y J, WANG X R, CHEN L M. Regulatory status of GM and gene-edited crops at domestic and abroad. Journal of China Agricultural University, 2023, 28(9): 1-11. (in Chinese)
[10]
王梦雨, 王颢潜, 王旭静, 王志兴. 基因编辑产品检测技术研究进展. 生物技术进展, 2021, 11(4): 438-445.
WANG M Y, WANG H Q, WANG X J, WANG Z X. Research progress of gene editing products detection technology. Current Biotechnology, 2021, 11(4): 438-445. (in Chinese)

doi: 10.19586/j.2095-2341.2021.0037
[11]
刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法. 遗传, 2018, 40(12): 1075-1091.
LIU C X, GENG L Z, XU J P. Detection methods of genome editing in plants. Hereditas, 2018, 40(12): 1075-1091. (in Chinese)
[12]
ANDERSSON M, TURESSON H, NICOLIA A, FÄLT A S, SAMUELSSON M, HOFVANDER P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 2017, 36(1): 117-128.

doi: 10.1007/s00299-016-2062-3 pmid: 27699473
[13]
HILIOTI Z, GANOPOULOS I, AJITH S, BOSSIS I, TSAFTARIS A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: The tomato LEC1-LIKE4 gene case. Plant Cell Reports, 2016, 35(11): 2241-2255.
[14]
SUZUKI Y, SEKIYA T, HAYASHI K. Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Analytical Biochemistry, 1991, 192(1): 82-84.

pmid: 2048738
[15]
GAUDET M, FARA A G, BERITOGNOLO I, SABATTI M. Allele- specific PCR in SNP genotyping//Komar A. Single Nucleotide Polymorphisms. Totowa, NJ: Humana Press, 2009.
[16]
UGOZZOLI L, WALLACE R. Allele-specific polymerase chain reaction. Methods, 1991, 2(1): 42-48.
[17]
HAYASHI K, HASHIMOTO N, DAIGEN M, ASHIKAWA I. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theoretical and Applied Genetics, 2004, 108(7): 1212-1220.

pmid: 14740086
[18]
ZHENG X, YANG S, ZHANG D W, ZHONG Z H, TANG X, DENG K J, ZHOU J P, QI Y P, ZHANG Y. Effective screen of CRISPR/ Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports, 2016, 35(7): 1545-1554.
[19]
OTA S, HISANO Y, MURAKI M, HOSHIJIMA K, DAHLEM T J, GRUNWALD D J, OKADA Y, KAWAHARA A. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes to Cells, 2013, 18(6): 450-458.

doi: 10.1111/gtc.12050 pmid: 23573916
[20]
ELLIS J S, ZAMBON M C. Combined PCR-heteroduplex mobility assay for detection and differentiation of influenza a virus from different animal species. Journal of Clinical Microbiology, 2001, 39(11): 4097-4102.
[21]
HARAYAMA T, RIEZMAN H. Detection of genome-edited mutant clones by a simple competition-based PCR method. PLoS ONE, 2017, 12(6): e0179165.
[22]
KONIECZNY A, AUSUBEL F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 1993, 4(2): 403-410.
[23]
麻艳超, 郭振清, 周丽艳, 陈普, 陆鸣, 东方阳, 王建设. SNP的检测方法及其在农作物遗传育种中的应用. 河北科技师范学院学报, 2014, 28(3): 24-28.
MA Y C, GUO Z Q, ZHOU L Y, CHEN P, LU M, DONGFANG Y, WANG J S. SNP and its application in crop genetics and breeding. Journal of Hebei Normal University of Science & Technology, 2014, 28(3): 24-28. (in Chinese)
[24]
唐棣, 王志民. SNPs检测方法研究进展. 上海交通大学学报(农业科学版), 2007, 25(4): 405-418.
TANG D, WANG Z M. Advances in methods for SNP detection. Journal of Shanghai Jiaotong University (Agricultural Science), 2007, 25(4): 405-418. (in Chinese)
[25]
HAYASHI M, UJIIE A, SERIZAWA H, SASSA H, KAKUI H, ODA T, KOBA T. Development of SCAR and CAPS markers linked to a recessive male sterility gene in lettuce (Lactuca sativa L.). Euphytica, 2011, 180(3): 429-436.
[26]
NEFF M M, NEFF J D, CHORY J, PEPPER A E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. The Plant Journal, 1998, 14(3): 387-392.
[27]
VOUILLOT L, THÉLIE A, POLLET N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3, 2015, 5(3): 407-415.
[28]
ARAI T, MAJIMA H, WATANABE A, KAMEI K. A simple method to detect point mutations in Aspergillus fumigatus cyp51A gene using a surveyor nuclease assay. Antimicrobial Agents and Chemotherapy, 2020, 64(4): e02271-19.
[29]
PILCH J, ASMAN M, JAMROZ E, KAJOR M, KOTRYS- PUCHALSKA E, GOSS M, KRZAK M, WITECKA J, GMIŃSKI J, SIEROŃ A L. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children. Pediatric Neurology, 2010, 43(5): 325-330.

doi: 10.1016/j.pediatrneurol.2010.05.023 pmid: 20933175
[30]
QIU P, SHANDILYA H, D'ALESSIO J M, O’CONNOR K, DUROCHER J, GERARD G F. Mutation detection using Surveyor nuclease. BioTechniques, 2004, 36(4): 702-707.

doi: 10.2144/04364PF01 pmid: 15088388
[31]
ALDERBORN A, KRISTOFFERSON A, HAMMERLING U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Research, 2000, 10(8): 1249-1258.

pmid: 10958643
[32]
ROYO J L, HIDALGO M, RUIZ A. Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nature Protocols, 2007, 2(7): 1734-1739.

pmid: 17641638
[33]
RONAGHI M, UHLÉN M, NYRÉN P. A sequencing method based on real-time pyrophosphate. Science, 1998, 281(5375): 363, 365.
[34]
李葱葱, 高越, 沈晓玲, 李飞武, 赵新, 龙丽坤, 李亮, 王永, 兰青阔. 基于焦磷酸测序技术的基因编辑位点检测方法的建立. 中国农业大学学报, 2019, 24(9): 10-16.
LI C C, GAO Y, SHEN X L, LI F W, ZHAO X, LONG L K, LI L, WANG Y, LAN Q K. Pyrosequencing-based detection method for gene editing site. Journal of China Agricultural University, 2019, 24(9): 10-16. (in Chinese)
[35]
LI Z, LIU Z B, XING A Q, MOON B P, KOELLHOFFER J P, HUANG L X, WARD R T, CLIFTON E, FALCO S C, CIGAN A M. Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 2015, 169(2): 960-970.

doi: 10.1104/pp.15.00783 pmid: 26294043
[36]
SVITASHEV S, YOUNG J K, SCHWARTZ C, GAO H R, FALCO S C, CIGAN A M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 2015, 169(2): 931-945.

doi: 10.1104/pp.15.00793 pmid: 26269544
[37]
WEISHEIT I, KROEGER J A, MALIK R, KLIMMT J, CRUSIUS D, DANNERT A, DICHGANS M, PAQUET D. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Reports, 2020, 31(8): 107689.
[38]
DE ANDRADE C P, DE ALMEIDA L L, DE CASTRO L A, DRIEMEIER D, DA SILVA S C. Development of a real-time polymerase chain reaction assay for single nucleotide polymorphism genotyping codons 136, 154, and 171 of the prnp gene and application to Brazilian sheep herds. Journal of Veterinary Diagnostic Investigation, 2013, 25(1): 120-124.

doi: 10.1177/1040638712471343 pmid: 23345274
[39]
PENG C, WANG H, XU X L, WANG X F, CHEN X Y, WEI W, LAI Y M, LIU G Q, GODWIN I D, LI J Q, ZHANG L, XU J F. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. The Plant Journal, 2018, 95(3): 557-567.

doi: 10.1111/tpj.13961 pmid: 29761864
[40]
CHHALLIYIL P, ILVES H, KAZAKOV S A, HOWARD S J, JOHNSTON B H, FAGAN J. A real-time quantitative PCR method specific for detection and quantification of the first commercialized genome-edited plant. Foods, 2020, 9(9): 1245.
[41]
WEIDNER C, EDELMANN S, MOOR D, LIESKE K, SAVINI C, JACCHIA S, SACCO M G, MAZZARA M, LÄMKE J, ECKERMANN K N, EMONS H, MANKERTZ J, GROHMANN L. Assessment of the real-time PCR method claiming to be specific for detection and quantification of the first commercialised genome-edited plant. Food Analytical Methods, 2022, 15(8): 2107-2125.
[42]
张洪文, 赵圣博, 闫晓红, 李俊, 翟杉杉, 肖芳, 高鸿飞, 李允静, 吴刚, 武玉花. 一种基因编辑位点特异性PCR方法的开发和应用. 中国油料作物学报, 2021, 43(1): 77-89.
ZHANG H W, ZHAO S B, YAN X H, LI J, ZHAI S S, XIAO F, GAO H F, LI Y J, WU G, WU Y H. Development and application of a gene editing site-specific PCR method. Chinese Journal of Oil Crop Sciences, 2021, 43(1): 77-89. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2020314
[43]
ZHANG H W, LI J, ZHAO S B, YAN X H, SI N W, GAO H F, LI Y J, ZHAI S S, XIAO F, WU G, WU Y H. An editing-site-specific pcr method for detection and quantification of CAO1-edited rice. Foods, 2021, 10(6): 1209.
[44]
RIRIE K M, RASMUSSEN R P, WITTWER C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 1997, 245(2): 154-160.

doi: 10.1006/abio.1996.9916 pmid: 9056205
[45]
THOMAS H R, PERCIVAL S M, YODER B K, PARANT J M. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS ONE, 2014, 9(12): e114632.
[46]
HOUSDEN B E, PERRIMON N. Detection of indel mutations in Drosophila by high-resolution melt analysis (HRMA). Cold Spring Harbor Protocols, 2016, 2016(9): pdb.prot090795.
[47]
LI R, BA Y, SONG Y, CUI J J, ZHANG X J, ZHANG D B, YUAN Z, YANG L T. Rapid and sensitive screening and identification of CRISPR/Cas9 edited rice plants using quantitative real-time PCR coupled with high resolution melting analysis. Food Control, 2020, 112: 107088.
[48]
杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022, 38(4): 58-71.

doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
YANG Q Q, TANG J Q, ZHANG C Q, GAO J P, LIU Q Q. Application and prospect of KASP marker technology in main crops. Biotechnology Bulletin, 2022, 38(4): 58-71. (in Chinese)
[49]
SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33(1): 1-14.
[50]
HE C L, HOLME J, ANTHONY J. SNP Genotyping: The KASP assay//FLEURY D, WHITFORD R. Crop Breeding. New York: Humana Press, 2014: 75-86.
[51]
MEDRANO R F V, DE OLIVEIRA C A. Guidelines for the tetra- primer ARMS-PCR technique development. Molecular Biotechnology, 2014, 56(7): 599-608.
[52]
邵婕, 杨正修, 邹强, 陆峥飞, 李凡. ARMS-PCR技术在玫瑰果鉴别中的应用. 食品工业, 2023, 44(1): 161-165.
SHAO J, YANG Z X, ZOU Q, LU Z F, LI F. Application of ARMS-PCR technology in identification of rosehip. The Food Industry, 2023, 44(1): 161-165. (in Chinese)
[53]
吕瑞辰, 谭伟龙, 齐永, 朱长强, 艾乐乐, 韩招久. 利用ARMS-PCR等位基因分型方法对德国小蠊钠通道基因新突变的检测及分型研究. 中华卫生杀虫药械, 2022, 28(1): 68-71.
R C, TAN W L, QI Y, ZHU C Q, AI L L, HAN Z J. Detection and typing of new mutations in the Blattella germanica sodium channel gene using ARMS-PCR. Chinese Journal of Hygienic Insecticides & Equipments, 2022, 28(1): 68-71. (in Chinese)
[54]
KHAN H N, WASIM M, AYESHA H, AWAN F R. Molecular genetic diagnosis of Wilson disease by ARMS-PCR in a Pakistani family. Molecular Biology Reports, 2018, 45(6): 2585-2591.

doi: 10.1007/s11033-018-4426-y pmid: 30426382
[55]
ZHANG S N, CAI Y, ZHANG J X, LIU X N, HE L H, CHENG L, HUA K, HUI W L, ZHU J L, WAN Y S, CUI Y L. Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: Simultaneous visual detection of both alleles. Nanoscale, 2020, 12(18): 10098-10105.

doi: 10.1039/d0nr00360c pmid: 32350488
[56]
MAHMOUDI S, BADALI H, REZAIE S, AZARNEZHAD A, BARAC A, KORD M, AHMADIKIA K, AALA F, ALI ASKARI F, MEIS J F, KHODAVAISY S. A simple and low cost tetra-primer ARMS-PCR method for detection triazole-resistant Aspergillus fumigatus. Molecular Biology Reports, 2019, 46(4): 4537-4543.
[57]
DING L L, REN T, HUANG L Y, TESFAGABER W, ZHU Y M, LI F, SUN E C, BU Z G, ZHAO D M. Developing a duplex ARMS-qPCR method to differentiate genotype I and II African swine fever viruses based on their B646L genes. Journal of Integrative Agriculture, 2023, 22(5): 1603-1607.
[58]
DOBOSY J R, ROSE S D, BELTZ K R, RUPP S M, POWERS K M, BEHLKE M A, WALDER J A. RNase H-dependent PCR (rhPCR): Improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnology, 2011, 11(1): 80.
[59]
BROCCANELLO C, CHIODI C, FUNK A, MCGRATH J M, PANELLA L, STEVANATO P. Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods, 2018, 14(1): 28.
[60]
AYALEW H, TSANG P W, CHU C G, WANG J Z, LIU S Y, CHEN C F, MA X F. Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS ONE, 2019, 14(5): e0217222.
[61]
JIANG J, FEINDEL W, HARDING M, FEINDEL D, BAJEMA S, FENG J. Detection of Ilyonectria pseudodestructans from potato by RNase H-dependent PCR (rhPCR) and rh-quantitative PCR (rhqPCR). Plant Disease, 2023, 107(5): 1550-1556.
[62]
TSO H H, GALINDO-GONZÁLEZ L, LOCKE T, STRELKOV S E. Protocol: rhPCR and SNaPshot assays to distinguish Plasmodiophora brassicae pathotype clusters. Plant Methods, 2022, 18(1): 91.
[63]
RODGERS T W, OLSON J R, MOCK K E. Use of RNase H-dependent PCR for discrimination and detection of closely related species from environmental DNA. Methods in Ecology and Evolution, 2019, 10(7): 1091-1096.
[64]
LABBÉ G, RANKIN M A, ROBERTSON J, MOFFAT J, GIANG E, LEE L K, ZIEBELL K, MACKINNON J, LAING C R, PARMLEY E J, AGUNOS A, DAIGNAULT D, BEKAL S, CHUI L D, MACDONALD K A, HOANG L, SLAVIC D, RAMSAY D, POLLARI F, NASH J H E, JOHNSON R P. Targeting discriminatory SNPs in Salmonella enterica serovar Heidelberg genomes using RNase H2-dependent PCR. Journal of Microbiological Methods, 2019, 157: 81-87.
[65]
SYKES P J, NEOH S H, BRISCO M J, HUGHES E, CONDON J, MORLEY A A. Quantitation of targets for PCR by use of limiting dilution. BioTechniques, 1992, 13(3): 444-449.

pmid: 1389177
[66]
HUDECOVA I. Digital PCR analysis of circulating nucleic acids. Clinical Biochemistry, 2015, 48(15): 948-956.

doi: 10.1016/j.clinbiochem.2015.03.015 pmid: 25828047
[67]
MOCK U, HAUBER I, FEHSE B. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nature Protocols, 2016, 11(3): 598-615.

doi: 10.1038/nprot.2016.027 pmid: 26914317
[68]
FINDLAY S D, VINCENT K M, BERMAN J R, POSTOVIT L M. A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS ONE, 2016, 11(4): e0153901.
[69]
GAO R M, FEYISSA B A, CROFT M, HANNOUFA A. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta, 2018, 247(4): 1043-1050.
[70]
PENG C, ZHENG M, DING L, CHEN X Y, WANG X F, FENG X P, WANG J M, XU J F. Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Frontiers in Plant Science, 2020, 11: 610790.
[71]
MIYAOKA Y, CHAN A H, JUDGE L M, YOO J, HUANG M, NGUYEN T D, LIZARRAGA P P, SO P L, CONKLIN B R. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nature Methods, 2014, 11(3): 291-293.

doi: 10.1038/nmeth.2840 pmid: 24509632
[72]
LI Y, LI S Y, WANG J, LIU G Z. CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 2019, 37(7): 730-743.

doi: S0167-7799(18)30360-3 pmid: 30654914
[73]
SU W R, LI J R, JI C, CHEN C S, WANG Y Z, DAI H L, LI F Q, LIU P F. CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets. Nano Research, 2023, 16(7): 9940-9953.
[74]
LI S Y, CHENG Q X, LIU J K, NIE X Q, ZHAO G P, WANG J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Research, 2018, 28(4): 491-493.
[75]
SWARTS D C, JINEK M. Mechanistic insights into the cis- and trans-acting dnase activities of Cas12a. Molecular Cell, 2019, 73(3): 589-600.

doi: S1097-2765(18)30991-2 pmid: 30639240
[76]
KIM J M, KIM D, KIM S, KIM J S. Genotyping with CRISPR-Cas- derived RNA-guided endonucleases. Nature Communications, 2014, 5(1): 3157.
[77]
LIANG Z, CHEN K L, YAN Y, ZHANG Y, GAO C X. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnology Journal, 2018, 16(12): 2053-2062.

doi: 10.1111/pbi.12938 pmid: 29723918
[78]
HUANG M Q, ZHOU X M, WANG H Y, XING D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Analytical Chemistry, 2018, 90(3): 2193-2200.

doi: 10.1021/acs.analchem.7b04542 pmid: 29260561
[79]
ZHOU W H, HU L, YING L M, ZHAO Z, CHU P K, YU X F. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nature Communications, 2018, 9(1): 5012.
[80]
CHANG W D, LIU W P, LIU Y, ZHAN F F, CHEN H F, LEI H T, LIU Y J. Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Mikrochimica Acta, 2019, 186(4): 243.
[81]
ZHAI S S, YANG Y, WU Y H, LI J, LI Y J, WU G, LIANG J G, GAO H F. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta, 2023, 257: 124318.
[82]
CHEN J S, MA E B, HARRINGTON L B, DA COSTA M, TIAN X R, PALEFSKY J M, DOUDNA J A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439.

doi: 10.1126/science.aar6245 pmid: 29449511
[83]
LI S Y, CHENG Q X, WANG J M, LI X Y, ZHANG Z L, GAO S, CAO R B, ZHAO G P, WANG J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, 4(1): 20.
[84]
LI L X, LI S Y, Wu N, WU J C, WANG G, ZHAO G P, WANG J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synthetic Biology, 2019, 8(10): 2228-2237.

doi: 10.1021/acssynbio.9b00209 pmid: 31532637
[85]
WANG M Y, LIU X J, YANG J T, WANG Z X, WANG H Q, WANG X J. CRISPR/Cas12a-based biosensing platform for the on-site detection of single-base mutants in gene-edited rice. Frontiers in Plant Science, 2022, 13: 944295.
[86]
WU H, HE J S, ZHANG F, PING J F, WU J. Contamination-free visual detection of CaMV35S promoter amplicon using CRISPR/ Cas12a coupled with a designed reaction vessel: Rapid, specific and sensitive. Analytica Chimica Acta, 2020, 1096: 130-137.
[87]
ZHANG Y M, ZHANG Y, XIE K B. Evaluation of CRISPR/Cas12a- based DNA detection for fast pathogen diagnosis and GMO test in rice. Molecular Breeding, 2020, 40(1): 11.
[88]
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, ESSLETZBICHLER P, DY A J, JOUNG J, VERDINE V, DONGHIA N, DARINGER N M, FREIJE C A, MYHRVOLD C, BHATTACHARYYA R P, LIVNY J, REGEV A, KOONIN E V, HUNG D T, SABETI P C, COLLINS J J, ZHANG F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336): 438-442.

doi: 10.1126/science.aam9321 pmid: 28408723
[89]
HARRINGTON L B, BURSTEIN D, CHEN J S, PAEZ-ESPINO D, MA E B, WITTE I P, COFSKY J C, KYRPIDES N C, BANFIELD J F, DOUDNA J A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362(6416): 839-842.

doi: 10.1126/science.aav4294 pmid: 30337455
[90]
TENG F, GUO L, CUI T T, WANG X G, XU K, GAO Q Q, ZHOU Q, LI W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biology, 2019, 20(1): 132.
[91]
GAO L Y, COX D B T, YAN W X, MANTEIGA J C, SCHNEIDER M W, YAMANO T, NISHIMASU H, NUREKI O, CROSETTO N, ZHANG F. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 2017, 35(8): 789-792.

doi: 10.1038/nbt.3900 pmid: 28581492
[92]
KLEINSTIVER B P, SOUSA A A, WALTON R T, TAK Y E, HSU J Y, CLEMENT K, WELCH M M, HORNG J E, MALAGON-LOPEZ J, SCARFÒ I, MAUS M V, PINELLO L, ARYEE M J, JOUNG J K. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37(3): 276-282.

doi: 10.1038/s41587-018-0011-0 pmid: 30742127
[93]
BUTCHER L M, MEABURN E, LIU L, FERNANDES C, HILL L, AL-CHALABI A, PLOMIN R, SCHALKWYK L, CRAIG I W. Genotyping pooled DNA on microarrays: A systematic genome screen of thousands of SNPs in large samples to detect QTLs for complex traits. Behavior Genetics, 2004, 34(5): 549-555.

doi: 10.1023/B:BEGE.0000038493.26202.d3 pmid: 15319578
[94]
FASANO T, BOCCHI L, PISCIOTTA L, BERTOLINI S, CALANDRA S. Denaturing high-performance liquid chromatography in the detection of ABCA1 gene mutations in familial HDL deficiency. Journal of Lipid Research, 2005, 46(4): 817-822.

doi: 10.1194/jlr.D400038-JLR200 pmid: 15722566
[95]
刘雅诚, 郝金萍, 严江伟, 唐晖, 王静, 任嘉诚. 用dHPLC技术检测线粒体DNA编码区单核苷酸多态性. 中国法医学杂志, 2006, 21(3): 142-146.
LIU Y C, HAO J P, YAN J W, TANG H, WANG J, REN J C. Detecting the polymorphisms in mitochondrial DNA coding area using denaturing high-performance liquid chromatography (dHPLC). Chinese Journal of Forensic Medicine, 2006, 21(3): 142-146. (in Chinese)
[96]
BRAY M S, BOERWINKLE E, DORIS P A. High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: Practice, problems and promise. Human Mutation, 2001, 17(4): 296-304.

pmid: 11295828
[97]
CLENDENEN T V, RENDLEMAN J, GE W Z, KOENIG K L, WIRGIN I, CURRIE D, SHORE R E, KIRCHHOFF T, ZELENIUCH- JACQUOTTE A. Genotyping of single nucleotide polymorphisms in DNA isolated from serum using sequenom MassARRAY technology. PLoS ONE, 2015, 10(8): e0135943.
[98]
ZHANG S, VAN PELT C K, SCHULTZ G A. Electrospray ionization mass spectrometry-based genotyping:  An approach for identification of single nucleotide polymorphisms. Analytical Chemistry, 2001, 73(9): 2117-2125.
[99]
WAN Y, LAO R, LIU G, SONG S P, WANG L H, LI D, FAN C H. Multiplexed electrochemical DNA sensor for single-nucleotide polymorphism typing by using oligonucleotide-incorporated nonfouling surfaces. The Journal of Physical Chemistry B, 2010, 114(19): 6703-6706.
[100]
LIU G, LAO R, XU L, XU Q, LI L Y, ZHANG M, SONG S P, FAN C H. Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfouling surface. Biosensors and Bioelectronics, 2013, 42: 516-521.
[101]
XU L J, LEI Z C, LI J X, ZONG C, YANG C J, REN B. Label-free surface-enhanced raman spectroscopy detection of DNA with single-base sensitivity. Journal of the American Chemical Society, 2015, 137(15): 5149-5154.
[102]
NGO H T, GANDRA N, FALES A M, TAYLOR S M, VO-DINH T. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosensors & Bioelectronics, 2016, 81: 8-14.
[103]
GROHMANN L, KEILWAGEN J, DUENSING N, DAGAND E, HARTUNG F, WILHELM R, BENDIEK J, SPRINK T. Detection and identification of genome editing in plants: Challenges and opportunities. Frontiers in Plant Science, 2019, 10: 236.

doi: 10.3389/fpls.2019.00236 pmid: 30930911
[104]
JOHNSON M P, HAUPT L M, GRIFFITHS L R. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Research, 2004, 32(6): e55.
[105]
SIMEONOV A, NIKIFOROV T T. Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Research, 2002, 30(17): e91.
[106]
ISHIGE T, ITOGA S, MATSUSHITA K. Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer//MAKOWSKI G S. Advances in Clinical Chemistry. Amsterdam: Elsevier, 2018: 53-72.
[107]
HORWITZ W. Protocol for the design, conduct and interpretation of method-performance studies: Revised 1994 (Technical Report). Pure and Applied Chemistry, 1995, 67(2): 331-343.
[108]
European Network of GMO Laboratories (ENGL). Definition of Minimum Performance Requirements for Analytical Methods of GMO, 2015, http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm.
[109]
International Organization for Standardization (ISO). Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences. qPCR and dPCR, ISO 20395: 2019, https://www.iso.org/standard/67893.html.
[110]
GATTO F, SAVINI C, SACCO M G, VINCIGUERRA D, BUTTINGER G, CORBISIER P, MAZZARA M, EMONS H. Single and multi- laboratory validation of a droplet digital PCR method. Food Control, 2022, 140: 109117.
[1] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[2] XU JinQing, BIAN HaiYan, CHEN TongRui, WANG Lei, WANG HanDong, YOU En, DENG Chao, TANG YouLin, SHEN YuHu. Comparison of the Genome Sequence Polymorphisms Between the Main Naked Barley Varieties Kunlun 14 and Kunlun 15 in Qinghai Province [J]. Scientia Agricultura Sinica, 2024, 57(21): 4192-4204.
[3] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[4] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[5] ZHOU XinYan, CHEN SiYu, WEI YuFei, ZHU Yu, FENG JunQian, DING DianCao, LU GuiFeng, YANG ShangDong. Characteristics of Endophytic Microbial Community Structures in Stems Between Hylocereus undatus and H. polyrhizus [J]. Scientia Agricultura Sinica, 2024, 57(2): 416-428.
[6] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[7] LIU YanLing, QIU Ao, ZHANG ZiPeng, WANG Xue, DU HeHe, LUO WenXue, WANG GuiJiang, WEI Xia, SHI WenYing, DING XiangDong. The Efficiency of Haplotype-Based Genomic Selection Using Genotyping by Target Sequencing in Pigs [J]. Scientia Agricultura Sinica, 2024, 57(11): 2243-2253.
[8] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[9] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[10] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[11] ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950.
[12] SU Qi, TANG YaFei, SHE XiaoMan, LAN GuoBing, YU Lin, WU ZhengWei, LI ZhengGang, HE ZiFu. Identification of Viruses Infecting Bottle Gourd in Guangdong Province and Establishment of Multiplex RT-PCR Detection Method [J]. Scientia Agricultura Sinica, 2023, 56(23): 4684-4695.
[13] ZHANG Xin, YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong. Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3814-3828.
[14] WU YuanLong, HUI FengJiao, PAN ZhenYuan, YOU ChunYuan, LIN HaiRong, LI ZhiBo, JIN ShuangXia, NIE XinHui. Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era [J]. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301.
[15] YIN Chang, ZHU Mo, CHEN YanRu, TONG ShiFeng, ZHAO GuiPing, LIU Yang. Assessment of Genomic Selection Accuracy for Slaughter Traits in Broilers Based on Microarray and Imputed Sequencing Data [J]. Scientia Agricultura Sinica, 2023, 56(15): 3032-3039.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!