Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4192-4204.doi: 10.3864/j.issn.0578-1752.2024.21.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comparison of the Genome Sequence Polymorphisms Between the Main Naked Barley Varieties Kunlun 14 and Kunlun 15 in Qinghai Province

XU JinQing1(), BIAN HaiYan1,2, CHEN TongRui1,2, WANG Lei1, WANG HanDong1, YOU En1,2, DENG Chao1,2, TANG YouLin1, SHEN YuHu1,3()   

  1. 1 Northwest Institute of Plateau Biology, Chinese Academy of Sciences/Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB)/Qinghai Provincial Key Laboratory of Crop Molecular Breeding/Laboratory for Research and Utilization of Qinghai-Tibetan Plateau Germplasm Resources, Xining 810008
    2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049
    3 Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Xining 810008
  • Received:2024-05-02 Accepted:2024-07-12 Online:2024-11-01 Published:2024-11-10

Abstract:

【Objective】At present, Kunlun 14 and Kunlun 15 are the main varieties of the naked barley in Qinghai Province, and also the important backbone parents in the breeding of the naked barley. The genomic sequences of Kunlun 14 and Kunlun 15 were compared to provide references for the trace of important character regions/loci, pedigree analysis and their utilization in molecular design breeding of the naked barley. 【Method】In this study, the agronomic and grain traits of Kunlun 14 and Kunlun 15 were investigated in the field, and the whole genome resequencing were performed (sequencing depth ≥15×). The sequence differences of copy number variation (CNV), single nucleotide polymorphism (SNP) and insertion/deletion (InDel) were compared between the two varieties. According to the SNP distribution patterns, the polymorphism hotspot and genetic similar regions between them were identified. The mutation types of polymorphism hotspot and genetic similar regions were compared and analyzed. The gene enrichment analysis was carried out in the specific CNV regions and the polymorphism hotspots regions of the two varieties. 【Result】In addition to the plant height and peduncle internode length, Kunlun 14 and Kunlun 15 had high similarity in important agronomic and grain traits. Compared with the barley reference genome of Morex, the two varieties had a common CNV variation interval of 83 Mb, and the length of cultivar-specific CNV variation interval in Kunlun 14 and Kunlun 15 was 37 Mb and 38 Mb, respectively. There were 564 genes in the CNV region specific to Kunlun 14, which were significantly enriched in 15 GO terms, while 519 genes were in the CNV region specific to Kunlun 15 and were significantly enriched in 7 GO terms. Based on the SNP distribution patterns, 1 706 Mb polymorphism hotspots and 2 411 Mb sequence similarity intervals of Kunlun 14 and Kunlun 15 were identified at the whole genome level, and the polymorphism hotspots were mainly distributed on 3H, 6H and 7H. The polymorphism hotspots regions contained 16 768 genes, whose functions were mainly related to plant growth and development. There was no significant difference between polymorphism hotspot regions and genetic similar regions in SNP variation type, InDel length distribution and the proportion of mutations affecting coding function. The SNPs and InDel mutations in polymorphism hotspot and genetic similar regions were mainly missense mutations and followed by synonymy mutations. 【Conclusion】The field phenotypes of Kunlun 14 and Kunlun 15 were similar. At the whole genome level, a total of 75 Mb CNV variation regions between them and the polymorphism hotspot regions were mainly distributed at 3H, 6H and 7H.

Key words: naked barley (Hordeum vulgare var. coeleste L.), Kunlun 14, Kunlun 15, re-sequencing, polymorphism

Fig. 1

Morphological comparison between Kunlun 14 and Kunlun 15 A: Comparison of plant architecture between Kunlun 14 and Kunlun 15; B: Comparison of panicle between Kunlun 14 and Kunlun 15; C: Comparison of kernel between Kunlun 14 and Kunlun 15"

Table 1

Comparison of agronomic traits between Kunlun 14 and Kunlun 15"

表型
Phenotype
昆仑14
Kunlun 14
昆仑15
Kunlun 15
差异显著性
Statistical significance of the difference
均值±标准差
Mean±SE
变异系数
CV (%)
均值±标准差
Mean±SE
变异系数
CV (%)
P
株高Plant height (cm) 59.91±6.03 10.07 49.48±5.15 10.41 1.51×10-6
穗长Spike length (cm) 8.64±1.14 13.17 8.11±0.76 9.34 0.09
小穗数Spikelet number per spike 23.00±2.00 12.20 23.00±2.00 7.92 0.03
穗粒数Grain number per spike 56.00±7.00 12.47 62.00±8.00 12.24 0.04
穗下节长Peduncle length (cm) 22.16±4.31 19.44 14.11±3.09 21.93 8.89×10-8
千粒重Thousand seed weight (g) 48.71±1.78 3.65 43.20±3.41 7.88 0.068
粒长Grain length (mm) 7.66±0.32 4.14 7.62±0.40 5.27 0.916
粒宽Grain width (mm) 3.69±0.16 4.46 3.57±0.15 4.07 0.389

Table 2

Summary of SNPs and InDels in Kunlun 14 and Kunlun 15"

染色体
Chromosome
SNP个数No. of SNPs InDel个数No. of InDels
昆仑14 Kunlun 14 昆仑15 Kunlun 15 昆仑14 Kunlun 14 昆仑15 Kunlun 15
1H 2572435 2493453 194793 189090
2H 2213470 2794295 178506 228558
3H 4418644 4449240 315331 325344
4H 3633885 3738124 255476 275711
5H 4332116 4490697 303485 319914
6H 3431778 3850008 244196 277789
7H 5004643 4797651 354226 349414
总计Total 25606971 26613468 1846013 1965820

Table 3

Summary for the CNV regions identified in Kunlun 14 and Kunlun 15"

染色体
Chromosome
昆仑14的特有CNV变异区间
Specific CNV regions in Kunlun 14
昆仑15的特有CNV变异区间
Specific CNV regions in Kunlun 15
两品种的共有CNV变异区间
Common CNV regions in the two cultivars
长度
Length (Mb)
占比
<BOLD>P</BOLD>ercentage (%)
长度
Length (Mb)
占比
<BOLD>P</BOLD>ercentage (%)
长度
Length (Mb)
占比
<BOLD>P</BOLD>ercentage (%)
1H 3 0.58 2 0.39 13 2.51
2H 5 0.75 8 1.20 16 2.40
3H 5 0.80 7 1.13 4 0.64
4H 2 0.33 2 0.33 6 0.98
5H 9 1.53 2 0.34 11 1.87
6H 2 0.36 11 1.96 11 1.96
7H 11 1.74 6 0.95 22 3.48
全基因组Whole genome 37 0.88 38 0.90 83 1.98

Fig. 2

GO enrichment analysis of the genes in Kunlun 14 (A) and Kunlun 15 (B) specified CNV regions"

Fig. 3

SNP distribution in the whole genome of Kunlun 14 and Kunlun 15"

Fig. 4

GO enrichment analysis of the genes in the SNP hotpot regions between Kunlun 14 and Kunlun 15"

Fig. 5

Mutation types of SNPs (A) and length distributions of InDels (B) in the polymorphism hotpot regions and genetic similar regions between Kunlun 14 and Kunlun 15"

Table 4

Statistics of the effects on protein coding functions between Kunlun 14 and Kunlun 15"

变异所在区间
Region of
variations
错义突变
Missense mutation
同义突变
Synonymous mutation
提前终止突变
Stop-gained mutation
终止子丢失突变
Stop-lost mutation
移码突变
Frame-shift mutation
数量
Count
占比<BOLD>P</BOLD>ercentage (%) 数量
Count
占比<BOLD>P</BOLD>ercentage (%) 数量
Count
占比<BOLD>P</BOLD>ercentage (%) 数量
Count
占比<BOLD>P</BOLD>ercentage (%) 数量
Count
占比<BOLD>P</BOLD>ercentage (%)
多态性热点区间
Differential genetic region
69558 49.83 63210 45.28 1083 0.78 204 0.15 5535 3.97
相似区间
Similar genetic region
37557 49.61 34190 45.16 734 0.97 161 0.21 3067 4.05
全部 Total 107115 49.75 97400 45.24 1817 0.84 365 0.17 8602 4.00

Table 5

Lists of candidate genes for phenotypic difference between Kunlun 14 and Kunlun 15"

基因
Gene
基因编号
Gene ID
位置
Position
区间
Region
基因功能注释
Function annotation
HvAP2 HORVU.MOREX.r3.2HG0204770 2H:635314602:635318153 多态性热点区间
Polymorphic hotpot regions
APETALA2蛋白
APETALA2 protein
HvBRI HORVU.MOREX.r3.3HG0285210 3H:464679001:464682900 多态性热点区间
Polymorphic hotpot regions
油菜素内酯不敏感蛋白
Brassinosteroid-insensitive protein
Hox12 HORVU.MOREX.r3.4HG0399240 4H:547157498:547158977 序列相似区间
Genetic similar regions
亮氨酸同源拉链蛋白
Homeobox-leucine zipper protein 12
HORVU.MOREX.r3.2HG0131280 2H:138929371:138930682 序列相似区间
Genetic similar regions
同源结构域亮氨酸拉链蛋白
Homeodomain leucine zipper protein
GA20ox HORVU.MOREX.r3.3HG0307130 3H:563923790:563926675 多态性热点区间
Polymorphic hotpot regions
赤霉素20氧化酶
Gibberellin 20 oxidase
HORVU.MOREX.r3.1HG0065220 1H:427826953:427829989 序列相似区间
Genetic similar regions
赤霉素20氧化酶
Gibberellin 20 oxidase
HORVU.MOREX.r3.5HG0536610 5H:583942988:583944186 序列相似区间
Genetic similar regions
赤霉素20氧化酶
Gibberellin 20 oxidase

Fig. 6

Annotation of SNPs (A) and InDels (B) in the candidate genes"

[1]
ZENG X Q, GUO Y, XU Q J, MASCHER M, GUO G G, LI S C, MAO L K, LIU Q F, XIA Z F, ZHOU J H, YUAN H J, TAI S S, WANG Y L, WEI Z X, SONG L, ZHA S, LI S M, TANG Y W, BAI L J, ZHUANG Z H, HE W M, ZHAO S C, FANG X D, GAO Q, YIN Y, WANG J, YANG H M, ZHANG J, HENRY R J, STEIN N, TASHI N. Origin and evolution of Qingke barley in Tibet. Nature Communications, 2018, 9(1): 5433.

doi: 10.1038/s41467-018-07920-5 pmid: 30575759
[2]
LIU H B, LI Y, YOU M L, LIU X. Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. International Journal of Biological Macromolecules, 2021, 182: 1192-1199.

doi: 10.1016/j.ijbiomac.2021.05.043 pmid: 33989685
[3]
GUO T L, HORVATH C, CHEN L, CHEN J, ZHENG B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends in Food Science & Technology, 2020, 103: 109-117.
[4]
吴昆仑, 姚晓华, 迟德钊, 姚有华, 党斌, 张志斌, 任又成, 谢德庆. 粮草双高青稞新品种选育及产业化. 青海科技, 2018, 25(1): 28-31.
WU K L, YAO X H, CHI D Z, YAO Y H, DANG B, ZHANG Z B, REN Y C, XIE D Q. Breeding and industrialization of new highland barley varieties with double high grain and grass. Qinghai Science and Technology, 2018, 25(1): 28-31. (in Chinese)
[5]
任又成, 张志斌, 吴昆仑, 蒋礼玲, 姚晓华. 青稞新品种昆仑14号. 中国种业, 2014(8): 85.
REN Y C, ZHANG Z B, WU K L, JIANG L L, YAO X H. A new highland barley variety Kunlun 14. China Seed Industry, 2014(8): 85. (in Chinese)
[6]
任又成, 吴昆仑, 姚晓华, 蒋礼玲, 陈丽华. 高产优质青稞新品种昆仑15号的选育及其特征特性. 麦类作物学报, 2014, 34(8): 封3.
REN Y C, WU K L, YAO X H, JIANG L L, CHEN L H. Breeding and characteristics of a new highland barley variety Kunlun 15 with high yield and good quality. Journal of Triticeae Crops, 2014, 34(8): inside back cover. (in Chinese)
[7]
MASCHER M, GUNDLACH H, HIMMELBACH A, BEIER S, TWARDZIOK S O, WICKER T, RADCHUK V, DOCKTER C, HEDLEY P E, RUSSELL J, BAYER M, RAMSAY L, LIU H, HABERER G, ZHANG X Q, ZHANG Q S, BARRERO R A, LI L, TAUDIEN S, GROTH M, FELDER M, HASTIE A, ŠIMKOVÁ H, STAŇKOVÁ H, VRÁNA J, CHAN S, MUÑOZ-AMATRIAÍN M, OUNIT R, WANAMAKER S, BOLSER D, COLMSEE C, SCHMUTZER T, ALIYEVA-SCHNORR L, GRASSO S, TANSKANEN J, CHAILYAN A, SAMPATH D, HEAVENS D, CLISSOLD L, CAO S J, CHAPMAN B, DAI F, HAN Y, LI H, LI X, LIN C Y, MCCOOKE J K, TAN C, WANG P H, WANG S B, YIN S Y, ZHOU G F, POLAND J A, BELLGARD M I, BORISJUK L, HOUBEN A, DOLEŽL J, AYLING S, LONARDI S, KERSEY P, LANGRIDGE P, MUEHLBAUER G J, CLARK M D, CACCAMO M, SCHULMAN A H, MAYER K F X, PLATZER M, CLOSE T J, SCHOLZ U, HANSSON M, ZHANG G P, BRAUMANN I, SPANNAGL M, LI C D, WAUGH R, STEIN N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651): 427-433.
[8]
ZENG X Q, LONG H, WANG Z, ZHAO S C, TANG Y W, HUANG Z Y, WANG Y L, XU Q J, MAO L K, DENG G B, YAO X M, LI X F, BAI L J, YUAN H J, PAN Z F, LIU R J, CHEN X, WANGMU Q M, CHEN M, YU L L, LIANG J J, DUNZHU D W, ZHENG Y, YU S Y, LUOBU Z X, GUANG X M, LI J, DENG C, HU W S, CHEN C H, TABA X N, GAO L Y, LV X D, BEN ABU Y, FANG X D, NEVO E, YU M Q, WANG J, TASHI N. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1095-1100.
[9]
DAI F, WANG X L, ZHANG X Q, CHEN Z H, NEVO E, JIN G L, WU D Z, LI C D, ZHANG G P. Assembly and analysis of a Qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnology Journal, 2018, 16(3): 760-770.

doi: 10.1111/pbi.12826 pmid: 28871634
[10]
JAYAKODI M, PADMARASU S, HABERER G, BONTHALA V S, GUNDLACH H, MONAT C, LUX T, KAMAL N, LANG D, HIMMELBACH A, ENS J, ZHANG X Q, ANGESSA T T, ZHOU G F, TAN C, HILL C, WANG P H, SCHREIBER M, BOSTON L B, PLOTT C, JENKINS J, GUO Y, FIEBIG A, BUDAK H, XU D D, ZHANG J, WANG C C, GRIMWOOD J, SCHMUTZ J, GUO G G, ZHANG G P, MOCHIDA K, HIRAYAMA T, SATO K, CHALMERS K J, LANGRIDGE P, WAUGH R, POZNIAK C J, SCHOLZ U, MAYER K F X, SPANNAGL M, LI C D, MASCHER M, STEIN N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588(7837): 284-289.
[11]
杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析. 作物学报, 2020, 46(12): 1870-1883.

doi: 10.3724/SP.J.1006.2020.01009
YANG Z Z, WANG Z H, HU Z R, XIN M M, YAO Y Y, PENG H R, YOU M S, SU Z Q, GUO W L. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agronomica Sinica, 2020, 46(12): 1870-1883. (in Chinese)
[12]
陶星星, 吴亚辉, 刘蕊, 李国华, 杜小珍, 张志标. 三红蜜柚、琯溪蜜柚与水晶香柚的基因组序列多态性分析. 中国种业, 2022(5): 66-70.
TAO X X, WU Y H, LIU R, LI G H, DU X Z, ZHANG Z B. Genome sequence polymorphism analysis of ‘Sanhongyou’ ‘Guanxiyou’ and ‘Shuijingxiangyou’. China Seed Industry, 2022(5): 66-70. (in Chinese)
[13]
葸玮, 郝晨阳, 李甜, 刘云川, 焦成智, 王化俊, 张学勇. 基因组时代-麦类基因组学研究现状及趋势. 植物遗传资源学报, 2022, 23(4): 929-942.

doi: 10.13430/j.cnki.jpgr.20211227005
XI W, HAO C Y, LI T, LIU Y C, JIAO C Z, WANG H J, ZHANG X Y. The era genomics: Current status and future trend of genomics research Triticeae crops. Journal of Plant Genetic Resources, 2022, 23(4): 929-942. (in Chinese)
[14]
UAUY C. Wheat genomics comes of age. Current Opinion in Plant Biology, 2017, 36: 142-148.

doi: S1369-5266(16)30230-8 pmid: 28346895
[15]
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.

doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[16]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[17]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[18]
陈同睿, 王蕾, 王寒冬, 尤恩, 邓超, 边海燕, 沈裕虎, 徐金青. 利用SNP标记鉴定青稞种质资源. 麦类作物学报, 2024, 44(1): 65-73.
CHEN T R, WANG L, WANG H D, YOU E, DENG C, BIAN H Y, SHEN Y H, XU J Q. Identification of the naked barley germplasms using SNP markers. Journal of Triticeae Crops, 2024, 44(1): 65-73. (in Chinese)
[19]
CINGOLANI P, PLATTS A, WANG L L, COON M, NGUYEN T, WANG L, LAND S J, LU X Y, RUDEN D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6(2): 80-92.
[20]
QUINLAN A R, HALL I M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 26(6): 841-842.

doi: 10.1093/bioinformatics/btq033 pmid: 20110278
[21]
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.

doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[22]
TSUCHIYA T. Genetics of uz, uz2 and uz3 for semi-brachytic mutations in barley. Barley Genetics Newsletter, 1972, 2: 87-90.
[23]
HAAHR V. Studies of an induced, high-yielding dwarf-mutant of spring barley// Proceedings of the Third International Barley Genetics Symposium (Garching, Verlag Karl Thiemig, München, 1975), 1976, 215.
[24]
THOMAS W B, POWELL W, WOOD W. The chromosomal location of the dwarfing gene present in the spring barley variety Golden Promise. Heredity, 1984, 53(1): 177-183.
[25]
SWENSON S P, WELLS D G. The linkage relations of four genes in chromosome I of Barley. Agronomy Journal, 1944, 36(5): 429-435.
[26]
姚佳延, 于国琦, 洪益, 吕超, 许如根. 大麦株高类性状的遗传分析与QTL定位. 华北农学报, 2021, 36(2): 28-32.

doi: 10.7668/hbnxb.20191631
YAO J Y, YU G Q, HONG Y, C, XU R G. Genetic analysis and QTL mapping of plant height-related characters in barley. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 28-32. (in Chinese)

doi: 10.7668/hbnxb.20191631
[27]
JIA Q J, ZHANG J J, WESTCOTT S, ZHANG X Q, BELLGARD M, LANCE R, LI C D. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Functional & Integrative Genomics, 2009, 9(2): 255-262.
[28]
HEDDEN P. The genes of the green revolution. Trends in Genetics, 2003, 19(1): 5-9.

doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[29]
PATIL V, MCDERMOTT H I, MCALLISTER T, CUMMINS M, SILVA J C, MOLLISON E, MEIKLE R, MORRIS J, HEDLEY P E, WAUGH R, DOCKTER C, HANSSON M, MCKIM S M. APETALA2 control of barley internode elongation. Development, 2019, 146(11): dev170373.
[30]
GAO S P, FANG J, XU F, WANG W, CHU C C. Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. The Plant Cell, 2016, 28(3): 680-695.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[4] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[5] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[6] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[7] XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications [J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004.
[8] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[9] WANG Jia, ZENG ZhaoQiong, LIANG JianQiu, YU XiaoBo, WU HaiYing, ZHANG MingRong. Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743-2757.
[10] QI ChuanXiang, XU KUI, MU YuLian, YANG ShuLin, LI Kui, WU TianWen. The Cloning of Porcine CBR1 Gene’s Different Copy Forms and Analysis of Its Polymorphism [J]. Scientia Agricultura Sinica, 2018, 51(8): 1607-1616.
[11] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
[12] GAO XiaoLi, HU Jiang, GUO ShuZhen, SHI BinGang, XIE JianPeng, LUO YuZhu, WANG JiQing, MU YongJuan. Polymorphisms of DGAT1 Gene and Their Association with Milk Quality Traits in Yak [J]. Scientia Agricultura Sinica, 2017, 50(16): 3215-3225.
[13] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[14] MA Xiao-meng, XUAN Jun-li,WANG Hui-hua,YUAN Ze-hu, WU Ming-ming, ZHU Cai-ye, LIU Rui-zao, WEI Cai-hong, ZHAO Fu-ping, DU Li-xin, ZHANG Li. Association of the RIPK2 Gene Genetic Variation with Ujumqin Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2016, 49(7): 1391-1407.
[15] WU Yi-chen, DU Xing, LI Ping-hua, WU Yan, WANG Jun-shun, LIU Hong-lin, LI Qi-fa. Sequence Cloning, Tissue Expression Profile and Polymorphism of VRTN Gene in Suhuai Pig [J]. Scientia Agricultura Sinica, 2016, 49(18): 3639-3648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!