Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3350-3365.doi: 10.3864/j.issn.0578-1752.2024.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Unmanned Dry Direct-Seeded Mode on Yield, Grain Quality of Rice and Its Economic Benefits

WENG WenAn1(), XING ZhiPeng1, HU Qun1, WEI HaiYan1, SHI YangJie2, XI XiaoBo2, LI XiuLi3, LIU GuiYun3, CHEN Juan3, YUAN FengPing3, MENG Yi1, LIAO Ping1(), GAO Hui1, ZHANG HongCheng1()   

  1. 1 Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou 225009, Jiangsu
    2 College of Mechanical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu
    3 Agricultural Science and Technology Research Institute of Jiangsu Dazhong Farm Group Co., Ltd., Dafeng 224135, Jiangsu
  • Received:2024-01-25 Accepted:2024-07-17 Online:2024-09-01 Published:2024-09-04
  • Contact: LIAO Ping, ZHANG HongCheng

Abstract:

【Objective】This study aimed to provide the theoretical and technical support for the innovation of green, high-yield, high-quality and high-efficiency unmanned dry direct-seeded (UDDS) cultivation technology of rice.【Method】Medium-maturing medium japonica rice (Nanjing 5718) was selected as the experimental material, with unmanned carpet seedling mechanical transplantated (UCSMT), and conventional carpet seedling mechanical transplantated (CSMT) serving as control methods. A three-year field experiment was conducted to assess the impact of UDDS on growth, yield formation, quality characteristics of rice, and its economic benefits.【Result】(1) Although UDDS was carried out with 2-3 days earlier than the control, it exhibited a full growth cycle that was 12-13 days shorter than those of UCSMT and CSMT, primarily due to the shortened period from sowing to jointing stage. (2) The average yield under UDDS from 2020 to 2022 was 10.5 t·hm-2, representing a 3.0% increase than that of CSMT, although this difference was not statistically significant. In comparison with UCSMT, UDDS exhibited a significant yield reduction of 5.4%, and this decrease could be attributed to a reduction in the spikelet number per panicle, resulting in fewer total spikelet numbers and a decrease in dry matter accumulation and transport capacity from heading to maturity. (3) Compared with CSMT, UDDS exhibited slightly reduced processing quality, amylose, and protein contents, with no significant differences were observed. However, the significant reductions in chalkiness percentage and degree were noted, while the taste value increased, though not significantly. Compared with UCSMT, UDDS demonstrated a significant decrease in head milled rice rate, chalkiness percentage, degree, and amylose content, and protein content also decreased, though not significantly. Additionally, UDDS exhibited higher RVA peak viscosity and a significant improvement in taste value. (4) Under the UDDS mode, the cost of rice planting decreased, and the net income increased by 1.15 × 103 yuan·hm-2 and 0.93 × 103 yuan·hm-2, than that under UCSMT and CSMT, respectively.【Conclusion】In the rice-wheat rotation system, UDDS realized the synergy of high yield and income increase, and improved the appearance quality and cooking and eating quality of rice, the UDDS cultivation technology should be optimized in terms of improving the total spikelet number, accumulation and translocation of dry matter during filling stage, thereby getting the goals of high rice yield, great quality, and efficient synergy, simultaneously.

Key words: rice, unmanned, dry direct-seeded, grain yield, rice quality, economic benefit

Fig. 1

Daily average temperature, rainfall and effective accumulated temperature during the filling period of rice growing season from 2020 to 2022"

Table 1

Soil properties in the test site from 2020 to 2022"

年份
Year
pH 有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
2020 7.76 23.5 1.2 45.5 195.2
2021 7.74 25.4 1.3 42.1 203.1
2022 7.83 21.3 1.3 54.9 178.2

Table 2

The key growth stages of rice under different cultivation methods"

年份
Year
处理
Treatment
拔节期
Jointing
(Month-Day)
抽穗期
Heading
(Month-Day)
成熟期
Maturity
(Month-Day)
播种期—拔节期
Seeding-Jointing
(d)
拔节期—抽穗期
Jointing-Heading (d)
抽穗期—成熟期
Heading-Maturity (d)
全生育期
Total
(d)
2020 T1 08-05 09-03 10-28 55 29 55 139
T2 08-03 08-27 10-23 70 24 57 151
T3 08-03 08-27 10-23 70 24 57 151
2021 T1 08-04 09-02 10-27 57 29 55 141
T2 08-01 08-25 10-20 74 24 56 154
T3 08-01 08-25 10-20 74 24 56 154
2022 T1 08-04 09-04 10-29 55 31 55 141
T2 07-31 08-27 10-23 69 27 57 153
T3 07-31 08-27 10-23 69 27 57 153

Table 3

Differences of rice yield and its components under different cultivation methods"

年份
Year
处理
Treatment
穗数
Panicle number
(×104·hm-2)
每穗粒数
Spikelet number per panicle
总颖花数
Total spikelet number (×104·hm-2)
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
产量
Yield
(t·hm-2)
2020 T1 348.0a 111.7b 38889.3ab 95.4b 28.8a 10.0b
T2 302.5b 129.8a 39374.3a 97.9a 28.5a 10.5a
T3 285.0c 131.0a 37856.0b 95.0b 28.4a 9.7b
2021 T1 360.2a 112.2b 40360.2b 97.9a 28.5a 11.2b
T2 338.0ab 132.0a 44595.2a 94.7b 28.1a 11.8a
T3 302.5b 133.9a 40504.4b 95.0b 28.1a 10.9b
2022 T1 380.0a 107.8b 40911.9b 95.2a 27.6a 10.2b
T2 356.5b 125.1a 44547.9a 93.3a 27.2a 10.9a
T3 309.0c 128.2a 39661.5b 92.6a 27.3a 9.9b
年份Year(Y) ** NS * * ** **
处理Treatment(T) ** ** ** ** NS **
Y×T NS NS NS ** NS NS

Table 4

Effects of different methods on dry matter accumulation of different organs at heading and maturity of rice"

生育时期
Growth stage
年份
Year
处理
Treatment
叶片
Leaf
茎鞘
Stem-sheath

Panicle
总量
Total
抽穗期
Heading
2021 T1 4.08a 7.97a 1.60a 13.66a
T2 4.32a 7.76b 1.66a 13.73a
T3 4.24a 7.67b 1.67a 13.58a
2022 T1 3.67b 7.62a 1.47b 12.76b
T2 4.05a 7.62a 1.66a 13.33a
T3 3.65b 7.39b 1.52b 12.56b
年份Year(Y) * NS * **
处理Treatment(T) ** ** ** **
Y×T * NS * **
成熟期
Maturity
2021 T1 3.06a 7.73a 11.09b 21.88b
T2 3.19a 7.41b 12.20a 22.80a
T3 3.12a 7.42b 11.02b 21.57b
2022 T1 2.87b 7.47a 10.55b 20.89b
T2 3.06a 7.26b 11.71a 22.02a
T3 2.82b 7.11b 10.44b 20.37b
年份Year(Y) ** NS * **
处理Treatment(T) * ** ** **
Y×T NS NS NS NS

Table 5

Effects of different cultivation methods on dry matter translocation in rice organs"

年份Year 处理Treatment 叶片Leaf 茎鞘Stem-sheath 穗部干物质增加量
Increase of dry
matter in panicle (t·hm-2)
干物质转运对穗部
的贡献率
Contribution of dry matter translocation to panicle (%)
转运量
Translocation amount (t·hm-2)
转运率Translocation
rate (%)
转运量
Translocation amount (t·hm-2)
转运率Translocation rate (%)
2021 T1 1.01a 24.88a 0.24a 3.03b 9.49b 13.26a
T2 1.13a 26.01a 0.35a 4.50ab 10.54a 14.00a
T3 1.11a 26.27a 0.39a 5.11a 9.34b 14.28a
2022 T1 0.80a 21.79a 0.15b 2.00a 9.08b 10.48b
T2 0.99a 24.53a 0.36a 4.72a 10.02a 13.56a
T3 0.73a 22.23a 0.28ab 3.74a 8.92b 11.65ab
年份Year(Y) * NS NS NS * *
处理Treatment(T) NS NS * * ** *
Y×T NS NS NS NS NS NS

Table 6

Effects of different cultivation methods on processing and appearance quality of rice"

年份
Year
处理
Treatment
加工品质Processing quality 外观品质Appearance quality
糙米率
Brown rice
rate (%)
精米率
Milled rice
rate (%)
整精米率
Head milled rice rate (%)
长宽比
Length-width
ratio
垩白粒率
Chalkiness percentage (%)
垩白度
Chalkiness degree (%)
2020 T1 84.3a 71.9a 67.5b 1.7a 16.1b 4.6b
T2 83.9a 73.6a 69.8a 1.7a 31.2a 9.1a
T3 84.6a 72.7a 68.4ab 1.7a 30.0a 7.8ab
2021 T1 85.3a 74.3a 69.7a 1.7a 21.5b 6.7b
T2 86.3a 75.4a 71.6a 1.7a 34.5a 12.5a
T3 85.5a 75.1a 71.0a 1.7a 32.4a 10.9a
2022 T1 84.1a 73.8a 68.1b 1.7a 8.6b 3.0b
T2 84.5a 74.4a 70.1a 1.7a 27.6a 6.7a
T3 84.4a 74.2a 69.5ab 1.7a 26.5a 6.6a
年份Year (Y) NS NS * NS * **
处理Treatment (T) NS NS * NS ** **
Y×T NS NS NS NS NS NS

Table 7

Effects of different cultivation methods on protein content and cooking and eating quality of rice"

年份
Year
处理
Treatment
蛋白质含量
Protein content (%)
直链淀粉含量
Amylose content (%)
食味值
Taste value
食味特征值Taste value parameter
外观
Appearance
硬度
Hardness
黏度
Viscosity
平衡度
Balance degree
2020 T1 7.6a 10.3ab 71.7a 6.6a 6.7a 7.5a 6.8a
T2 8.0a 11.0a 68.0a 6.2a 6.8a 6.6b 6.3a
T3 7.8a 9.6b 70.7a 6.5a 6.7a 7.0ab 6.7a
2021 T1 7.7a 10.4ab 71.3a 6.8a 6.6b 6.9a 6.8a
T2 8.3a 11.6a 67.3b 5.7b 7.1a 5.7b 6.8a
T3 8.1a 10.2b 69.3a 6.5a 6.7b 6.9a 6.5a
2022 T1 7.5a 10.1b 71.0a 6.6a 6.8b 6.7a 6.5a
T2 7.9a 12.0a 64.5b 5.5b 7.2a 5.3b 6.7a
T3 7.8a 9.8b 70.3a 6.5a 6.7b 7.0a 6.7a
年份Year (Y) NS NS NS NS NS ** NS
处理Treatment (T) NS ** ** ** ** ** NS
Y×T NS NS NS NS ** * NS

Table 8

Effects of different cultivation methods on RVA profile characteristics of rice"

年份
Year
处理
Treatment
峰值黏度
Peak viscosity
热浆黏度
Trough viscosity
最终黏度
Final viscosity
崩解值
Breakdown
消减值
Setback
回复值
Consistence
2020 T1 2922b 1751a 2296a 1172a -688a 546a
T2 2712c 1664a 2212a 1048a -500a 548a
T3 3066a 1577a 2558a 1039a -508a 531a
2021 T1 3160b 1866a 2457a 1294a -708a 591a
T2 2972c 1689a 2322a 1302a -650a 634a
T3 3236a 1975a 2536a 1261a -700a 561a
2022 T1 3695a 2003a 2719a 1693a -976a 717a
T2 3601a 2040a 2799a 1561a -802a 759a
T3 3701a 2007a 2699a 1636a -943a 693a
年份Year (Y) ** NS * ** * **
处理Treatment (T) ** NS NS NS NS NS
Y×T NS NS NS NS NS NS

Fig. 2

Correlation analysis of yield and its components, effective accumulated temperature and dry matter"

Table 9

Effects of different cultivation methods on economic benefits of rice (×103 yuan·hm-2)"

处理Treatment 投入成本Cost 收益Income
种子
Seed
肥料
Fertilizer
植保
Plant protection
耕整地
Tillage
种植
Planting
收割
Harvest
人工
Labor
其他
Others
总计
Total
产量收益
Yield income
净收益
Net income
T1 0.60 4.50 2.18 0.00 0.45 1.13 2.48 4.25 15.57 28.35 12.78
T2 0.27 4.50 1.95 1.13 0.98 1.13 3.15 5.25 18.35 29.97 11.63
T3 0.27 1.73 1.95 1.13 1.10 1.13 3.15 5.25 15.69 27.54 11.85
[1]
胡志全, 吴永常, 刘景辉, 褚庆全. 中国二熟耕作区粮食生产现状、潜力与对策. 中国生态农业学报, 2002, 10(3): 109-111.
HU Z Q, WU Y C, LIU J H, CHU Q Q. Situation, potential and strategies of grain production in double cropping region of China. Chinese Journal of Eco-Agriculture, 2002, 10(3): 109-111. (in Chinese)
[2]
张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7):1273-1289. doi: 10.3864/j.issn.0578-1752.2014.07.004.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. doi: 10.3864/j.issn.0578-1752.2014.07.004. (in Chinese)
[3]
SHI M, PAUDEL K P, CHEN F B. Mechanization and efficiency in rice production in China. Journal of Integrative Agriculture, 2021, 20(7): 1996-2008.

doi: 10.1016/S2095-3119(20)63439-6
[4]
YANG Z Y, CHENG Q Y, LIAO Q, FU H, ZHANG J Y, ZHU Y M, T F, SUN Y J, MA J, LI N. Can reduced-input direct seeding improve resource use efficiencies and profitability of hybrid rice in China? Science of The Total Environment, 2022, 833: 155186.
[5]
罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展. 华南农业大学学报, 2019, 40(5): 1-13.
LUO X W, WANG Z M, ZENG S, ZANG Y, YANG W W, ZHANG M H. Recent advances in mechanized direct seeding technology for rice. Journal of South China Agricultural University, 2019, 40(5): 1-13. (in Chinese)
[6]
罗锡文, 廖娟, 胡炼, 周志艳, 张智刚, 臧英, 汪沛, 何杰. 我国智能农机的研究进展与无人农场的实践. 华南农业大学学报, 2021, 42(6): 8-17.
LUO X W, LIAO J, HU L, ZHOU Z Y, ZHANG Z G, ZANG Y, WANG P, HE J. Research progress of intelligent agricultural machinery and practice of unmanned farm in China. Journal of South China Agricultural University, 2021, 42(6): 8-17. (in Chinese)
[7]
张洪程, 胡雅杰, 戴其根, 邢志鹏, 魏海燕, 孙成明, 高辉, 胡群. 中国大田作物栽培学前沿与创新方向探讨. 中国农业科学, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004.
ZHANG H C, HU Y J, DAI Q G, XING Z P, WEI H Y, SUN C M, GAO H, HU Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004. (in Chinese)
[8]
YANG Z Y, ZHU Y M, ZHANG X L, LIAO Q, FU H, CHENG Q Y, CHEN Z K, SUN Y J, MA J, ZHANG J Y, LI L Y, LI N. Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and economic benefits. Energy, 2023, 273: 127223.
[9]
邢志鹏, 朱明, 吴培, 钱海军, 曹伟伟, 胡雅杰, 郭保卫, 魏海燕, 许轲, 霍中洋, 戴其根, 张洪程. 稻麦两熟制条件下钵苗机插方式对不同类型水稻品种米质的影响. 作物学报, 2017, 43(4): 581-595.
XING Z P, ZHU M, WU P, QIAN H J, CAO W W, HU Y J, GUO B W, WEI H Y, XU K, HUO Z Y, DAI Q G, ZHANG H C. Effect of mechanical transplanting with pothole seedlings on grain quality of different types of rice in rice-wheat rotation system. Acta Agronomica Sinica, 2017, 43(4): 581-595. (in Chinese)
[10]
许轲, 常勇, 张强, 霍中洋, 张洪程, 戴其根. 淮北地区水稻高产机械栽植方式对比. 农业机械学报, 2014, 45(12): 117-125.
XU K, CHANG Y, ZHANG Q, HUO Z Y, ZHANG H C, DAI Q G. Optimal mechanical transplanting method for high-yield rice in Huaibei area. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 117-125. (in Chinese)
[11]
李木英, 陈关, 石庆华, 潘晓华, 谭雪明. 播种量对直播早稻群体质量和产量的影响. 江西农业大学学报, 2010, 32(3): 419-424.
LI M Y, CHEN G, SHI Q H, PAN X H, TAN X M. Effect of seeding amount on the population quality and grain yield of direct-seeded rice. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(3): 419-424. (in Chinese)
[12]
李杰, 杨洪建, 邓建平. 江苏水稻生产现状和新形势下绿色可持续发展的技术对策. 中国稻米, 2017, 23(2): 41-44.

doi: 10.3969/j.issn.1006-8082.2017.02.010
LI J, YANG H J, DENG J P. Current situation of rice production in Jiangsu Province and technical countermeasures for the green and sustainable development under the new circumstances. China Rice, 2017, 23(2): 41-44. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2017.02.010
[13]
伍龙梅, 张悦, 刘妍, 邹积祥, 杨陶陶, 包晓哲, 黄庆, 陈青春, 蒋耀智, 梁巧丽, 张彬. 直播稻研究进展及发展对策分析. 中国农学通报, 2023, 39(6): 1-5.

doi: 10.11924/j.issn.1000-6850.casb2022-0154
WU L M, ZHANG Y, LIU Y, ZOU J X, YANG T T, BAO X Z, HUANG Q, CHEN Q C, JIANG Y Z, LIANG Q L, ZHANG B. Direct seeding rice: Research progress and development strategy. Chinese Agricultural Science Bulletin, 2023, 39(6): 1-5. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0154
[14]
韩超, 许方甫, 卞金龙, 徐栋, 裘实, 赵晨, 朱盈, 刘国栋, 张洪程, 魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响. 作物学报, 2018, 44(11): 1681-1693.

doi: 10.3724/SP.J.1006.2018.01681
HAN C, XU F F, BIAN J L, XU D, QIU S, ZHAO C, ZHU Y, LIU G D, ZHANG H C, WEI H Y. Effects of mechanical planting methods on yield and quality of Japonica rice with good taste and different growth durations in Huaibei Region. Acta Agronomica Sinica, 2018, 44(11): 1681-1693. (in Chinese)
[15]
孙永健, 郑洪帧, 徐徽, 杨志远, 贾现文, 程洪彪, 马均. 机械旱直播方式促进水稻生长发育提高产量. 农业工程学报, 2014, 30(20): 10-18.
SUN Y J, ZHENG H Z, XU H, YANG Z Y, JIA X W, CHENG H B, MA J. Mechanical dry direct-sowing modes improving growth, development and yield of rice. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 10-18. (in Chinese)
[16]
李绍平, 邢志鹏, 田晋钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 机械旱直播方式对水稻产量和光合物质生产特征的影响. 农业工程学报, 2022, 38(7): 1-9.
LI S P, XING Z P, TIAN J Y, CHENG S, HU Q, HU Y J, GUO B W, WEI H Y, ZHANG H C. Effects of mechanical dry direct seeding ways on rice yield and photosynthetic material production characteristics. Transactions of the Chinese Society of Agricultural Engineering. 2022, 38(7): 1-9. (in Chinese)
[17]
TIAN J Y, LI S P, CHENG S, LIU Q Y, ZHOU L, TAO Y, XING Z P, HU Y J, GUO B W, WEI H Y, ZHANG H C. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return. Journal of Integrative Agriculture, 2023, 22(2): 400-416.

doi: 10.1016/j.jia.2022.08.064
[18]
叶伟伟. 双轴旋耕施肥贴地宽带播种复式作业机设计及试验研究[D]. 扬州: 扬州大学, 2019.
YE W W. Design and experimental research of double axis rotary tillage fertilizing and land seeding compound operation machine[D]. Yangzhou: Yangzhou university, 2019. (in Chinese)
[19]
XI X B, GAO W J, GU C J, SHI Y J, HAN L J, ZHANG Y F, ZHANG B F, ZHANG R H. Optimisation of no-tube seeding and its application in rice planting. Biosystems Engineering, 2021, 210: 115-128.
[20]
DUN C P, WANG R, MI K L, ZHANG Y T, ZHANG H P, CUI P Y, GUO Y L, LU H, ZHANG H C. One-time application of controlled-release bulk blending fertilizer enhanced yield, quality and photosynthetic efficiency of late Japonica rice. Journal of Integrative Agriculture, 2023. https://doi.org/10.1016/j.jia.2023.10.007.
[21]
霍中洋, 李杰, 许轲, 戴其根, 魏海燕, 龚金龙, 张洪程. 高产栽培条件下种植方式对不同生育类型粳稻米质的影响. 中国农业科学, 2012, 45(19): 3932-3945. doi: 10.3864/j.issn.0578-1752.2012.19.004.
HUO Z Y, LI J, XU K, DAI Q G, WEI H Y, GONG J L, ZHANG H C. Effect of planting methods on quality of different growth and development types of Japonica rice under high-yielding cultivation condition. Scientia Agricultura Sinica, 2012, 45(19): 3932-3945. doi: 10.3864/j.issn.0578-1752.2012.19.004. (in Chinese)
[22]
姚义. 江淮下游地区直播稻播期与品种综合生产力及其利用的研究[D]. 扬州: 扬州大学, 2012.
YAO Y. Study on sowing date, comprehensive productivity and utilization of direct seeding rice varieties in the lower reaches of Jianghuai Area[D]. Yangzhou: Yangzhou University, 2012. (in Chinese)
[23]
张亚东, 朱镇, 陈涛, 赵庆勇, 冯凯华, 姚姝, 周丽慧, 赵凌, 赵春芳, 梁文化, 路凯, 王才林. 优良食味粳稻南粳5718的选育及主要特征特性. 中国稻米, 2020, 26(4): 100-102.

doi: 10.3969/j.issn.1006-8082.2020.04.023
ZHANG Y D, ZHU Z, CHEN T, ZHAO Q Y, FENG K H, YAO S, ZHOU L H, ZHAO L, ZHAO C F, LIANG W H, LU K, WANG C L. Breeding and characteristics of a new japonica rice variety Nangeng 5718 with good eating quality. China Rice, 2020, 26(4): 100-102. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2020.04.023
[24]
OLIVARES DÍAZ E, KAWAMURA S, KOSEKI S. Effect of thickness and maturity on protein content of Japonica brown rice collected during postharvest processing. Biosystems Engineering, 2019, 183: 160-169.
[25]
程爽, 李绍平, 田晋钰, 邢志鹏, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 氮肥一次性基施对不同机直播水稻产量和品质的影响. 农业工程学报, 2020, 36(24): 1-10.
CHENG S, LI S P, TIAN J Y, XING Z P, HU Y J, GUO B W, WEI H Y, GAO H, ZHANG H C. Effects of one-time nitrogen basal application on the yield and quality of different direct-seeding rice crops by machine. Transactions of the Chinese Society of Agricultural Engineering. 2020, 36(24): 1-10. (in Chinese)
[26]
李润卿, 申勇, 朱宽宇, 王志琴, 杨建昌. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响. 作物杂志, 2022, 38(1): 205-212.
LI R Q, SHEN Y, ZHU K Y, WANG Z Q, YANG J C. Effects of nitrogen application rates on the grain yield, starch RVA profile characteristics and physicochemical properties of super rice Nanjing 9108. Crops, 2022, 38(1): 205-212. (in Chinese)
[27]
邢志鹏, 曹伟伟, 钱海军, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 刘国涛. 播期对不同类型机插稻产量及光合物质生产特性的影响. 核农学报, 2015, 29(3): 528-537.

doi: 10.11869/j.issn.100-8551.2015.03.0528
XING Z P, CAO W W, QIAN H J, HU Y J, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, LIU G T. Effect of sowing date on yield and characteristics of photosynthesis and matter production of different types in mechanical transplanted rice. Journal of Nuclear Agricultural Sciences, 2015, 29(3): 528-537. (in Chinese)

doi: 10.11869/j.issn.100-8551.2015.03.0528
[28]
ZHANG Y J, ZHOU Y R, DU B, YANG J C. Effects of nitrogen nutrition on grain yield of upland and paddy rice under different cultivation methods. Acta Agronomica Sinica, 2008, 34(6): 1005-1013.
[29]
郭长春, 何艳, 孙永健, 严奉君, 王海月, 杨志远, 徐徽, 殷尧翥, 严田蓉, 马均. 直播杂交籼稻品种不同产量水平与产量形成特征及其差异性比较. 四川农业大学学报, 2017, 35(4): 476-483.
GUO C C, HE Y, SUN Y J, YAN F J, WANG H Y, YANG Z Y, XU H, YIN Y Z, YAN T R, MA J. Comparison of different yield levels and yield formation characteristics and differences of indica hybrid rice under direct-sowing. Journal of Sichuan Agricultural University, 2017, 35(4): 476-483. (in Chinese)
[30]
张佑宏, 王治虎, 张舒, 张瑞洋, 杨小林. 栽培方式对水稻生育进程、主要病害严重度及产量的影响. 华中农业大学学报, 2019, 38(3): 1-6.
ZHANG Y H, WANG Z H, ZHANG S, ZHANG R Y, YANG X L. Effects of cultivation modes on growth process severity of main diseases and yield of rice. Journal of Huazhong Agricultural University, 2019, 38(3): 1-6. (in Chinese)
[31]
郭晓红, 兰宇辰, 胡月, 王鹤璎, 徐令旗, 孙光旭, 姜红芳, 吕艳东. 栽培方式对寒地水稻产量及光合特性的影响. 中国土壤与肥料, 2020, 57(6): 220-227.
GUO X H, LAN Y C, HU Y, WANG H Y, XU L Q, SUN G X, JIANG H F, Y D. Effects of cultivation methods on yield and photosynthetic characteristics of rice in cold region. Soil and Fertilizer Sciences in China, 2020, 57(6): 220-227. (in Chinese)
[32]
罗友谊, 王慰亲, 郑华斌, 刘功义, 巢英, 徐彩, 郑志刚, 李雪倩, 韦银兰, 唐启源. 不同机械有序种植方式对水稻生长特性及产量的影响. 中国农业科技导报, 2021, 23(7): 162-171.
LUO Y Y, WANG W Q, ZHENG H B, LIU G Y, CHAO Y, XU C, ZHENG Z G, LI X Q, WEI Y L, TANG Q Y. Influences of different mechanical and orderly planting methods on growth characteristics and yield of rice. Journal of Agricultural Science and Technology, 2021, 23(7): 162-171. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0918
[33]
张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响. 中国农业科学, 2023, 56(2): 249-263. doi: 10.3864/j.issn.0578-1752.2023.02.004.
ZHANG X L, TAO W, GAO G Q, CHEN L, GUO H, ZHANG H, TANG M Y, LIANG T F. Effects of direct seeding cultivation method on growth stage, lodging resistance and yield benefit of double- cropping early rice. Scientia Agricultura Sinica, 2023, 56(2): 249-263. doi: 10.3864/j.issn.0578-1752.2023.02.004. (in Chinese)
[34]
张洪程, 邢志鹏, 翁文安, 田晋钰, 陶钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕. 生育约束型直播水稻生育特征与稳产关键技术. 中国农业科学, 2021, 54(7): 1322-1337. doi: 10.3864/j.issn.0578-1752.2021.07.002.
ZHANG H C, XING Z P, WENG W A, TIAN J Y, TAO Y, CHENG S, HU Q, HU Y J, GUO B W, WEI H Y. Growth characteristics and key techniques for stable yield of growth constrained direct seeding rice. Scientia Agricultura Sinica, 2021, 54(7): 1322-1337. doi: 10.3864/j.issn.0578-1752.2021.07.002. (in Chinese)
[35]
XING Z P, HU Y J, QIAN H J, CAO W W, GUO B W, WEI H Y, XU K, HUO Z Y, ZHOU G S, DAI Q G, ZHANG H C. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. Journal of Integrative Agriculture, 2017, 16(7): 1451-1466.
[36]
施伟, 朱国永, 孙明法, 王爱民, 陈中兵, 严国红. 水稻籽粒灌浆的影响因子及其机制研究进展. 中国农学通报, 2020, 36(8): 1-7.

doi: 10.11924/j.issn.1000-6850.casb19020022
SHI W, ZHU G Y, SUN M F, WANG A M, CHEN Z B, YAN G H. Influence factors and mechanism of rice grain filling: Research progress. Chinese Agricultural Science Bulletin, 2020, 36(8): 1-7. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb19020022
[37]
李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44(13): 2661-2672. doi: 10.3864/j.issn.0578-1752.2011.13.004.
LI J, ZHANG H C, DONG Y Y, NI X C, YANG B, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Scientia Agricultura Sinica, 2011, 44(13): 2661-2672. doi: 10.3864/j.issn.0578-1752.2011.13.004. (in Chinese)
[38]
刘陈, 王伟妮, 廖世鹏, 任涛, 郭晨, 刘俊梅, 孙霞, 鲁剑巍. 河套灌区麦后复种油菜绿肥适宜播期研究. 华北农学报, 2023, 38(5): 120-127.

doi: 10.7668/hbnxb.20194192
LIU C, WANG W N, LIAO S P, REN T, GUO C, LIU J M, SUN X, LU J W. Study on suitable sowing date of green manure for multiple cropping rape after wheat in Hetao irrigation area. Acta Agriculturae Boreali Sinica, 2023, 38(5): 120-127. (in Chinese)
[39]
邓仲篪, 周鹏, 陈翠莲. 籼粳亚种杂交组合的结实率与光合产物供给水平及转运效率间的关系. 华中农业大学学报, 1993, 12(4): 333-338.
DENG Z C, ZHOU P, CHEN C L. Relationship between seed seting ratio and photosynthetic capacity and transport of substances in the India-japonica intersubspecific hybrid rice. Journal of Huazhong Agricultural University, 1993, 12(4): 333-338. (in Chinese)
[40]
孙琪, 耿艳秋, 金峰, 刘丽新, 郑浣彤, 郭丽颖, 邵玺文. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响. 作物杂志, 2020, 36(5): 119-126.
SUN Q, GENG Y Q, JIN F, LIU L X, ZHENG H T, GUO L Y, SHAO X W. Effects of sowing dates on yield, dry matter and nitrogen accumulation and translocation in organs after anthesis of direct seeding rice. Crops, 2020, 36(5): 119-126. (in Chinese)
[41]
刘奇华, 孙召文, 信彩云, 马加清. 孕穗期施硅对高温下扬花灌浆期水稻干物质转运及产量的影响. 核农学报, 2016, 30(9): 1833-1839.

doi: 10.11869/j.issn.100-8551.2016.09.1833
LIU Q H, SUN Z W, XIN C Y, MA J Q. Effects of silicon on dry matter remobilization, distribution and grain yield of rice under high air temperature. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1833-1839. (in Chinese)

doi: 10.11869/j.issn.100-8551.2016.09.1833
[42]
PRERNA D I, GOVINDARAJU K, TAMILSELVAN S, KANNAN M, VASANTHARAJA R, CHATURVEDI S, SHKOLNIK D. Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiology and Biochemistry, 2021, 162: 564-580.
[43]
苏庆旺, 苍柏峰, 白晨阳, 李韫哲, 宋泽, 李俊材, 吴美康, 魏晓双, 崔菁菁, 武志海. 施硅量对旱作水稻产量和干物质积累的影响. 中国水稻科学, 2022, 36(1): 87-95.

doi: 10.16819/j.1001-7216.2022.201208
SU Q W, CANG B F, BAI C Y, LI Y Z, SONG Z, LI J C, WU M K, WEI X S, CUI J J, WU Z H. Effect of silicon application rate on yield and dry matter accumulation of rice under dry cultivation. Chinese Journal of Rice Science, 2022, 36(1): 87-95. (in Chinese)

doi: 10.16819/j.1001-7216.2022.201208
[44]
WANG H Q, DAI W M, ZHANG Z X, LI M S, MENG L C, ZHANG Z, LU H, SONG X L, QIANG S. Occurrence pattern and morphological polymorphism of Chinese weedy rice. Journal of Integrative Agriculture, 2023, 22(1): 149-169.
[45]
郭保卫, 唐闯, 王岩, 蔡嘉鑫, 唐健, 周苗, 景秀, 张洪程, 许轲, 胡雅杰, 邢志鹏, 李国辉, 陈恒. 两种机械化种植方式对优质晚籼稻产量和品质的影响. 中国农业科学, 2022, 55(20): 3910-3925. doi: 10.3864/j.issn.0578-1752.2022.20.004.
GUO B W, TANG C, WANG Y, CAI J X, TANG J, ZHOU M, JING X, ZHANG H C, XU K, HU Y J, XING Z P, LI G H, CHEN H. Effects of two mechanical planting methods on the yield and quality of high-quality late indica rice. Scientia Agricultura Sinica, 2022, 55(20): 3910-3925. doi: 10.3864/j.issn.0578-1752.2022.20.004. (in Chinese)
[46]
杨波, 徐大勇, 张洪程. 直播、机插与手栽水稻生长发育、产量及稻米品质比较研究. 扬州大学学报(农业与生命科学版), 2012, 33(2): 39-44.
YANG B, XU D Y, ZHANG H C. Research on growth, yield, quality of rice under direct seeding, mechanical transplanting, and artificial transplanting. Journal of Yangzhou University(Agricultural and Life Science Edition), 2012, 33(2): 39-44. (in Chinese)
[47]
BIAN J L, XU F F, HAN C, QIU S, GE J L, XU J, ZHANG H C, WEI H Y. Effects of planting methods on yield and quality of different types of Japonica rice in northern Jiangsu plain, China. Journal of Integrative Agriculture, 2018, 17(12): 2624-2635.
[48]
张玉, 周锋利, 张文芳, 须奕骎, 樊丽萍. 栽培方式对粳稻南粳46产量和品质的影响. 江苏农业科学, 2021, 49(1): 73-77.
ZHANG Y, ZHOU F L, ZHANG W F, XU Y Q, FAN L P. Effects of cultivation methods on yield and quality of Japonica rice Nanjing 46. Jiangsu Agricultural Sciences, 2021, 49(1): 73-77. (in Chinese)
[49]
AMBARDEKAR A A, SIEBENMORGEN T J, COUNCE P A, LANNING S B, MAUROMOUSTAKOS A. Impact of field-scale nighttime air temperatures during kernel development on rice milling quality. Field Crops Research, 2011, 122(3): 179-185.
[50]
BALINDONG J L, WARD R M, ROSE T J, LIU L, RAYMOND C A, SNELL P J, OVENDEN B W, WATERS D L E. Rice grain protein composition influences head rice yield. Cereal Chemistry, 2018, 95(2): 253-263.
[51]
雷振山, 李猛, 卫云飞, 季新, 刘娟, 王付娟, 刘秋员. 不同种植方式对豫南地区优质食味粳稻产量及品质的影响. 河南农业科学, 2023, 52(2): 12-20.
LEI Z S, LI M, WEI Y F, JI X, LIU J, WANG F J, LIU Q Y. Effects of different rice planting methods on yield and quality of Japonica rice with good eating quality in southern Henan Province. Journal of Henan Agricultural Sciences, 2023, 52(2): 12-20. (in Chinese)
[52]
ZHANG Y F, LIU H J, GUO Z, ZHANG C S, SHENG J, CHEN L G, LUO Y Q, ZHENG J C. Direct-seeded rice increases nitrogen runoff losses in southeastern China. Agriculture, Ecosystems & Environment, 2018, 251: 149-157.
[53]
彭瑞雪, 朱建强, 吴启侠, 乔月, 周乾顺, 范楚江, 段小丽, 杨利. 不同氮肥运筹对直播稻田氮素损失与利用的影响. 农业资源与环境学报, 2023, 40(3): 651-659.
PENG R X, ZHU J Q, WU Q X, QIAO Y, ZHOU Q S, FAN C J, DUAN X L, YANG L. Nitrogen loss and utilization characteristics of different N fertilizer translocations in direct-seeded rice. Journal of Agricultural Resources and Environment, 2023, 40(3): 651-659. (in Chinese)
[54]
张亚洁, 许德美, 孙斌, 刁广华, 林强森, 杨建昌. 种植方式对陆稻和水稻籽粒灌浆及垩白的影响. 中国农业科学, 2005, 39(2): 257-264.
ZHANG Y J, XU D M, SUN B, DIAO G H, LIN Q S, YANG J C. Effects of cultivation methods on grain-filling and chalky grains of upland and paddy rice. Scientia Agricultura Sinica, 2005, 39(2): 257-264. (in Chinese)
[55]
LISLE A J, MARTIN M, FITZGERALD M A. Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chemistry, 2000, 77(5): 627-632.
[56]
HE C Y, DENG F, YUAN Y J, HUANG X F, HE Y X, LI Q P, LI B, WANG L, CHENG H, WANG T, TAO Y F, ZHOU W, LEI X L, CHEN Y, REN W J. Appearance, components, pasting, and thermal characteristics of chalky grains of rice varieties with varying protein content. Food Chemistry, 2024, 440: 138256.
[57]
臧倩, 王光华, 张明静, 胡雪, 徐承昱, 蒋敏, 黄丽芬. 有机无机肥料及抽穗期气温升高对水稻籽粒淀粉合成相关酶活性及淀粉品质形成的影响. 核农学报, 2022, 36(10): 2072-2083.

doi: 10.11869/j.issn.100-8551.2022.10.2072
ZANG Q, WANG G H, ZHANG M J, HU X, XU C Y, JIANG M, HUANG L F. Effects of organic and conventional chemical fertilizers and rising temperature at heading stage on enzyme activities related to starch synthesis and starch quality formation in rice grains. Journal of Nuclear Agricultural Sciences, 2022, 36(10): 2072-2083. (in Chinese)

doi: 10.11869/j.issn.100-8551.2022.10.2072
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[4] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[5] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[6] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[7] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[8] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[9] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[10] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[11] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[12] ZHANG YongLi, ZHANG Ning, XU Jiao, XU DouDou, CHENG Fang, ZHANG ChengLong, WU BiBo, GONG YangCang, HE YunXin, WEI ShangZhi, TU XiaoJu, LIU AiYu, ZHOU ZhongHua. Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(22): 4444-4458.
[13] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[14] LIU YiHan, MU QingShan, HE Xiang, CHEN Min, HU Jin, GUAN YaJing. Study on the Involvement of OsFWL3 in the Regulation of Metal Ion Transport and Accumulation in Rice [J]. Scientia Agricultura Sinica, 2024, 57(21): 4161-4174.
[15] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!