Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4402-4415.doi: 10.3864/j.issn.0578-1752.2024.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean

WU ChuanLei1(), HU XiaoYu1, WANG Wei1, MIAO Long1, BAI PengYu1, WANG GuoJi1, LI Na1, SHU Kuo1, QIU LiJuan2(), WANG XiaoBo1()   

  1. 1 College of Agriculture, Anhui Agricultural University, Heifei 230036
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic lmprovement (NFCRl). Mlinistry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2024-04-27 Accepted:2024-05-28 Online:2024-11-16 Published:2024-11-22
  • Contact: QIU LiJuan, WANG XiaoBo

Abstract:

【Objective】Polymerizing soybean high oil genotypes aims at breeding varieties with higher oil content to improve economic efficiency and nutritional value. It is of great significance to increase agricultural output, reduce processing costs and meet global demand for vegetable oil growth.【Method】Glyma.18G027100 C2 gene family was identified by bioinformatic analysis method at the whole genome level. A total of 66 soybean C2 gene family members were identified, named GmC2-01.1-GmC2-20.2 according to chromosome position. Tissue pattern analysis revealed that 7 genes were highly expressed in grains among 66 C2 family genes (GmC2-03.6, GmC2-02.7, GmC2-07.2, GmC2-18.1, GmC2-18.4, GmC2-19.1 and GmC2-20.2). In order to analyze the effect sites of these genes on soybean oil content, SNP sites in the coding regions of these genes were obtained from SFGB database. Correlation analysis of oil content in two years showed that GmC2-18.1 has SNP loci that significantly affect oil content. The genetic diversity of GmC2-18.1 coding region was analyzed by 12 extreme materials. There was a G/A mutation at 2 038 273 bp in coding region of Wm82.a2.v1 version, which regulated seed oil content. It was preliminarily speculated that this gene played a role in seed development or nutrient accumulation. Then, SNP/InDel molecular markers were developed for GmC2-18.1-G/A gene combined with InDel natural allelic variation site 225 bp upstream of the start codon of GmSWEET39, T/C natural allelic variation site at 8 381 058 bp in coding region of GmST1, A/C natural allelic variation site at the third exon of 41 854 422 bp in coding region of GmMFT. 1 200 soybean germplasm resources from three ecological regions in China were identified by markers in 2 years.【Result】Analysis of variance showed that GmC2-18.1-G, GmSWEET39-Deletion, GmST1-T and GmMFT-A significantly increased oil content by 1.72, 1.95, 1.58 and 2.06 percentage points (P<0.01). The results showed that the average oil content of soybean seeds carrying GmC2-18.1-G, GmSWEET39-Deletion, GmST1-T and GmMFT-A high-oil allele type (PFAT-1) was 22.89%, which increased by about 4.5% compared with that carrying GmC2-18.1-A, GmSWEET39-Insertion, GmST1-C and GmMFT-C low-oil allele type (PFAT-14). 5 percentage points, the contribution rate to oil content is about 21.69%. 【Conclusion】Based on the markers developed above, 115 PFAT-1 high oil alleles were screened.

Key words: soybeans, bioinformatic analysis, molecular markers, oil content, gene aggregation

Table 1

Primer sequences used for PCR detection and desired fragment size"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
目的基因片段大小
Fragment size (bp)
参考文献
References
GmSWEET39 SWEET39InDel-F CTTAAAGTTCTCAAACTTATCCTCC 158 [8]
SWEET39InDel-R GACCAGAAATCAAAAAGAAACAAGG
GmST1 ST1dCAPS-F GCCGTGATGTCGCATGATATCTCATGTTGTTCTTGTTCCTAACAAGC 132 [9]
ST1dCAPS-R AGGAGTTTGAAGCTGTTGAGTCT
GmMFT MFTdCAPS-F CAGCGAAGCAACACTGTTTCCACTTATTTTCCAGAAGC 211 [10]
MFTdCAPS-R AACATGATGTTTTAGCCCGAAG
GmC2-18.1 C2-18.1CAPS-F CTCCATGTCATAAGGTCTACATC 1151 [4]
C2-18.1CAPS-R CAGCAGTGTGTTTACATACC

Fig. 1

Phylogenetic tree of the C2 gene family"

Fig. 2

Gene distribution of the C2 gene family on soybean chromosomes"

Fig. 3

Analysis of the GmC2-18.1 gene and the tissue expression pattern of homologous genes a: Analysis of tissue expression patterns of GmC2-18.1 homologous genes; b: Analysis of tissue expression patterns of GmC2-18.1 gene"

Fig. 4

Screening of gene SNP sites for differences in oil content a: GmC2-02.7; b: GmC2-03.6; c: GmC2-07.2; d: GmC2-18.1; e: GmC2-18.4; f: GmC2-20.4. A, C: Low oil genotype; G, T: High oil genotype"

Table 2

The information of extreme material varieties"

编号 Numbers 品种名称 Variety name 来源 Source 油分均值 Average oil content (%)
1 Sprite87 国外Abroad 25.61
2 Hobbit87 国外Abroad 25.12
3 吉密豆2号Jimidou 2 中国东北Northeast China 24.95
4 吉密豆3号Jimidou 3 中国东北Northeast China 24.85
5 辽08012 Liao 08012 中国东北Northeast China 23.14
6 吉林20号Jilin 20 中国东北Northeast China 24.98
7 大黄豆Dahuangdou 中国黄淮Huanghuai, China 18.23
8 大青豆Daqingdou 中国黄淮Huanghuai, China 18.37
9 平顶黄Pingdinghuang 中国黄淮Huanghuai, China 18.82
10 泰州白花乌甲2 Taizhoubaihuawujia 2 中国南方Southern China 18.96
11 早黄豆-1 Zaohuangdou 中国南方Southern China 18.87
12 七月黄-1 Qiyuehuang-1 中国南方Southern China 18.09

Fig. 5

Genetic diversity analysis of GmC2-18.1 coding region"

Fig. 6

Development of molecular markers for soybean oil genes a:InDel marker developed for GmSEWWT39, Insertion is 9 bp insertion, Deletion is 9 bp deletion; b: dCAPS marker developed for GmMFT, 1-6 is G variant type, 7-8 is A variant type; c: dCAPS marker developed for GmST1, 2 and 7 are T variant type, 1, 3, 4, 5, 6, 8 are C variant type; d: CAPS marker developed for GmC2 -18.1, 1-10 is A variant type, 11-20 is G variant type"

Fig. 7

Correlation analysis between genotype and seed oil content"

Table 3

Joint analysis of the genetic effects of oil content related genes at multiple sites of oil content traits"

GmSWEET39 GmST1 GmMFT GmC2-18.1 数量
Number
聚合优异等位基因类型
PFAT
范围
Range
油分
Oil content (%)
标准偏差
SD
标准误差
MD
P
P value
缺失Deletion T A G 115 PFAT-1 8.88 22.89 1.72 0.16 -
缺失Deletion T C G 6 PFAT-2 2.68 21.04 1.00 0.41 0.274
缺失Deletion T A A 409 PFAT-3 8.69 21.67 1.61 0.08 <0.01
缺失Deletion T C A 194 PFAT-4 8.66 20.32 1.19 0.09 <0.01
缺失Deletion C A A 61 PFAT-5 5.77 21.59 1.46 0.19 <0.01
缺失Deletion C A G 12 PFAT-6 7.67 21.53 2.58 0.74 0.252
缺失Deletion C C A 61 PFAT-7 6.91 19.03 1.71 0.22 <0.01
缺失Deletion C C G 5 PFAT-8 4.96 19.84 2.34 1.05 <0.01
插入Insertion T A G 6 PFAT-9 3.59 20.64 1.40 0.57 0.056
插入Insertion T A A 30 PFAT-10 5.83 20.90 1.62 0.30 <0.01
插入Insertion T C A 32 PFAT-11 4.95 19.53 1.24 0.22 <0.01
插入Insertion T C G 9 PFAT-12 5.59 19.28 1.78 0.59 <0.01
插入Insertion C C G 8 PFAT-13 4.67 19.43 1.77 0.63 <0.01
插入Insertion C C A 61 PFAT-14 6.69 18.37 1.89 0.24 <0.01
插入Insertion C A A 9 PFAT-15 4.89 20.70 1.54 0.51 <0.01
插入Insertion C A G 2 PFAT-16 3.78 19.17 2.67 1.89 0.075
[32]
SALAM U, ULLAH S, TANG Z H, ELATEEQ A A, KHAN Y, KHAN J, KHAN A, ALI S. Plant Metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life, 2023, 13: 706.
[33]
ZHANG Q, HONG J L, ZHANG T Z, TIAN X, GENG Y, CHEN W, ZHAI Y J, LIU W J, SHEN X X, BAI Y Y. Environmental footprints of soybean production in China. Environment, Development and Sustainability, 2023, 25(9): 9047-9065.
[34]
沈岩茹, 刘春燕, 姜振峰, 王琳琳, 马占洲, 杨振, 辛大伟, 蒋洪蔚, 胡国华, 陈庆山. 大豆油分含量稳定性QTL定位. 分子植物育种, 2014, 12(2): 254-261.
SHEN Y R, LIU C Y, JIANG Z F, WANG L L, MA Z Z, YANG Z, XIN D W, JIANG H W /Y, HU G H, CHEN Q S. QTL analysis of stability for oil content stability in soybean. Molecular Plant Breeding, 2014, 12(2): 254-261. (in Chinese)
[35]
WU C X, LI J C, SHA A H, ZENG H Y, SUN S, YANG G M, ZHOU X A, CHANG R Z, NIAN H, HAN T F. Maturity group classification of check varieties in national soybean uniform trials of China. Acta Agronomica Sinica, 2013, 38(11): 1977-1987.
[36]
郭美玲, 郭泰, 王志新, 郑伟, 李灿东, 赵海红, 张振宇, 徐杰飞, 赵星棋. 极早熟高油大豆品种佳豆30的选育与育种研究. 安徽农业科学, 2023, 51(4): 21-24.
GUO M L, GUO T, WANG Z X, ZHENG W, LI C D, ZHAO H H, ZHANG Z Y, XU J F, ZHAO X Q. Breeding and experience of very early mature, high-oil soybean variety Jiadou 30. Anhui Agricultural Science, 2023, 51(4): 21-24. (in Chinese)
[37]
LIN Z C, QIN P, ZHANG X W, FU C J, DENG H C, FU X X, HUANG Z, JIANG S Q, LI C, TANG X Y, WANG X F, HE G M, YANG Y Z, HE H, DENG X W. Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(9): 4623-4631.
[38]
周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用. 遗传, 2016, 38(3): 227-242.
ZHOU X C, XING Y Z. The application of genome editing in identification of plant gene function identification and crop breeding. Hereditas, 2016, 38(3): 227-242. (in Chinese)
[39]
CAI Y, CHEN L, HOU W. Genome editing technologies accelerate innovation in soybean breeding. Agronomy, 2023, 13(8): 2045.
[31]
CORNARA L, MANDRONE M, SMERIGLIO A. Biotic and abiotic stressors in plant metabolism. International Journal of Molecular Sciences, 2023, 25(1): 121.
[30]
FERNANDEZ-CORNEJO J, WECHSLER S, LIVINGSTON M, MITCHELL L. Genetically engineered crops in the United States. USDA-ERS Economic Research Report, 2014 (162).
[29]
BAGALE S. Nutrient management for soybean crops. International Journal of Agronomy, 2021, 2021: 1-10.
[28]
SETUBAL I S, ANDRADE JÚNIOR A S, SILVA S P, RODRIGUES A C, BONIFÁCIO A, SILVA E H F M, VIEIRA P F M J, MIRANDA R S, CAFARO LA MENZA N C, SOUZA H A. Macro and Micro-Nutrient Accumulation and Partitioning in Soybean Affected by Water and Nitrogen Supply. Plants, 2023, 12: 1898.
[27]
ANDERSON C M, MATTOON E M, ZHANG N, BECKER E, MCHARGUE W, YANG J, PATEL D, DAUTERMANN O, MCADAM S A M, TARIN T, PATHAK S, AVENSON T J, BERRY J, BRAUD M, NIYOGI K K, WILSON M, NUSINOW D A, VARGAS R, CZYMMEK K J, EVELAND A L, ZHANG R. High light and temperature reduce photosynthetic efficiency through different mechanisms in the C4 model Setaria viridis. Communications Biology, 2021, 4: 1092.
[26]
MOORE C E, MEACHAM-HENSOLD K, LEMONNIER P, SLATTERYR A, BENJAMIN C, BERNACCHI C J, LAWSON T, CAVANAGH A P. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of experimental botany, 2021, 72(8): 2822-2844.

doi: 10.1093/jxb/erab090 pmid: 33619527
[25]
XU Y. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129: 653-673.

doi: 10.1007/s00122-016-2691-5 pmid: 26932121
[24]
FARAH C A, SOSSIN W S. The role of C2 domains in PKC signaling. Advances in Experimental Medicine and Biology, 2012, 740: 663-683.

doi: 10.1007/978-94-007-2888-2_29 pmid: 22453964
[23]
BARIANA H, BANSAL U, CHATRATH R, BAINS N, DE N, PRAKASH S. Molecular marker technologies for faster wheat breeding in India 2-final report. ACIAR Final Reports, 2019 (FR2019/38).
[22]
GAI J Y, WANG Y J, WU X L, CHEN S Y. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Frontiers of Agriculture in China, 2007, 1(1): 1-7.
[21]
VARSHNEY R K, MOHAN S M, GAUR P M, GANGARAO N V P R, PANDEY M K, BOHRA A, SAWARGAONKAR S L, CHITIKINENI A, KIMURTO P K, JANILA P, SAXENA K B, FIKRE A, SHARMA M, RATHORE A, PRATAP A, TRIPATHI S, DATTA S, CHATURVEDI S K, MALLIKARJUNA N, ANURADHA G, BABBAR A, CHOUDHARY A K, MHASE M B, BHARADWAJ C, MANNUR D M, HARER P N, GUO B Z, LIANG X Q, NADARAJAN N, GOWDA C L L. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnology Advances, 2013, 31(8): 1120-1134.

doi: 10.1016/j.biotechadv.2013.01.001 pmid: 23313999
[20]
CHEN Z Z, LI J, WANG K, CHEN J P, SHEN G Y, XIE X D, SHI S S, YANG J, ZHOU G Q. Study on the genetic composition of new wheat variety Xinmai 163 using 55K SNP chip. Shandong Agricultural Sciences, 2024, 1-10. (in Chinese)
陈真真, 李杰, 王轲, 陈金平, 申冠宇, 谢旭东, 石守设, 杨军, 周国勤. 利用55K SNP芯片研究小麦新品种信麦163的遗传构成. 山东农业科学, 2024, 1-10.
[19]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[18]
LI H C, QIN B P, WANG J, CAI R G, ZHOU Y F, LIU C X, LIU Q, LIU T S, YANG Q, HAN J L, YANG M. A simple and fast method for extracting DNA from plant leaves based on polymerase chain reaction (PCR). Seed, 2019, 38(11): 151-154. (in Chinese)
李海超, 秦保平, 王健, 蔡瑞国, 周印富, 刘春晓, 刘强, 刘铁山, 杨晴, 韩金玲, 杨敏. 一种基于PCR的简易快速提取植物叶片DNA的方法. 种子, 2019, 38(11): 151-154.
[17]
VAN ESSE H P, REUBER T L, VAN DER DOES D. Genetic modification to improve disease resistance in crops. The New Phytologist, 2020, 225(1): 70-86.
[16]
ZHU W W, YANG C, YONG B, WANG Y, LI B B, GU Y Z, WEI S M, AN Z H, SUN W K, QIU L J, HE C Y. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY‐like gene, is exploited in soybean domestication and improvement. The New Phytologist, 2022, 236(4): 1375-1392.
[15]
LI X M, CHEN Z H, LI H Y, YUE L, TAN C R, LIU H J, HU Y L, YANG Y H, YAO X N, KONG L P, HUANG X, YU B, ZHANG C Y, GUAN Y F, LIU B H, KONG F J, HOU X L. Dt1 inhibits SWEET-mediated sucrose transport to regulate photoperiod-dependent seed weight in soybean. Molecular Plant, 2024, 17(3): 496-508.
[14]
LIU Q E, YANG F, ZHANG J J, LIU H, RAHMAN S, ISLAM S, MA W J, SHE M Y. Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences, 2021, 22(8): 4206.
[13]
XU L Y, ZHAO F P, SHENG X H, REN H X, ZHANG L, WEI C H, DU L X. Optimal design for marker-assisted gene pyramiding in cross population. Asian-Australasian Journal of Animal Sciences, 2012, 25(6): 772-784.

doi: 10.5713/ajas.2011.11239 pmid: 25049625
[12]
GOETTEL W, ZHANG H Y, LI Y, QIAO Z Z, JIANG H, HOU D Y, SONG Q J, PANTALONE V R, SONG B H, YU D Y, AN Y Q C. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nature Communications, 2022, 13(1): 3051.
[11]
QI Z M, GUO C C, LI H Y, QIU H M, LI H, JONG C, YU G L, ZHANG Y, HU L M, WU X X, XIN D W, YANG M L, LIU C Y, LV J, WANG X, KONG F J, CHEN Q S. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. Plant Biotechnology Journal, 2024, 22(3): 759-773.
[10]
DUAN Z B, ZHANG M, ZHANG Z F, LIANG S, FAN L, YANG X, YUAN Y Q, PAN Y, ZHOU G A, LIU S L, TIAN Z X. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnology Journal, 2022, 20(9): 1807-1818.

doi: 10.1111/pbi.13865 pmid: 35642379
[9]
LI J, ZHANG Y H, MA R R, HUANG W X, HOU J J, FANG C, WANG L S, YUAN Z H, SUN Q, DONG X H, HOU Y F, WANG Y, KONG F J, SUN L J. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnology Journal, 2022, 20(6): 1110-1121.

doi: 10.1111/pbi.13791 pmid: 35178867
[8]
MIAO L, YANG S N, ZHANG K, HE J B, WU C H, REN Y H, GAI J Y, LI Y. Natural variation and selection in GmSWEET39 affect soybean seed oil content. The New Phytologist, 2020, 225(4): 1651-1666.
[7]
SUN Y, ZHAO J Y, LI Y T, ZHANG P G, WANG S P, GUO J, CHEN J, ZHOU Y B, CHEN M, MA Y Z, FANG Z W, XU Z S. Genome-wide analysis of the C2 domain family in soybean and identification of a putative abiotic stress response gene GmC2-148. Frontiers in Plant Science, 2021, 12: 620544.
[6]
NIU J S, LI Z J, ZHU J R, WU R, KONG L X, NIU T L, LI X Y, CHENG X R, LI J Y, DAI L Y. Genome-wide identification and characterization of the C2 domain family in Sorghum bicolor (L.) and expression profiles in response to saline-alkali stress. Physiology and Molecular Biology of Plants, 2022, 28(9): 1695-1711.
[5]
SUTTON R B, DAVLETOV B A, BERGHUIS A M, SÜDHOF T C, SPRANG S R. Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold. Cell, 1995, 80(6): 929-938.

pmid: 7697723
[4]
ZHANG K X, LIU S L, LI W B, LIU S P, LI X Y, FANG Y L, ZHANG J, WANG Y, XU S C, ZHANG J N, SONG J, QI Z Y, TIAN X C, TIAN Z X, LI W X, NING H L. Identification of QTNs controlling seed protein content in soybean using multi-locus genome-wide association studies. Frontiers in Plant Science, 2018, 9: 1690.

doi: 10.3389/fpls.2018.01690 pmid: 30519252
[3]
LIU H J, WANG J X, LIU Z J, LIU S, HOU X L, LI X M. Research progress on protein and oil contents of soybean seeds. Journal of Tropical and Subtropical Botany, 2022, 30(6): 791-800. (in Chinese)
刘虹洁, 王金星, 刘昭军, 刘书, 侯兴亮, 李晓明. 大豆种子蛋白和油脂含量调控的研究进展. 热带亚热带植物学报, 2022, 30(6): 791-800.
[2]
LIN F Y, HUANG Y N, CHU H J, WANG W X, SONG Y, XUE Y N, ZHENG F, LI G. Current situation and development trend of Chinese soybean protein processing industry. China Oil, 2023, 48(11): 33-37. (in Chinese)
林凤岩, 黄永娜, 褚洪俊, 王文昕, 宋宇, 薛亚南, 郑峰, 李庚. 我国大豆蛋白加工产业现状及发展趋势. 中国油分, 2023, 48(11): 33-37.
[1]
HUANG X H, LONG Y X, WANG M J. Pan-3D genome research promotes soybean genetic improvement. Scientia Sinica (Vitae), 2023, 53(4): 551-552. (in Chinese)
黄鲜晖, 龙跃轩, 王茂军. 泛三维基因组研究推动大豆遗传改良. 中国科学(生命科学), 2023, 53(4): 551-552.
[1] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[2] LIU Hua, ZENG FanPei, WANG Qian, CHEN GuoQuan, MIAO LiJuan, QIN Li, HAN SuoYi, DONG WenZhao, DU Pei, ZHANG XinYou. Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut [J]. Scientia Agricultura Sinica, 2024, 57(10): 1870-1881.
[3] HU WenShi, LI YinShui, ZHAO ManLi, ZHANG ShanShan, GU ChiMing, DAI Jing, LI XiaoYong, YANG Lu, QIN Lu, LIAO Xing. Characteristics of Oilseed Rape Cultivar with Different Oil Content in Nutrient Dynamitic Accumulation Rates and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2023, 56(24): 4895-4905.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[6] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[7] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[8] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[9] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[10] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[11] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
[12] GAO Rui, LI ChunLin, TONG XiaoLing, CAO MingYa, SHI MeiNing, XU AnYing, LU Cheng, DAI FangYin. Insight into Genetic Basis of Bombyx mori Resistant Strains with Resistance to BmNPV by Molecular Linkage Analysis [J]. Scientia Agricultura Sinica, 2017, 50(1): 195-204.
[13] LI Chen-xu, LIU Zhi-tao, ZHUANG Li-fang, QI Zeng-jun. Development and Application of Specific Molecular Markers of Thinopyrum bessarabicum Löve Based on RNA-seq [J]. Scientia Agricultura Sinica, 2015, 48(6): 1052-1062.
[14] ZHANG Xiao, ZHANG Bo-qiao, JIANG Wei, Lü Guo-feng, ZHANG Xiao-xiang, LI Man, GAO De-rong. Molecular Detection for Quality Traits-Related Genes in Yangmai Series Wheat Cultivars [J]. Scientia Agricultura Sinica, 2015, 48(19): 3779-3793.
[15] XU Jian-Feng-1, LONG Yan-2, WU Jian-Guo-3, ZHAO Zhi-Gang-4, XU Hai-Ming-1, WEN Juan-1, MENG Jin-Ling-2, SHI Chun-Hai-1. QTL Mapping Based on Embryo and Maternal Genetic Systems for Oil and Protein Contents in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2014, 47(8): 1471-1480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!