Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3835-3847.doi: 10.3864/j.issn.0578-1752.2024.19.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil

LI TianJiao1,2(), ZHANG NaiYu2, SHEN WenYan2, SONG TianHao2, LIU HongFang2, LIU XiaoYan2, ZHANG XiuZhi3, PENG Chang3, YANG JinFeng1(), ZHANG ShuXiang2()   

  1. 1 College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources/Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture and Rural Affairs, Shenyang 110866
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081
    3 Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033
  • Received:2024-02-27 Accepted:2024-05-09 Online:2024-10-01 Published:2024-10-09
  • Contact: YANG JinFeng, ZHANG ShuXiang

Abstract:

【Objective】 The effects of long-term different fertilization practices on aggregate distribution and stability of two typical soils (black soil and brown soil) in the black soil area were compared, and the key factors affecting aggregate stability were explored to provide the theoretical support for alleviating soil structural degradation. 【Method】 Based on a 34-year long-term positioning experiment in black soil and a 45-year long-term positioning experiment in brown soil, soil samples of 0-20 cm were collected by selecting the common fertilization treatments: no fertilization (CK), chemical fertilizer (NPK), and chemical fertilizer combined with organic fertilizer (NPKM), as well as the special treatments of chemical fertilizer plus straw (NPKS) in black soil and manure (M) in brown soil. Soil chemical properties were determined and soil aggregates were sieved by wet-sieving procedure. 【Result】 Compared with CK, the proportion of microaggregates (>0.25 mm) under the NPK treatment in black soil and brown soil was significantly reduced by 8.6% and 11.3%, respectively, and the mean weight diameter (MWD) of aggregates was significantly reduced by 18.6% and 10.7%, respectively, indicating that the stability of aggregates in black soil and brown soil was significantly reduced by chemical fertilizer alone. The MWD under the NPKM and M treatments in brown soil increased significantly by 44.2% and 17.9%, respectively, whereas that had not noticeably changed under the NPKM treatment and significantly increased by 11.8% under the NPKS treatment in black soil, indicating that the application of pig manure in brown soil and straw return in black soil were important measures to improve aggregate stability. The stability of soil aggregates was mainly affected by soil chemical properties. NPK resulted in the decrease of pH and exchangeable Ca and Mg ions in black soil and brown soil, which hindered the formation and stability of microaggregates. The application of organic fertilizers (M, NPKM, NPKS) inhibited the decrease of soil pH, increased the content of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), and promoted the association of organic carbon with Fe/Al oxides and Ca/Mg ions, which accelerated the aggregation process of soil particles, maintaining and improving the stability of aggregates. The comprehensive analysis showed that the factors affecting the stability of black soil aggregates were chelated Al (Alp), Ca2+, POC, pH and MAOC in order from the largest to the smallest, among which the stability of black soil aggregates was significantly negatively correlated with Alp and positively correlated with other factors. The key factors affecting the stability of brown soil aggregates were POC, chelated Fe (Fep), pH, Mg2+, Ca2+, amorphous Al (Alo), Alp and amorphous Fe (Feo) in order from the largest to the smallest, among which the stability of brown soil aggregates was significantly negatively correlated with Alo and Feo and positively correlated with other factors. 【Conclusion】 The application of organic fertilizers (pig manure, straw return) could mainly increase the contents of soil POC and Ca2+, inhibit soil acidification, and improve the stability of aggregates in black soil and brown soil, which were important fertilization practices to delay the degradation of soil structure in black soil areas.

Key words: long-term fertilization, black soil, brown soil, aggregate stability, organic carbon fractions, Fe/Al oxides

Table 1

Soil chemical properties of black soil and brown soil under different fertilization treatments"

土壤类型
Soil type
施肥处理
Fertilization treatments
指标Indicator
pH POC
(g·kg-1)
MAOC
(g·kg-1)
Ca2+
(g·kg-1)
Mg2+
(mg·kg-1)
Alo
(g·kg-1)
Feo
(g·kg-1)
Alp
(mg·kg-1)
Fep
(mg·kg-1)
黑土
Black soil
CK 7.76Aa 3.68Ac 8.26Ac 3.75Ab 177.27Bd 2.01Aa 2.08Ba 419.82Bb 93.32Bc
NPK 6.44Ac 2.75Ad 9.64Abc 2.90Ab 338.19Ab 1.84Aa 2.02Ba 466.93Ba 160.15Bb
NPKM 7.30Ab 6.26Ba 10.92Ab 6.00Aa 579.35Ba 1.78Aa 2.08Aa 406.65Bbc 235.91Ba
NPKS 7.92a 5.21b 12.91a 5.75a 220.74c 1.73a 1.62a 380.70c 95.72c
棕壤
Brown soil
CK 5.70Bb 1.98Bc 8.52Abc 1.35Bcd 273.49Ac 1.42Bb 2.60Ab 466.73Ac 185.21Ad
NPK 5.30Bc 2.32Bc 9.29Ab 1.80Bbc 218.18Bd 1.71Aa 3.26Aa 568.00Ab 239.96Ac
NPKM 6.30Ba 11.67Aa 9.41Ab 4.58Aa 645.99Ab 1.01Bc 1.98Ac 690.52Aa 608.13Aa
M 6.54a 6.67b 11.32a 2.02b 800.27a 1.51b 3.37a 567.98b 443.52b
土壤类型Soil type(S) ** ** ** ** * ** **
施肥处理
Fertilization treatments(F)
** ** * ** ** * ** **
土壤类型×施肥处理S×F ** ** ** * ** **

Fig. 1

Soil aggregate distribution under different fertilization treatments. (a) black soil, (b) brown soil Error bars represent standard errors. Different lowercase letters represent significant differences among fertilization treatments and uppercase letters represent significant differences among aggregate size fractions (P<0.05)"

Fig. 2

Soil aggregate stability indexes MWD, GMD, D under different fertilization treatments Error bars represent standard errors. Different lowercase letters represent significant differences between fertilization treatments (P<0.05)"

Table 2

Correlation between aggregate stability index and the number of macroaggregates"

R(>0.25 mm) MWD GMD D
R(>0.25 mm) 1 0.962** 0.947** -0.965**
MWD 1 0.988** -0.966**
GMD 1 -0.984**
D 1

Fig. 3

Relationships between soil properties and aggregate stability The figure shows a 95% confidence interval"

Fig. 4

The relative importance of soil properties to aggregate stability"

[1]
BRONICK C J, LAL R. Soil structure and management: A review. Geoderma, 2005, 124(1/2): 3-22.
[2]
BUCKA F B, KÖLBL A, UTEAU D, PETH S, KÖGEL-KNABNER I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma, 2019, 354: 113881.
[3]
杨帆, 贾伟, 杨宁, 李文西, 段英华, 胡炎, 崔勇. 近30年我国不同地区农田耕层土壤的pH变化特征. 植物营养与肥料学报, 2023, 29(7): 1213-1227.
YANG F, JIA W, YANG N, LI W X, DUAN Y H, HU Y, CUI Y. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1213-1227. (in Chinese)
[4]
LIU S, GUO Z C, PAN Y B, ZHANG L L, HALLETT P D, PENG X H. Rare earth oxides for labelling soil aggregate turnover: impacts of soil properties, labelling method and aggregate structure. Geoderma, 2019, 351: 36-48.
[5]
苏慧清, 韩晓日, 杨劲峰, 罗培宇, 戴健, 杨明超, 何蕊. 长期施肥棕壤团聚体分布及其碳氮含量变化. 植物营养与肥料学报, 2017, 23(4): 924-932.
SU H Q, HAN X R, YANG J F, LUO P Y, DAI J, YANG M C, HE R. Effect of long-term fertilization on distribution of aggregates and organic carbon and total nitrogen contents in a brown soil. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 924-932. (in Chinese)
[6]
姚俊红, 武俊男, 王呈玉, 崔炎田, 高云航, 孙嘉璐, 刘淑霞. 长期不同施氮量下黑土团聚体稳定性及有机碳含量的变化. 农业环境科学学报, 2024, 43(1): 102-110.
YAO J H, WU J N, WANG C Y, CUI Y T, GAO Y H, SUN J L, LIU S X. Changes in aggregates stability and organic carbon content of black soil following the use of different long-term nitrogen application rates. Journal of Agro-Environment Science, 2024, 43(1): 102-110. (in Chinese)
[7]
MA P P, NAN S Z, YANG X G, QIN Y, MA T, LI X L, YU Y, BODNER G. Macroaggregation is promoted more effectively by organic than inorganic fertilizers in farmland ecosystems of China—A meta-analysis. Soil and Tillage Research, 2022, 221: 105394.
[8]
ASMITA G, JOSE G, PETER K, SANDEEP K. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Archives of Agronomy and Soil Science, 2022, 68(9): 1261-1273.
[9]
王西和, 杨金钰, 王彦平, 麦尔耶姆·亚森, 黄建, 刘骅. 长期施肥措施下灰漠土有机碳及团聚体稳定性特征. 中国土壤与肥料, 2021(6): 1-8.
WANG X H, YANG J Y, WANG Y P, Melyem Yasen, HUANG J, LIU H. Characteristics of organic carbon and stability of aggregates in grey desert soil under long-term fertilization measures. Soil and Fertilizer Sciences in China, 2021(6): 1-8. (in Chinese)
[10]
杨凯, 李延锋, 张西兴, 王明伟, 杜延全, 朱建强. 化肥与不同有机物料配施对土壤有机碳组分及土壤水稳性团聚体的影响. 土壤通报, 2024, 55(3): 707-715.
YANG K, LI Y F, ZHANG X X, WANG M W, DU Y Q, ZHU J Q. The effects of combined application of chemical fertilizers with different organic materials on soil organic carbon components and soil water-stable aggregates. Chinese Journal of Soil Science, 2024, 55(3): 707-715. (in Chinese)
[11]
王碧胜, 于维水, 武雪萍, 高丽丽, 李景, 李生平, 宋霄君, 刘彩彩, 李倩, 梁国鹏, 蔡典雄, 张继宗. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响. 中国农业科学, 2019, 52(9): 1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007.
WANG B S, YU W S, WU X P, GAO L L, LI J, LI S P, SONG X J, LIU C C, LI Q, LIANG G P, CAI D X, ZHANG J Z. Effect of straw addition on the formation of aggregates and accumulation of organic carbon in dryland soil. Scientia Agricultura Sinica, 2019, 52(9): 1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007. (in Chinese)
[12]
ZHOU H, FANG H, HU C S, MOONEY S J, DONG W X, PENG X H. Inorganic fertilization effects on the structure of a calcareous silt loam soil. Agronomy Journal, 2017, 109(6): 2871-2880.
[13]
TIAN S Y, ZHU B J, YIN R, WANG M W, JIANG Y J, ZHANG C Z, LI D M, CHEN X Y, KARDOL P, LIU M Q. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology and Biochemistry, 2022, 165: 108533.
[14]
张秀芝, 李强, 高洪军, 彭畅, 朱平, 高强. 长期施肥对黑土水稳性团聚体稳定性及有机碳分布的影响. 中国农业科学, 2020, 53(6): 1214-1223. doi: 10.3864/j.issn.0578-1752.2020.06.013.
ZHANG X Z, LI Q, GAO H J, PENG C, ZHU P, GAO Q. Effects of long-term fertilization on the stability of black soil water stable aggregates and the distribution of organic carbon. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223. doi: 10.3864/j.issn.0578-1752.2020.06.013. (in Chinese)
[15]
XIE H T, LI J W, ZHANG B, WANG L F, WANG J K, HE H B, ZHANG X D. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates. Scientific Reports, 2015, 5: 14687.

doi: 10.1038/srep14687 pmid: 26423355
[16]
FENG H J, WANG S Y, GAO Z D, PAN H, ZHUGE Y P, REN X Q, HU S W, LI C L. Aggregate stability and organic carbon stock under different land uses integrally regulated by binding agents and chemical properties in saline-sodic soils. Land Degradation & Development, 2021, 32(15): 4151-4161.
[17]
廖超林, 黎丽娜, 谢丽华, 孙钰翔, 邹炎, 戴齐, 尹力初. 增减施有机肥对红壤性水稻土团聚体稳定性及胶结物的影响. 土壤学报, 2021, 58(4): 978-988.
LIAO C L, LI L N, XIE L H, SUN Y X, ZOU Y, DAI Q, YIN L C. Effect of increased or decreased application of organic manure on aggregates stability and soil cement in red paddy soil. Acta Pedologica Sinica, 2021, 58(4): 978-988. (in Chinese)
[18]
PENG J, YANG Q S, ZHANG C Y, NI S M, WANG J G, CAI C F. Aggregate pore structure, stability characteristics, and biochemical properties induced by different cultivation durations in the Mollisol region of Northeast China. Soil and Tillage Research, 2023, 233: 105797.
[19]
李强, 高纪超, 朱平, 高洪军, 张秀芝, 彭畅, 焦云飞, 武俊男, 徐灵颍, 穆佳. 化肥有机替代对黑土土壤肥力的影响: 基于30年长期定位试验. 中国土壤与肥料, 2023(9): 28-33.
LI Q, GAO J C, ZHU P, GAO H J, ZHANG X Z, PENG C, JIAO Y F, WU J N, XU L Y, MU J. Effects of organic substitution of chemical fertilizer on soil fertility of black soil—Based on 30 years long-term fertilization experiment. Soil and Fertilizer Sciences in China, 2023(9): 28-33. (in Chinese)
[20]
韩萌, 杨劲峰, 谢芳, 李娜, 戴健, 王月, 鲁豫, 韩晓日. 长期施肥棕壤有机硫矿化特征及其驱动力. 植物营养与肥料学报, 2021, 27(3): 460-469.
HAN M, YANG J F, XIE F, LI N, DAI J, WANG Y, LU Y, HAN X R. Driving factors of organic sulfur mineralization in brown soil under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 460-469. (in Chinese)
[21]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Methods for Agricultural Chemical Analysis of Soil. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[22]
马忠明, 吕晓东, 刘莉莉. 耕作方式对绿洲灌区农田土壤有机碳及其分布的影响. 应用生态学报, 2015, 26(1): 122-128.
MA Z M, X D, LIU L L. Effects of tillage type on soil organic carbon and its distribution in oasis irrigation area. Chinese Journal of Applied Ecology, 2015, 26(1): 122-128. (in Chinese)
[23]
周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响. 中国农业科学, 2007, 40(9): 1973-1979. doi: 10.3864/j.issn.0578-1752.at-2006-8385.
ZHOU H, Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregates in Huabei Plain, China. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. doi: 10.3864/j.issn.0578-1752.at-2006-8385. (in Chinese)
[24]
杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征. 科学通报, 1993, 38(20): 1896-1899.
YANG P L, LUO Y P, SHI Y C. Fractal characteristics of soil characterized by weight distribution of particle size. Chinese Science Bulletin, 1993, 38(20): 1896-1899. (in Chinese)
[25]
胡天睿, 蔡泽江, 王伯仁, 张璐, 文石林, 朱建强, 徐明岗. 有机肥替代化学氮肥提升红壤抗酸化能力. 植物营养与肥料学报, 2022, 28(11): 2052-2059.
HU T R, CAI Z J, WANG B R, ZHANG L, WEN S L, ZHU J Q, XU M G. Swine manure as part of the total N source improves red soil resistance to acidification. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2052-2059. (in Chinese)
[26]
孟红旗, 吕家珑, 徐明岗, 蔡泽江, 王伯仁. 有机肥的碱度及其减缓土壤酸化的机制. 植物营养与肥料学报, 2012, 18(5): 1153-1160.
MENG H Q, J L, XU M G, CAI Z J, WANG B R. Alkalinity of organic manure and its mechanism for mitigating soil acidification. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1153-1160. (in Chinese)
[27]
王亮, 李双异, 汪景宽, 顾鑫, 孟凡奎. 长期施肥与地膜覆盖对棕壤交换性钙、镁的影响. 植物营养与肥料学报, 2013, 19(5): 1200-1206.
WANG L, LI S Y, WANG J K, GU X, MENG F K. Effect of long-term plastic film mulching and fertilization on exchangeable calcium and magnesium contents in brown earth. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1200-1206. (in Chinese)
[28]
王擎运, 张佳宝, 赵炳梓, 信秀丽, 陈林, 周云鹏, 郜红建. 长期施肥对典型潮土钙、镁形态转化及其环境行为的影响. 土壤, 2020, 52(3): 476-481.
WANG Q Y, ZHANG J B, ZHAO B Z, XIN X L, CHEN L, ZHOU Y P, GAO H J. Effects of long-term fertilization on calcium and magnesium morphological transformation and environmental behavior in typical fluvo-aquic soil. Soils, 2020, 52(3): 476-481. (in Chinese)
[29]
张睿博, 汪金松, 王全成, 胡健, 吴菲, 刘宁, 高章伟, 时蓉喜, 刘梦洁, 周青平, 牛书丽. 土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展. 地理科学进展, 2023, 42(12): 2471-2484.

doi: 10.18306/dlkxjz.2023.12.015
ZHANG R B, WANG J S, WANG Q C, HU J, WU F, LIU N, GAO Z W, SHI R X, LIU M J, ZHOU Q P, NIU S L. Responses of soil particulate and mineral-associated organic carbon to climate warming: A review. Progress in Geography, 2023, 42(12): 2471-2484. (in Chinese)

doi: 10.18306/dlkxjz.2023.12.015
[30]
张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007.
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007. (in Chinese)
[31]
蔡岸冬, 张文菊, 杨品品, 韩天富, 徐明岗. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响. 中国农业科学, 2015, 48(15): 2995-3004. doi: 10.3864/j.issn.0578-1752.2015.15.009.
CAI A D, ZHANG W J, YANG P P, HAN T F, XU M G. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China—Based on meta-analysis. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004. doi: 10.3864/j.issn.0578-1752.2015.15.009. (in Chinese)
[32]
STEWART C E, PAUSTIAN K, CONANT R T, PLANTE A F, SIX J. Soil carbon saturation: Evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 2008, 40(7): 1741-1750.
[33]
韩晓增, 邹文秀. 东北黑土地保护利用研究足迹与科技研发展望. 土壤学报, 2021, 58(6): 1341-1358.
HAN X Z, ZOU W X. Research perspectives and footprint of utilization and protection of black soil in Northeast China. Acta Pedologica Sinica, 2021, 58(6): 1341-1358. (in Chinese)
[34]
马东方, 袁再健, 吴新亮, 廖义善, 黄斌, 郑明国. 华南花岗岩侵蚀区不同植被类型坡面土壤有机碳分布和团聚体稳定性. 水土保持学报, 2020, 34(5): 137-144.
MA D F, YUAN Z J, WU X L, LIAO Y S, HUANG B, ZHENG M G. Soil organic carbon distribution and aggregate stability on the slope of different vegetation types in granite erosion region of South China. Journal of Soil and Water Conservation, 2020, 34(5): 137-144. (in Chinese)
[35]
ZHOU H, PENG X, PETH S, XIAO T Q. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography. Soil and Tillage Research, 2012, 124: 17-23.
[36]
尚应妮, 胡斐南, 赵世伟, 霍娜, 常闻谦. 不同胶结物质对黄绵土团聚体形成的影响. 水土保持学报, 2017, 31(2): 204-208, 239.
SHANG Y N, HU F N, ZHAO S W, HUO N, CHANG W Q. Effects of cementing materials on the formation of loessial soil aggregates. Journal of Soil and Water Conservation, 2017, 31(2): 204-208, 239. (in Chinese)
[37]
邱琛. 玉米秸秆还田对黑土团聚体稳定性和结构的影响[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2021.
QIU C. Effect of maize straw returning on the stability and structure of black soil aggregates[D]. Harbin:Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2021. (in Chinese)
[38]
MUSTAFA A, XU M G, ALI SHAH S A, ABRAR M M, SUN N, WANG B R, CAI Z J, SAEED Q, NAVEED M, MEHMOOD K, NÚÑEZ-DELGADO A. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of Southern China. Journal of Environmental Management, 2020, 270: 110894.
[39]
邢旭明, 王红梅, 安婷婷, 李双异, 裴久渤, 梁文举, 汪景宽. 长期施肥对棕壤团聚体组成及其主要养分赋存的影响. 水土保持学报, 2015, 29(2): 267-273.
XING X M, WANG H M, AN T T, LI S Y, PEI J B, LIANG W J, WANG J K. Effects of long-term fertilization on distribution of aggregate size and main nutrient accumulation in brown earth. Journal of Soil and Water Conservation, 2015, 29(2): 267-273. (in Chinese)
[40]
谭文峰, 许运, 史志华, 蔡鹏, 黄巧云. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 2023, 60(5): 1297-1308.
TAN W F, XU Y, SHI Z H, CAI P, HUANG Q Y. The formation process and stabilization mechanism of soil aggregates driven by binding materials. Acta Pedologica Sinica, 2023, 60(5): 1297-1308. (in Chinese)
[41]
WITZGALL K, VIDAL A, SCHUBERT D I, HÖSCHEN C, SCHWEIZER S A, BUEGGER F, POUTEAU V, CHENU C, MUELLER C W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12: 4115.

doi: 10.1038/s41467-021-24192-8 pmid: 34226560
[42]
OADES J M, WATERS A G. Aggregate hierarchy in soils. Soil Research, 1991, 29(6): 815.
[43]
WERSHAW R L, LLAGUNO E C, LEENHEER J A. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 108(2/3): 213-223.
[44]
赵友朋, 孟苗婧, 张金池, 马洁怡, 刘胜龙. 不同林地类型土壤团聚体稳定性与铁铝氧化物的关系. 水土保持通报, 2018, 38(4): 75-81, 86.
ZHAO Y P, MENG M J, ZHANG J C, MA J Y, LIU S L. Relationship between soil aggregate stability and different forms of Fe and Al oxides in different forest types. Bulletin of Soil and Water Conservation, 2018, 38(4): 75-81, 86. (in Chinese)
[45]
张琪, 方海兰, 史志华, 李朝霞, 蔡崇法. 侵蚀条件下土壤性质对团聚体稳定性影响的研究进展. 林业科学, 2007, 43(S1): 77-82.
ZHANG Q, FANG H L, SHI Z H, LI Z X, CAI C F. Research progress on the influence of soil properties on aggregate stability under erosion conditions. Scientia Silvae Sinicae, 2007, 43(S1): 77-82. (in Chinese)
[46]
BARBERIS E, MARSAN F A, BOERO V, ARDUINO E. Aggregation of soil particles by iron oxides in various size fractions of soil B horizons. Journal of Soil Science, 1991, 42(4): 535-542.
[47]
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643.
LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: Progress and prospect. Acta Pedologica Sinica, 2023, 60(3): 627-643. (in Chinese)
[48]
REGELINK I C, STOOF C R, ROUSSEVA S, WENG L P, LAIR G J, KRAM P, NIKOLAIDIS N P, KERCHEVA M, BANWART S, COMANS R N J. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma, 2015, 247/248: 24-37.
[49]
RHOTON F E, RÖMKENS M J M, BIGHAM J M, ZOBECK T M, UPCHURCH D R. Ferrihydrite influence on infiltration, runoff, and soil loss. Soil Science Society of America Journal, 2003, 67(4): 1220-1226.
[50]
谭文峰, 周素珍, 刘凡, 冯雄汉, 李学垣. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展. 土壤, 2007, 39(5): 726-730.
TAN W F, ZHOU S Z, LIU F, FENG X H, LI X Y. Advancement in the study on interactions between iron-aluminum (hydro-) oxides and clay minerals in soil. Soils, 2007, 39(5): 726-730. (in Chinese)
[51]
SHABTAI I A, WILHELM R C, SCHWEIZER S A, HÖSCHEN C, BUCKLEY D H, LEHMANN J. Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter. Nature Communications, 2023, 14: 6609.

doi: 10.1038/s41467-023-42291-6 pmid: 37857604
[1] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[2] LIU YaJie, ZHANG TianJiao, ZHANG XiangQian, LU ZhanYuan, LIU ZhanYong, CHENG YuChen, WU Di, LI JinLong. Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland [J]. Scientia Agricultura Sinica, 2024, 57(17): 3408-3423.
[3] WANG QingYang, CAO DianYun, WANG Di, ZHAN ZengYi, HE WanYing, SUN Qiang, CHEN WenFu, LAN Yu. Effects of Long-Term Application of Biochar on Nutrients, Fractions of Humic in Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(13): 2612-2622.
[4] YANG WenHui, LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System [J]. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403.
[5] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[6] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[7] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[8] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[9] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[10] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[11] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[12] YU BoWei, ZHANG QingWen, HAO Zhuo, SHI YuLong, LI XueLiang, LI MengNi, JING XueKai. Interaction Between Transverse Ridge Tillage and Topography on Soil Erodibility Along the Long Gentle Slope in a Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(23): 4706-4716.
[13] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
[14] MEI XiuWen, ZHU TengXiao, LI YuPing, LI ShuangYi, SUN LiangJie, AN TingTing, WANG JingKuan. Effects of Rhizodeposition on Straw Carbon and Nitrogen Sequestration in Soil Profile Under Different Fertilization Conditions [J]. Scientia Agricultura Sinica, 2023, 56(19): 3856-3868.
[15] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!