Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3522-3532.doi: 10.3864/j.issn.0578-1752.2024.18.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

An EIN3/EIL Family Gene, ZmEIL9 Regulates Grain Development in Maize

ZHU JunJie(), ZHANG XinYue, PAN MengYing, ZHANG JingWen, ZHENG Qi, LI YuLing, DONG YongBin()   

  1. College of Agronomy, Henan Agricultural University/Maize Industry Integration Engineering Technology Research Center of Henan Province, Zhengzhou 450046
  • Received:2024-04-05 Accepted:2024-06-04 Online:2024-09-16 Published:2024-09-29
  • Contact: DONG YongBin

Abstract:

【Objective】 Grain size and weight are the important factors affecting the yield of maize. The EIN3/EIL gene family is a sort of key transcription factors in the ethylene signaling transduction pathway, and the functions and regulatory mechanisms of the EIN3/EIL gene ZmEIL9 were analyzed in maize kernel development to elucidate its molecular mechanisms.【Method】 The expression patterns of ZmEIL9 in maize kernel at different developmental stages were analyzed by bioinformatics and RT-qPCR. The multiple sequence alignment of ZmEIL9 and its homologs from different species was performed, and the phylogenetic trees was constructed based on the neighbor-joining method. The sequence characteristics of ZmEIL9 protein were analyzed, and subcellular localization of ZmEIL9 was performed. The insertion mutants of Mu transposon and CRISPR/Cas9 knockout mutants of ZmEIL9 were screened, and the agronomic traits including grain filling rate, storage substances such as starch granule and protein content were analyzed. 【Result】 According to the members of EIN3/EIL family in maize, phylogenetic trees showed that ZmEIL9 was closely related to ZmEIL1 and SbEIL1. In the transcriptomic database of maize inbred line B73, the expression levels of ZmEIL9 were higher in the grain at early and late developmental stages. However, the expression levels were higher in inbred line N04 at the middle and late developmental stages. ZmEIL9 encoded 644 amino acids in the inbred lines Dan232 and N04, while its homolog in inbred line B73 has 642 amino acids. Subcellular localization analysis indicated that ZmEIL9 was localized in nucleus. The ZmEIL9 mutants with different Mu transposon insertion sites and CRISPR/Cas9 knockout mutants with amino acid frameshift mutations were obtained, respectively. The plant height, grain length, and 100-grain weight of Mu mutants and knockout mutants were significantly lower than those of its wild counterpart. The grain dry weights at different developmental stages were also analyzed, and the grain filling rates of Zmeil9 mutant were lower than those of the wild type. The starch granules of Zmeil9 mutant were significantly smaller and had an irregular shape based on scanning electron microscopy (SEM) observations. The contents of total starch and the concentration of zein protein in the Zmeil9 mutant were significantly lower than those in the control. 【Conclusion】ZmEIL9 plays an important regulatory role in the kernel development of maize.

Key words: maize (Zea mays L.), EIN3/EIL family, ZmEIL9, grain development, biology function

Fig. 1

Phylogenetic tree of homologous genes of EIN3/EIL family in maize and other plants Zm: Zea mays; OS: Orzya sativa; Sb: Sorghum bicolor; At: Arabidopsis thaliana"

Fig. 2

Expression characteristics of the maize EIN3/EIL gene family in the kernel of development A: Relative expression levels of the EIN3/EIL family in the kernel of inbred line B73; B: Relative expression levels of the EIN3/EIL family in the endosperm of inbred line B73; C: Relative expression levels of ZmEIL1 and ZmEIL9 in the kernel of inbred line N04; S: Seed; en: Endosperm"

Fig. 3

ZmEIL9 cloned and its encoded amino acid sequence A: The amplification of ZmEIL9 in inbred lines N04 and Dan232; B: Amino acid alignment of ZmEIL9"

Fig. 4

Subcellular localization of ZmEIL9 in the maize protoplasts"

Fig. 5

The plant and grain phenotype of Zmeil9 Mu mutants A: Two insertion mutant of Mu transposon in the genetic background of inbred line W22; B, C: The plant and grain phenotype of Zmeil9 and separated wild-type; D-F: The plant height, grain length and 100-grain weight of Zmeil9 and separated wild-type. Grain length is the length of 10 grains (cm). The statistical method is the T-test (* P<0.05; ** P<0.01). The same as below"

Fig. 6

The plant and grain phenotype of Zmeil9 edited mutants A: The characteristics of CRISPR/Cas9 edited sequences in cri1 and cri2; B, C: The plant and grain phenotype of Zmeil9 and wild-type; D-F: The plant height, grain length and 100-grain weight of Zmeil9 and wild-type"

Fig. 7

Grain weight and filling rate of Zmeil9 and control at different developmental stages A: Dry weight of 100 grains; B: Grain filling rate"

Fig. 8

Scanning electron microscopy in the slitting seed of Zmeil9 mutant and control A: The middle part of the kernel; B, C: The outer part of the kernel"

Fig. 9

Content of starch and protein in the kernel of Zmeil9 and control A: Total starch content; B: Zein protein concentration; C: PAGE analysis of zein protein; D: PAGE analysis of non-zein protein"

[1]
张存立, 郭红卫. 乙烯信号转导通路研究. 自然杂志, 2012, 34(4): 219-228.
ZHANG C L, GUO H W. Study of ethylene signal transduction pathway. Chinese Journal of Nature, 2012, 34(4): 219-228. (in Chinese)
[2]
DUBOIS M, VAN DEN BROECK L, INZE D. The pivotal role of ethylene in plant growth. Trends in Plant Science, 2018, 23(4): 311-323.

doi: S1360-1385(18)30015-3 pmid: 29428350
[3]
ZHAO H, YIN C C, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology, 2021, 63(1): 102-125.
[4]
赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展. 生物技术通报, 2016, 32(10): 1-10.

doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.001
ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress. Biotechnology Bulletin, 2016, 32(10): 1-10. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.001
[5]
DOLGIKH V A, PUKHOVAYA E M, ZEMLYANSKAYA E V. Shaping ethylene response: The role of EIN3/EIL1 transcription factors. Frontiers in Plant Science, 2019, 10: 1030.

doi: 10.3389/fpls.2019.01030 pmid: 31507622
[6]
WANG L K, QIAO H. New insights in transcriptional regulation of the ethylene response in Arabidopsis. Frontiers Plant Science, 2019, 10: 790.
[7]
YANG C, LU X, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Molecular Plant, 2015, 8(4): 495-505.
[8]
田骄阳, 徐徐, 孙义伟, 潘浪波, 黄有军. EIN3/EIL基因家族的系统进化. 分子植物育种, 2022, 20(21): 7060-7070.
TIAN J Y, XU X, SUN Y W, PAN L B, HUANG Y J. Phylogeny of EIN3/EIL gene family. Molecular Plant Breeding, 2022, 20(21): 7060-7070. (in Chinese)
[9]
DAS JYOTI S, BIN AZIM J, ROBIN A H K. Genome-wide characterization and expression profiling of EIN3/EIL family genes in Zea mays. Plant Gene, 2021, 25: 100270.
[10]
YANG C, MA B, HE S J, XIONG Q, DUAN K X, YIN C C, CHEN H, LU X, CHEN S Y, ZHANG J S. MAOHUZI6/ETHYLENE INSENSITIVE3- LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 2015, 169(1): 148-165.
[11]
JIN J, DUAN J L, SHAN C, MEI Z L, CHEN H Y, FENG H F, ZHU J, CAI W M. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the β subunit of polygalacturonase (PG1β-like) subfamily gene in rice. Plant Science, 2020, 292: 110353.
[12]
LIU C, MA T, YUAN D Y, ZHOU Y, LONG Y, LI Z W, DONG Z Y, DUAN M J, YU D, JING Y Z, BAI X Y, WANG Y B, HOU Q C, LIU S S, ZHANG J S, CHEN S Y, LI D Y, LIU X, LI Z K, WANG W S, LI J P, WEI X, MA B, WAN X Y. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal, 2022, 20(8): 1470-1486.
[13]
ZHANG Y Y, ZANG Y H, CHEN J W, FENG S L, ZHANG Z Y, HU Y, ZHANG T Z. A truncated ETHYLENE INSENSITIVE3-like protein, GhLYI, regulates senescence in cotton. Plant Physiology, 2023, 193(2): 1177-1196.
[14]
YANG Z, WANG C Q, QIU K, CHEN H R, LI Z P, LI X, SONG J B, WANG X L, GAO J, KUAI B K, ZHOU X. The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize. Plant, Cell and Environment, 2020, 43(9): 2287-2300.
[15]
SHI Q L, DONG Y B, QIAO D H, ZHOU Q, ZHANG L, MA Z Y, LI Y L. Characterization and functional analysis of transcription factor ZmEIL1 in maize. Biologia Plantarum, 2017, 61(2): 266-274.
[16]
FU J Y, PEI W Z, HE L Q, MA B, TANG C, ZHU L, WANG L P, ZHONG Y Y, CHEN G, WANG Q, WANG Q. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genetics, 2023, 19(11): e1011052.
[17]
QIN H, PANDEY B K, LI Y X, HUANG G Q, WANG J, QUAN R D, ZHOU J H, ZHOU Y, MIAO Y C, ZHANG D B, BENNETT M J, HUANG R F. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. The Plant Cell, 2022, 34(4): 1273-1288.

doi: 10.1093/plcell/koac008 pmid: 35021223
[18]
李玥, 王兴荣, 张彦军, 李永生, 祁旭升. 玉米乙烯信号转导相关基因ZmEIL2的克隆及表达分析. 植物遗传资源学报, 2023, 24(2): 550-558.

doi: 10.13430/j.cnki.jpgr.20220920002
LI Y, WANG X R, ZHANG Y J, LI Y S, QI X S. Molecular cloning and expression analysis of ethylene signaling related gene ZmEIL2 in maize. Journal of Plant Genetic Resources, 2023, 24(2): 550-558. (in Chinese)
[19]
CHEN J, ZENG B, ZHANG M, XIE S J, WANG G K, HAUCK A, LAI J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology, 2014, 166(1): 252-264.

doi: 10.1104/pp.114.240689 pmid: 25037214
[20]
YI F, GU W, CHEN J, SONG N, GAO X, ZHANG X B, ZHOU Y S, MA X X, SONG W B, ZHAO H M, ESTEBAN E, PASHA A, PROVART N J, LAI J S. High temporal-resolution transcriptome landscape of early maize seed development. The Plant Cell, 2019, 31(5): 974-992.

doi: 10.1105/tpc.18.00961 pmid: 30914497
[21]
TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
[22]
LI W, LI Y, SHI H, WANG H, JI K, ZHANG L, WANG Y, DONG Y, LI Y. ZmMAPK6, a mitogenactivated protein kinase, regulates maize kernel weight. Journal of Experimental Botany, 2024, 75(11): 3287-3299.
[23]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262 pmid: 11846609
[24]
孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29(2): 224-234.
SUN H, LANG Z H, ZHU L, HUANG D H. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chinese Journal of Biotechnology, 2013, 29(2): 224-234. (in Chinese)
[25]
赵然, 蔡曼君, 杜艳芳, 张祖新. 玉米籽粒形成的分子生物学基础. 中国农业科学, 2019, 52(20): 3495-3506. doi: 10.3864/j.issn.0578-1752.2019.20.001.
ZHAO R, CAI M J, DU Y F, ZHANG Z X. Molecular basis of kernel development and kernel number in maize (Zea mays L.). Scientia Agricultura Sinica, 2019, 52(20): 3495-3506. doi: 10.3864/j.issn. 0578-1752.2019.20.001. (in Chinese)
[26]
DAI D W, MA Z Y, SONG R T. Maize kernel development. Molecular Breeding, 2021, 41(1): 2.
[27]
WANG C, LI H G, LONG Y, DONG Z Y, WANG J H, LIU C, WEI X, WAN X Y. A systemic investigation of genetic architecture and gene resources controlling kernel size-related traits in maize. International Journal of Molecular Sciences, 2023, 24(2): 1025.
[28]
ZHANG J H, ZHANG X, LIU X M, PAI Q F, WANG Y H, WU X L. Molecular network for regulation of seed size in plants. International Journal of Molecular Sciences, 2023, 24(13): 10666.
[29]
HEYDLAUFF J, ERBASOL SERBES I, VO D, MAO Y B, GIESEKING S, NAKEL T, HARTEN T, VOLZ R, HOFFMANN A, GROß-HARDT R. Dual and opposing roles of EIN3 reveal a generation conflict during seed growth. Molecular Plant, 2022, 15(2): 363-371.
[30]
ZHU L S, CHEN L, WU C J, SHAN W, CAI D L, LIN Z X, WEI W, CHEN J Y, LU W J, KUANG J F. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. Journal of Integrative Plant Biology, 2023, 65(1): 150-166.
[31]
QIN H, ZHANG Z J, WANG J, CHEN X B, WEI P C, HUANG R F. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS Genetics, 2017, 13(8): e1006955.
[32]
QIAO J Z, QUAN R D, WANG J, LI Y X, XIAO D L, ZHAO Z H, HUANG R F, QIN H. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Communications, 2024, 5(3): 100771.
[33]
ZHANG M, ZHANG M Y, WANG J Y, DAI S S, ZHANG M H, MENG Q W, MA N N, ZHUANG K Y. Salicylic acid regulates two photosystem Ⅱ protection pathways in tomato under chilling stress mediated by ETHYLENE INSENSITIVE 3-like proteins. The Plant Journal, 2023, 114(6): 1385-1404.
[34]
YAN Z W, LIU X, LJUNG K, LI S N, ZHAO W Y, YANG F, WANG M L, TAO Y. Type B response regulators act as central integrators in transcriptional control of the auxin biosynthesis enzyme TAA1. Plant Physiology, 2017, 175(3): 1438-1454.

doi: 10.1104/pp.17.00878 pmid: 28931628
[1] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[2] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[3] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[4] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[5] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[6] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[7] SHI DaKun, YAO TianLong, LIU NanNan, DENG Min, DUAN HaiYang, WANG LuLin, WAN Jiong, GAO JiongHao, XIE HuiLing, TANG JiHua, ZHANG XueHai. Genome-Wide Association Study of Chlorophyll Content in Maize [J]. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857.
[8] YU Tao, LI Geng, LIU Peng, DONG ShuTing, ZHANG JiWang, ZHAO Bin. Proteomic Analysis of Maize Reveals Expression Characteristics of Stress-Related Proteins During Grain Development [J]. Scientia Agricultura Sinica, 2017, 50(11): 2114-2128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!