Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 141-155.doi: 10.3864/j.issn.0578-1752.2025.01.011

• HORTICULTURE • Previous Articles     Next Articles

Aroma Quality Analysis of Guangdongxiangshui Lemon Based on Molecular Sensory Technology

ZHANG SiNing1,2,3(), ZHANG XingRui1,2(), WU DongXuan1,2, KANG JingBo1,2, CHEN XiaoLin1,2, GENG LiJun1,2, YIN GuangMin1,2, CHEN JiaJing1,2, GAO JunYan4, CAI ZhongHu5, LIU Yuan1,2,*(), XU Juan1,2,*()   

  1. 1 National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University/Hubei Hongshan Laboratory, Wuhan 430070
    2 Horticultural Products Sensory Evaluation and Quality Testing Center, Huazhong Agricultural University, Wuhan 430070
    3 Sichuan Institute of Industrial Technology, Deyang 618500, Sichuan
    4 Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan
    5 Yunnan Dali Weishan Jufeng Agricultural Technology Co., Ltd, Dali 671000, Yunnan
  • Received:2024-05-27 Accepted:2024-07-05 Online:2025-01-01 Published:2025-01-07
  • Contact: LIU Yuan, XU Juan

Abstract:

【Objective】Tea drinks made from Guangdongxiangshui lemon is popular among consumers, but its aroma profile, main aroma-active compounds and corresponding key biosynthesis genes still need to be analyzed. In this study, integrated molecular sensory technology including metabolomics and sensory evaluation was used to explore the material basis and corresponding key genes for the aroma quality of Guangdongxiangshui lemon, aiming at laying a foundation of the citrus aroma quality. 【Method】The volatiles of Guangdongxiangshui lemon from three areas, including Weishan, Yunfu and Wuzhou, were detected via GC-MS, and the aroma quality were evaluated by sensory evaluation panels. The aroma active compounds of Guangdongxiangshui lemon were identified by GC/O-MS combined with aroma extract dilution analysis (AEDA), aroma activity value (OAV) analysis and aroma recombination experiment, and then the characteristic aroma compounds were further identified. Based on gene family analysis, the genes related to aroma formation were illustrated. 【Result】A total of 40, 21 and 33 volatiles were identified in the flavedo, pulp and slices of Guangdongxiangshui lemon, respectively. The samples with the highest volatile content in flavedo and pulp tissues were from Weishan and Yunfu, respectively. In terms of aroma attributes, the aroma intensity of Guangdongxiangshui lemon slices from Weishan and Yunfu was significantly higher than that of Wuzhou. The whole fruit aroma quality of samples from Wuzhou was better than that of samples from other origins. Solvent-assisted flavor evaporation (SAFE) and other methods were used to extract the essential oil of Guangdongxiangshui lemon in Weishan, and 25 aroma active compounds were identified. Combined with OAV analysis and aroma recombination experiments, citronellal and citral were further identified as its characteristic aroma compounds, and the aroma flavor wheel was further constructed. Based on the conserved domain and Blast comparison, 52 terpene synthase (TPS) genes were identified in Guangdongxiangshui lemon genome, which might be involved in the aroma compounds synthesis. 【Conclusion】The volatile spectrum and sensory evaluation showed that the aroma quality of Guangdongxiangshui lemon slices from Weishan were outstanding. A total of 25 aroma active compounds were identified. Among them, citronellal and citral were the characteristic aroma compounds of Guangdongxiangshui lemon, while d-limonene provided a background aroma. Combined with quantitative descriptive analysis and odor note collected via GC/O-MS, the aroma wheel of Guangdongxiangshui lemon was constructed with 15 aroma descriptors in 6 categories, including ‘fruity’ ‘woody’ ‘medicinal’ ‘spicy’ ‘floral’ and ‘grassy’. Furthermore, 52 TPS genes were mined in Guangdongxiangshui lemon genome, which might participate in the aroma compounds synthesis.

Key words: Citrus medica Guangdongxiangshui lemon, sensory evaluation, characteristic aroma compounds, aroma flavor wheel, terpene synthase gene

Fig. 1

Guangdongxiangshui lemon samples (Weishan of Yunnan province)"

Table 1

Standard substance of volatile"

标准品 Standard substance CAS 来源 Source
桧烯 Sabinene 3387-41-5 Sigma Aldrich
3-蒈烯 3-Carene 13466-78-9 Sigma Aldrich
α-松油醇 α-Terpineol 10482-56-1 Sigma Aldrich
石竹烯 Caryophyllene 87-44-5 Sigma Aldrich
α-水芹烯α-Phellandrene 4221-98-1 TCI
γ-萜品烯γ-Terpinene 99-85-4 上海源叶生物Shanghai Yuanye Bio-Technology Co., Ltd
芳樟醇 Linalool 78-70-6 上海源叶生物Shanghai Yuanye Bio-Technology Co., Ltd
香茅醛 Citronellal 106-23-0 上海源叶生物Shanghai Yuanye Bio-Technology Co., Ltd
蛇麻烯 Humulene 6753-98-6 上海源叶生物Shanghai Yuanye Bio-Technology Co., Ltd
β-月桂烯 β-Myrcene 123-35-3 上海源叶生物Shanghai Yuanye Bio-Technology Co., Ltd
萜品油烯 Terpinolene 586-62-9 SAFC
癸醛 Decanal 112-31-2 Macklin
香叶醇 Geraniol 106-24-1 Ackos
乙酸香叶酯 Geranyl acetate 105-87-3 Fluka

Table 2

Composition ratio of Guangdongxiangshui lemon aroma model stock solution"

化合物
Compound
密度
Density (g·mL-1)
10 mL储备液所需化合物体积 Volume of compound required for 10 mL reserve solution (μL) 1 mL香气模型中的化合物含量Compound content in 1 mL aroma model (μg)
α-蒎烯α-Pinene 0.858 47.51 40.76
β-月桂烯β-Myrcene 0.794 218.72 173.66
d-柠檬烯 d-Limonene 0.860 10000 8600
α-水芹烯α-Phellandrene 0.840 4.23 3.55
反式-β-罗勒烯 trans-β-Ocimene 0.818 121.75 99.59
香茅醛 Citronellal 0.851 1392.76 1185.24
癸醛 Decanal 0.830 23.35 19.38
芳樟醇 Linalool 0.940 94.17 88.52
石竹烯 Caryophyllene 0.890 24.74 22.02
柠檬醛 Citral 0.891 783.09 697.73
乙酸香叶酯 Geranyl acetate 0.920 53.17 48.92

Table 3

Quantitative descriptive analysis reference solution"

气味描述词
Aroma descriptor
标准品
Standard substance
标准品浓度
Concentration (mg·L-1)
柠檬香 Lemon 柠檬醛 Citral 1.776
清香 Fresh 罗勒烯 Ocimene 0.218
花香 Floral 芳樟醇 Linalool 0.627
甜香 Sweet 橙花醇 Nerol 8.790
橙香 Orange 法呢烯 Farnesene 0.807
薄荷香 Mint α-水芹烯 α-Phellandrene 0.425

Fig. 2

Comparative analysis of volatile compounds in Guangdongxiangshui lemon from different origins A: Heat map of volatile compounds of Guangdongxiangshui lemon from different origins; B: Comparison of total volatile content of Guangdongxiangshui lemon from different origins. WS: Yunnan Weishan sample; GX: Guangxi Wuzhou sample; GD: Guangdong Yunfu sample. HP: Flavedo; GR: Pulp tissue; QP: Fruit section. Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 3

Differences in the volatile compounds of Guangdongxiangshui lemon from different origins A: PLS-DA result of flavedo; B: PLS-DA result of pulp; C: PLS-DA result of fruit section"

Table 4

Differential metabolites of Guangdongxiangshui lemon from different origins"

黄皮层 Flavedo 果肉 Pulp 切片 Fruit section
挥发性物质 Volatile substances VIP 挥发性物质 Volatile substances VIP 挥发性物质 Volatile substances VIP
十六醛 Hexadecanal 1.52 癸醛 Decanal 1.30 α-红没药醇 α-Bisabolol 1.39
3-蒈烯 3-Carene 1.46 异蒲勒醇 Isopulegol 1.29 十一醛 Undecanal 1.35
十一醛 Undecanal 1.44 β-月桂烯 β-Myrcene 1.25 反式-β-法呢烯 (E)- β-Farnesene 1.33
新植二烯 Neophytadiene 1.40 d -柠檬烯 d-Limonene 1.23 乙酸橙花酯 Nerol acetate 1.31
d-柠檬烯 d-Limonene 1.37 反式-β-罗勒烯 trans-β-Ocimene 1.23 顺式-α-香柠檬烯 cis-α-Bergamotene 1.28
γ-松油烯 γ-Terpinene 1.36 香茅醛 Citronellal 1.22 α-香柠檬烯 α-Bergamotene 1.26
芳樟醇 Linalool 1.35 β-红没药烯 β-Bisabolene 1.22 香茅醛 Citronellal 1.26
吉马烯B Germacrene B 1.25 δ-榄香烯δ-EIemene 1.19 β-红没药烯 β-Bisabolene 1.23
乙酸橙花酯 Nerol acetate 1.25 α-香柠檬烯 α-Bergamotene 1.17 反式-β-罗勒烯 trans-β-Ocimene 1.21
乙酸香叶酯 Geranyl acetate 1.23 香叶醇 Geraniol 1.16 香叶醇 Geraniol 1.21
β-姜黄烯 β-Curcumene 1.22 吉马烯B Germacrene B 1.10 石竹烯 Caryophyllene 1.20
吉马烯D Germacrene D 1.20 芳樟醇 Linalool 1.00 顺式-β-罗勒烯 β-cis-Ocimene 1.18
δ-榄香烯 δ-EIemene 1.19 顺式-α-红没药烯 cis-α-Bisabolene 1.14
香叶醛 α-Citral 1.18 新植二烯 Neophytadiene 1.08
橙花醛 Neral 1.17 香叶醛 α-Citral 1.07
(+)-缬草萜酮 (+)-Valeranone 1.15 α-蒎烯 α-Pinene 1.07
蛇麻烯 Humulene 1.10 橙花醛 Neral 1.07
桧烯 Sabinene 1.09 乙酸香叶酯 Geranyl acetate 1.05
十二醛 Dodecanal 1.05 γ-松油烯 γ-Terpinene 1.01
癸醛 Decanal 1.04
香叶醇 Geraniol 1.04

Table 5

Sensory evaluation of the aroma quality of Guangdongxiangshui lemon from different origins"

样品
Sample
评价内容
Evaluation content
对比组1 Comparison group 1 对比组2 Comparison group 2
WS GD WS GX
整果
Whole fruit
香气强度 Aroma intensity 5.02±2.35 4.44±2.21 4.86±2.19 5.93±1.80**
香气偏好(人数) Aroma preference (number of people) 31 29 30 30
切片
Fruit section
香气强度 Aroma intensity 6.82±1.57 6.26±1.64 7.48±1.50* 6.78±1.49
香气偏好(人数) Aroma preference (number of people) 35 25 38 22

Table 6

Results of GC/O-MS and OAV analysis of Guangdongxiangshui lemon"

编号
Code
名称
Compounds
气味特征
Aroma note
嗅闻阈值
Threshold
(μg·kg-1)
稀释因子
Dilution factor
含量
Content
(µg·g-1)
香味
活性值
OAV
L01 α-蒎烯 α-Pinene 清香 Fresh 14 3 40.76±7.97 2911.43
L02 β-月桂烯 β-Myrcene 青草味 Grassy 1.5 729 173.65±6.20 115764.89
L03 d-柠檬烯 d -Limonene 甜橙味,清凉 Sweet orange, Fresh 34 9 12871.14±701.97 378562.88
L04 α-水芹烯 α-Phellandrene 薄荷味 Mint 0.5 729 3.55±0.30 7098.53
L05 反式-β-罗勒烯 trans-β-Ocimene 薄荷味 Mint 34 3 99.59±1.44 2929.20
顺式柠檬烯氧化物 cis-Limonene oxide 清香 Fresh 30 243 - -
L06 香茅醛 Citronellal 果香 Fruity 100 1 1185.24±134.18 11852.40
L07 癸醛 Decanal 清香 Fresh 3.02 27 19.38±3.04 6416.63
L08 芳樟醇 Linalool 花香Floral 6 729 88.52±10.59 14753.14
顺式-α-香柠檬烯 cis-α-Bergamotene 松香,木香 Piney, woody / 81 5.79±1.37 -
δ-榄香烯 δ-EIemene 辛香 Pungent / 27 22.76±7.03 -
十一醛 Undecanal 清香 Fresh 100 3 12.00±2.64 120.00
L09 石竹烯 Caryophyllene 木香,麻味 Wood y, numb taste 9 3 22.02±4.92 2446.67
乙酸香茅酯 Citronellol acetate 柠檬味 Lemon 1000 9 12.98±0.38 12.98
反式-β-法呢烯 (E)-β-Farnesene 清香 Fresh 10000 3 9.00±2.00 0.00
L10 橙花醛 Neral 柠檬味,果香 Lemon, fruity 5000 81 697.73±126.59 139.55
α-松油醇 α-Terpineol 柠檬味,果香 Lemon, fruity 314 9 27.28±4.54 86.88
乙酸橙花酯 Nerol acetate 花香 Floral 8500 3 9.80±3.24 1.15
β-红没药烯 β-Bisabolene 药草味 Herbal / 9 112.27±21.62 -
L11 乙酸香叶酯 Geranyl acetate 花香,膏香Floral, balsamic 460 729 48.92±16.70 106.35
顺式-α-红没药烯 cis-α-Bisabolene 柑橘香 Citrus / 243 11.83±2.77 -
橙花醇 Nerol 柠檬味,果香 Lemon, fruity 680 3 N -
紫苏醛 Perilla aldehyde 辛香 Pungent 30 3 N -
香叶醇 Geraniol 花香 Floral 1000 3 12.93±7.83 0.00
吉马烯B Germacrene B 木香 Wood y / 3 21.63±7.23 -

Table 7

Classification of 11 candidate characteristic aroma compounds"

分类 Categories 气味特征 Aroma note 香气活性物质 Aroma-active odorants
清香 Fresh 清香 Fresh α-蒎烯 α-Pinene (L01)
清香 Fresh 癸醛 Decanal (L07)
果味 Fruity 甜橙味,清凉 Sweet orange, coll d-柠檬烯 d-Limonene (L03)
果香 Fruity 香茅醛 Citronellal (L06)
柠檬味,果香 Lemon, fruity 柠檬醛 Citral (L10)
青草味 Grassy 青草味 Grassy β-月桂烯β-Myrcene (L02)
薄荷味 Mint 薄荷味 Mint α-水芹烯 α-Phellandrene (L04)
薄荷味 Mint 反式-β-罗勒烯 trans-β-Ocimene (L05)
花香 Floral 花香 Floral 芳樟醇 Linalool (L08)
花香,膏香 Floral fragrance, balsamic 乙酸香叶酯 Geranyl acetate (L11)
木香 Woody 木香,麻味 Wood y, numb taste 石竹烯 Caryophyllene (L09)

Table 8

Guangdongxiangshui lemon aroma model missing and sequential addition experiment"

香气重构模型 Aroma reconstruction model 包含物质 Contains substances 相似值 Similar values
M1 L01—L11 5.82±1.98a*
O1 L02—L06, L08—L11 5.13±2.21a
O2 L01, L02, L04, L05, L07—L09, L11 3.42±2.07b
O3 L01, L03—L11 4.99±2.12a
O4 L01—L03, L06—L11 5.44±2.12a
O5 L01—L07, L09—L10 5.22±2.18a
O6 L01—L08, L10—L11 4.92±2.14a
A1 L01—L05, L07—L09, L11 4.23±2.15b
A2 L01—L09, L11 5.39±2.38ab
A3 L01—L11 5.11±2.27ab

Fig. 4

Aroma profile analysis of Guangdongxiangshui lemon A: Guangdongxiangshui lemon aroma flavor radar map; B: Aroma wheel of Guangdongxiangshui lemon"

Fig. 5

The phylogenetic relationships of candidate TPS genes A: Phylogenetic tree of candidate TPS genes; B: Chromosome map of Guangdongxiangshui lemon"

[1]
邓秀新. 世界柑橘品种改良的进展. 园艺学报, 2005, 32(6): 1140-1146.
DENG X X. Advances in worldwide Citrus breeding. Acta Horticulturae Sinica, 2005, 32(6): 1140-1146. (in Chinese)
[2]
周开隆, 叶荫民. 中国果树志-柑橘卷. 北京: 中国林业出版社, 2010: 85-97.
ZHOU K L, YE Y M. China Fruit Annals-Citrus Roll. Beijing: China Forestry Publishing House, 2010: 85-97. (in Chinese)
[3]
张海朋, 彭昭欣, 石梅艳, 温欢, 张红艳, 徐娟. 柑橘果实风味组学研究进展. 华中农业大学学报, 2021, 40(1): 32-39.
ZHANG H P, PENG Z X, SHI M Y, WEN H, ZHANG H Y, XU J. Advances on Citrus flavoromics. Journal of Huazhong Agricultural University, 2021, 40(1): 32-39. (in Chinese)
[4]
ZHANG W L, CHEN T T, TANG J M, SUNDARARAJAN B, ZHOU Z Q. Tracing the production area of Citrus fruits using aroma-active compounds and their quality evaluation models. Journal of the Science of Food and Agriculture, 2020, 100(2): 517-526.
[5]
VAN RUTH S M. Methods for gas chromatography-olfactometry: A review. Biomolecular Engineering, 2001, 17(4/5): 121-128.
[6]
ZHANG H P, XIE Y X, LIU C H, CHEN S L, HU S S, XIE Z Z, DENG X X, XU J. Comprehensive comparative analysis of volatile compounds in Citrus fruits of different species. Food Chemistry, 2017, 230: 316-326.
[7]
LAN-PHI N T, SHIMAMURA T, UKEDA H, SAWAMURA M. Chemical and aroma profiles of Yuzu (Citrus junos) peel oils of different cultivars. Food Chemistry, 2009, 115(3): 1042-1047.
[8]
BRODIN M, LASKA M, OLSSON M J. Odor interaction between Bourgeonal and its antagonist undecanal. Chemical Senses, 2009, 34(7): 625-630.

doi: 10.1093/chemse/bjp044 pmid: 19620388
[9]
GROSCH W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chemical Senses, 2001, 26(5): 533-545.

pmid: 11418500
[10]
HU Z H, CHEN M J, ZHU K J, LIU Y, WEN H, KONG J T, CHEN M H, CAO L X, YE J L, ZHANG H Y, DENG X X, CHEN J J, XU J. Multiomics integrated with sensory evaluations to identify characteristic aromas and key genes in a novel brown navel orange (Citrus sinensis). Food Chemistry, 2024, 444: 138613.
[11]
BOHLMANN J, STEELE C L, CROTEAU R. Monoterpene Synthases from Grand Fir (Abies grandis) cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. Journal of Biological Chemistry, 1997, 272(35): 21784-21792.

doi: 10.1074/jbc.272.35.21784 pmid: 9268308
[12]
AUBOURG S, LECHARNY A, BOHLMANN J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics, 2002, 267(6): 730-745.
[13]
MARTIN D M, AUBOURG S, SCHOUWEY M B, DAVIET L, SCHALK M, TOUB O, LUND S T, BOHLMANN J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010, 10: 226.

doi: 10.1186/1471-2229-10-226 pmid: 20964856
[14]
CHEN F, THOLL D, BOHLMANN J, PICHERSKY E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the Kingdom. The Plant Journal, 2011, 66(1): 212-229.

doi: 10.1111/j.1365-313X.2011.04520.x pmid: 21443633
[15]
CHEN F, THOLL D, D’AURIA J C, FAROOQ A, PICHERSKY E, GERSHENZON J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. The Plant Cell, 2003, 15(2): 481-494.
[16]
FU J Y. Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Acta Physiologiae Plantarum, 2013, 35(1): 289-293.
[17]
COPPOLA M, CASCONE P, BOSSI S, CORRADO G, GARONNA A P, MAFFEI M, RAO R, GUERRIERI E. TPS genes silencing alters constitutive indirect and direct defense in tomato. International Journal of Molecular Sciences, 2018, 19(9): 2748.
[18]
SHARON-ASA L, SHALIT M, FRYDMAN A, BAR E, HOLLAND D, OR E, LAVI U, LEWINSOHN E, EYAL Y. Citrus fruit flavor and aroma biosynthesis: Isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. The Plant Journal, 2003, 36(5): 664-674.
[19]
SHIMADA T, ENDO T, FUJII H, HARA M, UEDA T, KITA M, OMURA M. Molecular cloning and functional characterization of four monoterpene synthase genes from Citrus unshiu Marc. Plant Science, 2004, 166(1): 49-58.
[20]
LI X, XU Y Y, SHEN S L, YIN X R, KLEE H, ZHANG B, CHEN K S, HANCOCK R. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany, 2017, 68(17): 4929-4938.

doi: 10.1093/jxb/erx316 pmid: 28992329
[21]
XU Y Y, WU B P, CAO X M, ZHANG B, CHEN K S. Citrus CmTPS1 is associated with formation of sesquiterpene bicyclogermacrene. Scientia Horticulturae, 2017, 226: 133-140.
[22]
ALQUÉZAR B, RODRÍGUEZ A, DE LA PEÑA M, PEÑA L. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Frontiers in Plant Science, 2017, 8: 1481.
[23]
LIU Y, WEN H, KONG J T, HU Z H, HU Y, ZENG J W, CHEN X L, ZHANG H Y, CHEN J J, XU J. Flavor characterization of Citri Reticulatae Pericarpium (Citrus reticulata ‘Chachiensis’) with different aging years via sensory and metabolomic approaches. Food Chemistry, 2024, 443: 138616.
[24]
ENGEL W, BAHR W, SCHIEBERLE P. Solvent assisted flavour evaporation-A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology, 1999, 209(3): 237-241.
[25]
张颖彬, 刘栩, 鲁成银. 茶叶感官描述语体系构建及团体标准《茶叶感官风味轮》解读. 中国茶叶, 2023, 45(10): 31-36.
ZHANG Y B, LIU X, LU C Y. Construction of tea sensory description language system and interpretation of group standard “tea sensory wheel”. China Tea, 2023, 45(10): 31-36. (in Chinese)
[26]
BAO Y X, ZENG Z Y, YAO W, CHEN X, JIANG M W, SEHRISH A, WU B, POWELL C A, CHEN B S, XU J L, ZHANG X T, ZHANG M Q. A gap-free and haplotype-resolved lemon genome provides insights into flavor synthesis and Huanglongbing (HLB) tolerance. Horticulture Research, 2023, 10(4): uhad020.
[27]
BURDOCK G A. Fenaroli’s Handbook of Flavor Ingredients. Florida: CRC Press, 2016.
[28]
LIU C H, CHENG Y J, ZHANG H Y, DENG X X, CHEN F, XU J. Volatile constituents of wild Citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2617-2628.
[29]
CHEN J J, YUAN Z Y, ZHANG H P, LI W Y, SHI M Y, PENG Z X, LI M Y, TIAN J, DENG X X, CHENG Y J, DENG C H, XIE Z Z, ZENG J W, YAO J L, XU J. Cit1, 2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during Citrus fruit development. Journal of Experimental Botany, 2019, 70(10): 2759-2771.
[30]
YU H, ZHANG C, LU C, WANG Y N, GE C C, HUANG G X, WANG H F. The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development. Horticulture Research, 2024, 11(3): uhae005.
[1] YANG YaHeng, JIA PeiLong, NIE LanChun, ZHAO WenSheng, ZHAO JiaTeng, WANG JinXiang, LIU Jie. Evaluation of Fruit Texture Quality in Melon [J]. Scientia Agricultura Sinica, 2024, 57(8): 1560-1574.
[2] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[3] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[4] FAN Peng, YANG TianLe, ZHU ShaoLong, WANG ZhiJie, ZHANG MingYue, WEI HaiYan, LIU GuoDong. Preliminary Study on Appearance Quality Evaluation of Semi-Waxy Rice in Yangtze River Delta Region [J]. Scientia Agricultura Sinica, 2024, 57(16): 3105-3115.
[5] WU YaNuo, LIU Yuan, KONG JiaTao, HU ZheHui, CHEN MingHua, WU JunChen, ZHANG HongYan, JIANG YouWu, XU Juan, CHEN JiaJing. Basing Fuzzy Modeling to Evaluate Sensory Quality Differences of ‘Orah’ Mandarin Fruits from Various Production Regions [J]. Scientia Agricultura Sinica, 2024, 57(10): 2010-2022.
[6] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[7] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[8] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[9] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[10] Hui LU,YuJie YUAN,SiQi ZHANG,Hong CHEN,Duo CHEN,XiaoYuan ZHONG,Bo LI,Fei DENG,Yong CHEN,GuiYong LI,WanJun REN. Evaluation of Rice Eating Quality and Optimization of Varieties of Southwest Indica Hybrid Rice Based on Three Taste Evaluation Methods [J]. Scientia Agricultura Sinica, 2021, 54(6): 1243-1257.
[11] ZOU YunQian,ZHANG Li,WU FangFang,XU RangWei,XU Juan,HU ShiQuan,XIE HePing,CHENG YunJiang. Effects of Wax Coating on Off-Flavor Compound Accumulation in the Pulp of Satsuma Mandarin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2450-2459.
[12] SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
[13] WANG Qiong, XU BaoCai, YU Hai, LI Cong. Electronic Nose and Electronic Tongue Combined with Fuzzy Mathematics Sensory Evaluation to Optimize Bacon Smoking Procedure [J]. Scientia Agricultura Sinica, 2017, 50(1): 161-170.
[14] WEI Yi-min, XING Ya-nan, ZHANG Ying-quan, KONG Yan, LI Ming, ZHANG Bo, TANG Na. The Sensory Evaluation Methods of Production Process and Product of Lanzhou Hand-Extended Noodles [J]. Scientia Agricultura Sinica, 2016, 49(20): 4016-4029.
[15] XIE Yue-jie, HE Zhi-fei, LI Hong-jun. The Odor of Rabbit Meat Extracted by Supercritical Carbon Dioxide Fluid Extraction [J]. Scientia Agricultura Sinica, 2016, 49(16): 3208-3218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!