Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (24): 4825-4838.doi: 10.3864/j.issn.0578-1752.2024.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress

SU XiaoYu(), TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen()   

  1. Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences/Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002
  • Received:2024-08-04 Accepted:2024-09-30 Online:2024-12-16 Published:2024-12-23
  • Contact: LIANG HuiZhen

Abstract:

【Objective】This study aimed to explore the differences in genome-wide DNA methylation patterns and their relationships with associated gene expression in different heat-tolerant sesame varieties under high temperature stress, in order to gain a deeper understanding of the regulatory mechanisms of DNA methylation in sesame's response to high temperature stress, and to provide a theoretical basis for heat tolerance breeding in sesame. 【Method】Two sesame varieties, Zhengtaizhi 3 (heat-tolerant) and Shandong White Sesame (heat-sensitive), were selected as experimental materials and cultivated under high temperature (41 ℃) and control (30 ℃) conditions for 10 days. Nanopore sequencing technology was used to conduct methylation sequencing of the genomic DNA of these two sesame varieties, and transcriptome sequencing was performed to analyze changes in the expression of associated genes. Minimap 2 software was utilized for reference genome sequence alignment, and Tombo software was employed to detect 5mC, CpG, and 6mA methylation sites. Differentially methylated regions (DMRs) were identified based on a genome segmentation approach. Finally, functional annotation and pathway analysis of DMR-associated differentially expressed genes (DMR-DEGs) were conducted using GO, COG, and KEGG databases. 【Result】Under high temperature stress, significant changes were observed in the genome-wide DNA methylation patterns of both Zhengtaizhi 3 and Shandong White Sesame. Specifically, the m6A and cytosine methylation (mC) contents of Zhengtaizhi 3 increased, while those of Shandong White Sesame decreased. A total of 621 DMRs (Zhengtaizhi 3) and 374 DMRs (Shandong White Sesame) were identified across the entire genome, mainly distributed in promoter and intergenic regions. Further analysis revealed that these DMRs were significantly associated with 113 DMR-DEGs (Zhengtaizhi 3) and 56 DMR-DEGs (Shandong White Sesame), respectively, and that demethylated DMRs were closely related to upregulated gene expression. Functional annotation results indicated that these DMR-DEGs were primarily involved in biological processes such as carbohydrate transport and metabolism, posttranslational modification, protein turnover, signal transduction, and secondary metabolite biosynthesis. 【Conclusion】This study revealed the differences in genome-wide DNA methylation patterns and their relationships with associated gene expression in different heat-tolerant sesame varieties under high temperature stress. Zhengtaizhi 3, a heat-tolerant sesame variety, regulated the expression of related genes by increasing DNA methylation levels under high temperature stress, while Shandong White Sesame, a heat-sensitive variety, exhibited a decreasing trend in methylation levels. In particular, the dynamic changes in CpG site methylation played a crucial role in regulating sesame's response to high temperature stress. These findings provide new insights and theoretical support for understanding the mechanisms of sesame heat tolerance and for heat tolerance breeding.

Key words: sesame, high temperature stress, heat tolerance, DNA methylation, gene expression

Table 1

qRT-PCR primers for gene"

引物名称Primer name 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
gene.SIN_1009601 AGTTCACACACAGAGAGCGTAG TGGATCCAGTCTCTGTTTTCCG
gene.SIN_1016284 TTGCTAGACCCCCTATCTCCAA TCTTCCTCTTTGATGTCCCACG
gene.SIN_1015871 GAAGACGTGAAGGTTTGGGTTG CACCATCCTTAACCTCAGCCTT
gene.SIN_1007252 TTCCCGAAAGTAGCAGAAGCAT GAGAAGGGTGTGGAGAAATCGT
gene.SIN_1007507 TCCAGATAAGTGGAGAACGCAC TTCTCCATGCTGGCTTTGATCT
gene.SIN_1018288 GTTCCTGCCCGTTTACAGAAAC ACTCCTGTCCGAGTTTGACATC
gene.SIN_1012480 AGCAAGCTGATGGATCTGTTGA TCTTGCATTTCTCCATGGCTCT
gene.SIN_1017673 AGGCCCCAAGAAGAATCTTCAG TCTTAGCCTTACCAGAGGAGCT
gene.SIN_1015154 ATGAGAGGCACGTGATGAGTTT CACGTTTCTTCCTTCGTGTTCC
gene.SIN_1002481 CCCCAGCGCATCATATTTTCAG GGAGTATAACCTCATCGGCTGG
SiTUB TGGTGACCTCAACCACCTCAT TGACAGCGAGTTTCCTGAGATC

Fig. 1

Methylation patterns of different heat-resistant sesame under high temperature stress A: Genome distribution of different methylation sites in different heat-resistant sesame; B: Percentage of different methylation sites of different heat-resistant sesame in the same site of the whole genome"

Fig. 2

DNA methylation patterns in different gene regions"

Fig. 3

DMRs statistics of different heat-resistant sesame seeds under high temperature stress (A) and distribution of different gene regions (B)"

Fig. 4

Differential methylation-related gene expression (A) and distribution in different gene regions (B) of different heat-resistant sesame cultivars under high temperature stress DMGs: DMR related genes; DEGs: Differential genes identified by transcriptome sequencing"

Fig. 5

Expression analysis (A) and functional annotation (B) of DMR-DEGsin different heat-resistant gene regions"

Fig. 6

Analysis of DMR-DEGs expression in different heat-resistant sesame under high temperature stress"

[1]
LI D H, LIU P, YU J Y, WANG L H, DOSSA K, ZHANG Y X, ZHOU R, WEI X, ZHANG X R. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biology, 2017, 17(1): 152.
[2]
孙建, 颜小文, 乐美旺, 饶月亮, 颜廷献, 叶艳英, 周红英. 芝麻不同抗旱基因型对花期干旱胁迫的生理响应机理. 中国农业科学, 2019, 52(7): 1215-1226. doi: 10.3864/j.issn.0578-1752.2019.07.009.
SUN J, YAN X W, LE M W, RAO Y L, YAN T X, YE Y Y, ZHOU H Y. Physiological response mechanism of drought stress in different drought-tolerance genotypes of sesame during flowering period. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226. doi: 10.3864/j.issn.0578-1752.2019.07.009. (in Chinese)
[3]
徐芬芬, 杜佳朋. 干旱胁迫和盐胁迫对芝麻种子萌发的影响. 种子, 2013, 32(11): 85-86.
XU F F, DU J P. Effect of drought and salt stress on seed germination of sesame. Seed, 2013, 32(11): 85-86. (in Chinese)
[4]
BAATH G S, KAKANI V G, NORTHUP B K, GOWDA P H, ROCATELI A C, SINGH H. Quantifying and modeling the influence of temperature on growth and reproductive development of sesame. Journal of Plant Growth Regulation, 2022, 41(1): 143-152.
[5]
汪月宁, 代红军, 贺琰, 魏强, 郭学良, 刘妍, 殷梦婷, 王振平. 基于转录组分析油菜素内酯对高温胁迫下酿酒葡萄花色苷合成及果实品质的调控机制. 中国农业科学, 2023, 56(6): 1139-1153. doi: 10.3864/j.issn.0578-1752.2023.06.010.
WANG Y N, DAI H J, HE Y, WEI Q, GUO X L, LIU Y, YIN M T, WANG Z P. Regulation mechanism of brassinolide on anthocyanins synthesis and fruit quality in wine grapes under high temperature stress based on transcriptome analysis. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153. doi: 10.3864/j.issn.0578-1752.2023.06.010. (in Chinese)
[6]
李佳佳, 郑双雨, 孙根楼, 张文明, 王晓波, 邱丽娟. 大豆响应高温胁迫的生理和分子遗传机理研究现状与展望. 中国农业科学, 2017, 50(14): 2670-2682. doi: 10.3864/j.issn.0578-1752.2023.06.010.
LI J J, ZHENG S Y, SUN G L, ZHANG W M, WANG X B, QIU L J. Advances and perspectives in research of physiological and molecular mechanism of soybean response to high temperature stress. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682. doi: 10.3864/j.issn.0578-1752.2023.06.010. (in Chinese)
[7]
WANG Q, WU Y Q, WU W L, LYU L F, LI W L. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. Planta, 2024, 259(3): 57.

doi: 10.1007/s00425-023-04320-y pmid: 38307982
[8]
ZHAO J G, LU Z G, WANG L, JIN B. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 2020, 22(1): 117.
[9]
TOMKOVA D, BERR A. Book review: Epigenetics in plants of agronomic importance: Fundamentals and applications. Frontiers in Plant Science, 2019, 10: 882.
[10]
LIU Y T, WANG J, LIU B, XU Z Y. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 2022, 64(12): 2252-2274.

doi: 10.1111/jipb.13368
[11]
CHUNG S, KWON C, LEE J H. Epigenetic control of abiotic stress signaling in plants. Genes & Genomics, 2022, 44(3): 267-278.
[12]
AKHTER Z, BI Z Z, ALI K, SUN C, FIAZ S, HAIDER F U, BAI J P. In response to abiotic stress, DNA methylation confers EpiGenetic changes in plants. Plants, 2021, 10(6): 1096.
[13]
ARıKAN B, ÖZDEN S, TURGUT-KARA N. DNA methylation related gene expression and morphophysiological response to abiotic stresses in Arabidopsis thaliana. Environmental and Experimental Botany, 2018, 149: 17-26.
[14]
WILLIAMS C J, DAI D W, TRAN K A, MONROE J G, WILLIAMS B P. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biology, 2023, 24(1): 227.

doi: 10.1186/s13059-023-03059-9 pmid: 37828516
[15]
LV H, DAO F Y, ZHANG D, YANG H, LIN H. Advances in mapping the epigenetic modifications of 5-methylcytosine (5mC), N6-methyladenine (6mA), and N4-methylcytosine (4mC). Biotechnology and Bioengineering, 2021, 118(11): 4204-4216.

doi: 10.1002/bit.27911 pmid: 34370308
[16]
LIU Z K, LI Y X, ZHANG X Y. DNA methylation on C5-Cytosine and N6-Adenine in the Bursaphelenchus xylophilus genome. BMC Genomics, 2023, 24(1): 671.
[17]
GRIMANELLI D, INGOUFF M. DNA methylation readers in plants. Journal of Molecular Biology, 2020, 432(6): 1706-1717.

doi: 10.1016/j.jmb.2019.12.043 pmid: 31931004
[18]
MIRYEGANEH M. Plants’ epigenetic mechanisms and abiotic stress. Genes, 2021, 12(8): 1106.
[19]
LIU J Z, FENG L L, LI J M, HE Z H. Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 2015, 6: 267.

doi: 10.3389/fpls.2015.00267 pmid: 25964789
[20]
ZHANG Q, LIANG Z, CUI X A, JI C M, LI Y, ZHANG P X, LIU J R, RIAZ A, YAO P, LIU M, WANG Y P, LU T G, YU H, YANG D L, ZHENG H K, GU X F. N 6-methyladenine DNA methylation in Japonica and indica rice genomes and its association with gene expression, plant development, and stress responses. Molecular Plant, 2018, 11(12): 1492-1508.
[21]
LIANG Z, SHEN L S, CUI X A, BAO S J, GENG Y K, YU G L, LIANG F, XIE S, LU T G, GU X F, YU H. DNA N 6-Adenine methylation in Arabidopsis thaliana. Developmental Cell, 2018, 45(3): 406-416.
[22]
WU X W, SU T T, ZHANG S Y, ZHANG Y, WONG C E, MA J Q, SHAO Y L, HUA C M, SHEN L S, YU H. N6-methyladenosine- mediated feedback regulation of abscisic acid perception via phase- separated ECT8 condensates in Arabidopsis. Nature Plants, 2024, 10(3): 469-482.
[23]
张莉, 贾峰, 张广乐, 曾磊, 伊艳杰, 王金水. 植物DNA甲基化研究进展. 安徽农业科学, 2012, 40(6): 3218-3221.
ZHANG L, JIA F, ZHANG G L, ZENG L, YI Y J, WANG J S. Research advances in DNA methylation of plant. Journal of Anhui Agricultural Sciences, 2012, 40(6): 3218-3221. (in Chinese)
[24]
JIA Z, SHI Y Y, ZHANG L, REN Y P, WANG T, XING L J, ZHANG B R, GAO G L, BU R F. DNA methylome profiling at single-base resolution through bisulfite sequencing of 5mC- immunoprecipitated DNA. BMC Biotechnology, 2018, 18(1): 7.
[25]
MIURA F, ENOMOTO Y, DAIRIKI R, ITO T. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Research, 2012, 40(17): e136.
[26]
LANDAN G, COHEN N M, MUKAMEL Z, BAR A, MOLCHADSKY A, BROSH R, HORN-SABAN S, ZALCENSTEIN D A, GOLDFINGER N, ZUNDELEVICH A, GAL-YAM E N, ROTTER V, TANAY A. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genetics, 2012, 44(11): 1207-1214.

doi: 10.1038/ng.2442 pmid: 23064413
[27]
NI P, HUANG N, NIE F, ZHANG J, ZHANG Z, WU B, BAI L, LIU W D, XIAO C L, LUO F, WANG J X. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nature Communications, 2021, 12(1): 5976.

doi: 10.1038/s41467-021-26278-9 pmid: 34645826
[28]
RAND A C, JAIN M, EIZENGA J M, MUSSELMAN-BROWN A, OLSEN H E, AKESON M, PATEN B. Mapping DNA methylation with high-throughput nanopore sequencing. Nature Methods, 2017, 14(4): 411-413.

doi: 10.1038/nmeth.4189 pmid: 28218897
[29]
GOUIL Q, KENIRY A. Latest techniques to study DNA methylation. Essays in Biochemistry, 2019, 63(6): 639-648.

doi: 10.1042/EBC20190027 pmid: 31755932
[30]
SU X Y, GAO T M, ZHANG P Y, LI F, WANG D Y, TIAN Y, LU H L, ZHANG H Y, WEI S L. Comparative physiological and transcriptomic analysis of sesame cultivars with different tolerance responses to heat stress. Physiology and Molecular Biology of Plants, 2022, 28(5): 1131-1146.

doi: 10.1007/s12298-022-01195-3 pmid: 35722520
[31]
LI H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018, 34(18): 3094-3100.

doi: 10.1093/bioinformatics/bty191 pmid: 29750242
[32]
STOIBER M H, QUICK J, EGAN R, EGAM R, JI E L, CELNIKER S E. Denovo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing. Cold Spring Harbor Laboratory, 2016: e094672.
[33]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
[34]
魏华丽, 杨文华, 韩素英, 齐力旺. 表观遗传学在木本植物中的研究策略及应用. 中国农业科技导报, 2009, 11(2): 10-16.
WEI H L, YANG W H, HAN S Y, QI L W. Research strategy of epigenetics and its utilization in wooden plants. Journal of Agricultural Science and Technology, 2009, 11(2): 10-16. (in Chinese)
[35]
MESSEGUER R, GANAL M W, STEFFENS J C, TANKSLEY S D. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology, 1991, 16(5): 753-770.

pmid: 1859863
[36]
LEUTWILER L S, HOUGH-EVANS B R, MEYEROWITZ E M. The DNA of Arabidopsis thaliana. Molecular and General Genetics, 1984, 194(1): 15-23.
[37]
ZHENG X G, CHEN L, LI M S, LOU Q J, XIA H, WANG P, LI T M, LIU H Y, LUO L J. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS ONE, 2013, 8(11): e80253.
[38]
CERVERA M T, RUIZ-GARCÍA L, MARTÍNEZ-ZAPATER J. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics, 2002, 268(4): 543-552.
[39]
AHMAD DAR F, MUSHTAQ N U, SALEEM S, REHMAN R U, DAR T U H, HAKEEM K R. Role of epigenetics in modulating phenotypic plasticity against abiotic stresses in plants. International Journal of Genomics, 2022, 2022: 1092894.
[40]
殷欢. 高温胁迫对黄瓜幼苗DNA甲基化的影响[D]. 哈尔滨: 东北农业大学, 2015.
YIN H. Effect of high temperature stress on DNA methylation of cucumber seedlings[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[41]
LIU G F, XIA Y D, LIU T K, DAI S J, HOU X L. The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. International Journal of Molecular Sciences, 2018, 19(5): 1414.
[42]
葛才林, 杨小勇, 刘向农, 孙锦荷, 罗时石, 王泽港. 重金属对水稻和小麦DNA甲基化水平的影响. 植物生理与分子生物学学报, 2002, 28(5): 363-368.
GE C L, YANG X Y, LIU X N, SUN J H, LUO S S, WANG Z G. Effects of heavy metal on the DNA methylation level in rice and wheat. Acta Photophysiologica Sinica, 2002, 28(5): 363-368. (in Chinese)
[43]
LABRA M, GHIANI A, CITTERIO S, SGORBATI S, SALA F, VANNINI C, RUFFINI-CASTIGLIONE M, BRACALE M. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biology, 2002, 4(6): 694-699.
[44]
KOVALCHUK O, BURKE P, ARKHIPOV A, KUCHMA N, JAMES S J, KOVALCHUK I, POGRIBNY I. Genome hypermethylation in Pinus silvestris of Chernobyl: A mechanism for radiation adaptation? Mutation Research, 2003, 529(1/2): 13-20.
[45]
RAJKUMAR M S, SHANKAR R, GARG R, JAIN M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics, 2020, 112(5): 3537-3548.

doi: S0888-7543(19)30983-8 pmid: 32278023
[46]
COKUS S J, FENG S H, ZHANG X Y, CHEN Z G, MERRIMAN B, HAUDENSCHILD C D, PRADHAN S, NELSON S F, PELLEGRINI M, JACOBSEN S E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008, 452(7184): 215-219.
[47]
赵云雷, 叶武威, 王俊娟, 樊保香. NaCl胁迫下棉花基因组DNA胞嘧啶甲基化分析. 中国棉花学会2008年年会, 2008.
ZHAO Y L, YE W W, WANG J J, FAN B X. Analysis of cytosine methylation in genomic DNA of cotton under NaCl stress. China Cotton Society 2008 Annual Meeting, 2008. (in Chinese)
[48]
CAO Q, HUANG L, LI J M, QU P, TAO P, ZHANG T C, QIAO Q. Integrated transcriptome and methylome analyses reveal the molecular regulation of drought stress in wild strawberry (Fragaria nilgerrensis). BMC Plant Biology, 2022, 22(1): 613.

doi: 10.1186/s12870-022-04006-9 pmid: 36575384
[49]
QIAN Y X, HU W J, LIAO J Y, ZHANG J, REN Q Y. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochemical and Biophysical Research Communications, 2019, 512(4): 742-749.
[1] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[2] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[3] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[4] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[5] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[6] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[7] RONG YaSi, LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei. Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3957-3973.
[8] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[9] HU DanDan, LUO RunQi, LIANG RuiYing, WANG Lei, LIANG Lin, SI HongBin, DING JiaBo, TANG XinMing. Research Progress of ApiAP2 Transcription Factors in Regulating the Growth and Development of Toxoplasma gondii [J]. Scientia Agricultura Sinica, 2024, 57(13): 2687-2697.
[10] WEI XiaoDong, SONG XueMei, WANG Ning, ZHAO QingYong, ZHU Zhen, CHEN Tao, ZHAO Ling, WANG CaiLin, ZHANG YaDong. Distribution Characteristics of Photosynthetic Products of Nanjing Series of Super Rice During Filling Stage [J]. Scientia Agricultura Sinica, 2024, 57(12): 2309-2321.
[11] YANG Xi, YOU Jun, ZHOU Rong, FANG Sheng, ZHANG YanXin, WU ZiMing, WANG LinHai. Establishment of High-Throughput Detection Method for Phytic Acid Content in Sesame Seeds and Screening of Low Phytic Acid Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(12): 2282-2294.
[12] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[13] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[14] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[15] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!