Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 2045-2054.doi: 10.3864/j.issn.0578-1752.2020.10.011

• SPECIAL FOCUS: QUALITY OF AGRICULTURAL PRODUCTS • Previous Articles     Next Articles

Effects of Different Strain Fermentation on Protein Hydrolysis and Lipid Profile of Quinoa

YAN Sha,XING JieWen,WANG XiaoWen()   

  1. College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2019-09-20 Accepted:2019-12-19 Online:2020-05-16 Published:2020-05-22
  • Contact: XiaoWen WANG E-mail:wangx@sxau.edu.cn

Abstract:

【Objective】 This study was performed to compare the differences of the protein hydrolysis and lipid productions during the quinoa fermentation with the different strains, so as to promote the development of quinoa added-value food by the fermentation .【Method】 Yeast, lactobacillus plantarum and the two mixed was used for the fermentation of quinoa, respectively. Proteolysis index, protein composition, lipid profile, the content of total free amino acid and free fatty acid were determined to evaluate which microbe had more advantages in the transformation of nutrients. 【Result】 The proteolysis index increased after the quinoa fermentation by different microbes, and albumin and globulin were mainly hydrolyzed among quinoa protein composition. There was a significant increase in the free amino acid of quinoa after fermentation, especially essential amino acids. The yeast-fermented quinoa was beneficial in gaining smaller molecular compounds that originated from protein hydrolysis. The free fatty acids content increased sharply after fermentation and met a proper ratio of SFA﹕MUFA﹕PUFA close to 1﹕1﹕1. The content of triglycerides and diglycerides were reduced, but the content of functional lipids (phospholipid) was increased. The quinoa with yeast fermentation was more favorable for the above transformation.【Conclusion】Quinoa fermented by yeast or lactobacillus plantarum could result in the hydrolysis of albumin and globulin into amino acids, especially the free essential amino acid levels increased significantly. The free fatty acids also increased after fermentation, wherein the triglyceride and diacylglycerol were reduced, and the content of phospholipid was improved. Quinoa with yeast fermentation had great potential in developing high-value nutritional products in the future.

Key words: quinoa, fermentation, protein, lipid

Fig. 1

Effect of fermentation on protein hydrolysis index of quinoa Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Effect of fermentation on content of protein components in quinoa"

Table 1

Effect of fermentation on free amino acids content of quinoa"

氨基酸 Amino acids (mg?kg-1) Q QY QL QM
必需氨基酸 Essential amino acids
苏氨酸 Threonine 101.42±2.06 2199.18±8.53 815.74±3.07 1051.65±4.73
缬氨酸 Valine 174.99±2.74 3384.52±8.77 1705.11±6.91 2319.03±6.54
甲硫氨酸 Methionine 122.37±1.86 1533.06±6.39 1047.83±4.85 1355.92±3.06
异亮氨酸 Isoleucine 143.02±2.05 3080.71±9.03 1692.01±5.23 2242.94±7.22
亮氨酸 Leucine 255.84±4.29 4719.57±9.75 3232.84±7.86 4536.63±10.54
苯丙氨酸 Phenylalanine 159.70±1.72 3070.32±8.48 1886.72±4.72 2720.13±6.18
赖氨酸 Lysine 141.19±1.53 943.36±5.09 862.52±5.68 977.09±5.02
色氨酸 Tryptophan 236.05±5.07 2796.41±10.04 2109.33±7.03 2619.24±7.06
总必需氨基酸 Total essential amino acid 1334.58±21.32d 21727.13±66.08a 13352.10±45.35c 17822.63±50.35b
非必需氨基酸 Nonessential amino acids
天冬氨酸 Aspartic acid 488.50±6.93 3547.80±7.82 1935.12±8.28 3329.41±8.35
谷氨酸 Glutamic acid 925.82±5.74 4049.22±9.86 2777.75±6.09 3387.20±8.19
半胱氨酸 Cysteine 40.36±0.75 343.30±2.59 213.93±1.07 125.78±1.05
丝氨酸 Serine 77.40±1.03 1744.23±6.03 472.15±2.64 1025.13±4.82
甘氨酸 Glycine 136.90±2.84 2498.26±8.74 963.47±4.91 1777.93±5.03
组氨酸 Histidine 193.23±2.79 682.02±3.06 456.23±2.08 741.49±2.84
精氨酸 Arginine 742.21±3.62 4979.91±10.23 3868.34±11.03 5676.42±10.96
丙氨酸 Alanine 193.41±3.91 3133.15±8.39 1231.01±9.75 2615.62±4.67
脯氨酸 Proline 168.91±2.94 2023.48±6.08 780.49±5.36 1247.71±3.80
酪氨酸 Tyrosine 172.65±3.82 2491.18±7.74 1486.96±8.19 2219.03±6.49
总非必需氨基酸 Total non-essential amino acid 3139.39±34.37d 25492.55±70.54a 14185.45±59.40c 22145.72±56.20b
总氨基酸 Total amino acid 4473.97±55.69d 47219.68±136.62a 27537.55±104.75c 39968.35±106.55b

Table 2

Effect of fermentation on free fatty acids content of quinoa"

脂肪酸 Fatty acids (mg?kg-1) Q QY QL QM
饱和脂肪酸 Saturated fatty acids
C8:0 0.58±0.03 2.69±0.33 0.90±0.04 3.62±0.24
C10:0 0.43±0.02 13.76±0.79 0.87±0.04 7.65±0.33
C12:0 3.40±0.12 37.73±1.83 12.48±0.51 19.34±0.61
C13:0 0.72±0.03 1.76±0.03 0.97±0.05 1.18±0.24
C14:0 69.46±1.09 296.47±4.38 224.87±4.09 259.17±3.78
C15:0 22.45±0.64 94.19±2.05 78.32±1.73 85.64±1.52
C16:0 4482.64±11.26 21018.07±16.78 16171.65±15.82 17657.56±15.94
C17:0 17.48±0.85 74.50±4.02 57.84±3.64 72.57±4.75
C18:0 344.31±2.36 2279.72±9.61 897.62±8.52 2191.76±8.92
C20:0 169.04±1.82 551.17±4.93 496.99±5.06 561.57±4.86
C21:0 13.95±0.78 55.08±0.85 47.87±0.73 52.67±1.93
C22:0 308.46±3.06 1305.70±8.42 1108.93±7.68 1208.67±8.72
C23:0 21.02±0.61 99.40±2.06 87.62±1.06 93.69±0.85
C24:0 134.28±1.05 696.46±4.59 554.77±3.28 623.36±2.63
总饱和脂肪酸 Total saturated fatty acid 5588.22±23.72d 26526.70±60.67a 19741.70±52.25c 22838.45±55.32b
单不饱和脂肪酸 Monounsaturated fatty acids
C14:1 0.59±0.04 2.33±0.72 0.86±0.05 2.82±0.54
C16:1 40.73±0.88 1354.02±4.83 100.49±1.19 1640.35±6.39
C17:1 13.55±0.57 38.50±1.04 31.19±0.96 51.44±0.84
C18:1N9C 10579.78±19.52 37318.61±24.05 32149.23±29.71 36904.41±23.61
C20:1 589.41±8.72 1281.06±7.92 1236.96±8.04 1438.67±9.88
C22:1N9 2034.98±12.3 5628.81±8.80 3735.53±6.92 3701.20±7.42
C24:1 174.28±1.09 689.84±4.19 807.97±5.36 976.22±6.92
总单不饱和脂肪酸 Total monounsaturated fatty acid 13433.32±43.12d 46313.17±51.55a 38062.23±52.23c 44715.11±55.6b
多不饱和脂肪酸 Polyunsaturated fatty acids
C18:2N6C 26213.13±22.87 76635.37±26.08 74195.18±25.82 75988.65±26.09
C18:3N3 4353.54±9.51 10777.47±12.39 10502.01±13.86 11222.60±13.62
C20:2 55.19±1.02 162.08±4.71 152.79±3.08 175.64±2.08
C20:3N3 2.83±0.36 11.09±0.82 9.71±0.77 10.33±0.84
C22:2 80.59±2.44 288.43±4.74 218.54±3.14 208.64±3.09
总多不饱和脂肪酸 Total polyunsaturated fatty acid 30705.28±36.2d 87874.44±48.74a 85078.23±46.67c 87605.86±45.72b
总脂肪酸 Total fatty acid 49726.82±103.04d 160714.30±160.96a 142882.20±151.15c 155159.40±156.64b

Fig. 3

Effect of fermentation on lipid composition of quinoa"

Fig. 4

Effect of fermentation on starch content of quinoa"

[1] LOPES C D O, BARCELOS M D F P, VIEIRA C N D G, DE ABREU W C, FERREIRA E B, PEREIRA R C, DE ANGELIS-PEREIRA M C . Effects of sprouted and fermented quinoa ( Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. Journal of Food Science and Technology, 2019,56(1):40-48.
[2] CORDEIRO L M C, REINHARDT V D F, BAGGIO C H, WERNER M F D P, BURCI L M, SASSAKI G L, IACOMIN M . Arabinan and arabinan-rich pectic polysaccharides from quinoa ( Chenopodium quinoa) seeds: Structure and gastroprotective activity. Food Chemistry, 2012,130(4):937-944.
[3] RIZZELLO C G, LORUSSO A, MONTEMURRO M, GOBBETTI M . Use of sourdough made with quinoa ( Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiol, 2016,56:1-13.
[4] PEIRETTI P G, GAI F, TASSONE S . Fatty acid profile and nutritive value of quinoa ( Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology, 2013,183(1/2):56-61.
doi: 10.1016/j.anifeedsci.2013.04.012
[5] 任贵兴, 杨修仕, 么杨 . 中国藜麦产业现状. 作物杂志, 2015(5):1-5.
REN G X, YANG X S, YAO Y . Current situation of quinoa industry in china. Crops, 2015(5):1-5. (in Chinese)
[6] BIANCHI F, ROSSI E A, GOMES R G, SIVIERI K . Potentially synbiotic fermented beverage with aqueous extracts of quinoa ( Chenopodium quinoa Willd) and soy. Food Science and Technology International, 2015,21(6):403-415.
doi: 10.1177/1082013214540672
[7] ZHAO H M, GUO X N, ZHU K X . Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chemistry, 2017,217:28-36.
doi: 10.1016/j.foodchem.2016.08.062
[8] CEBALLOS-GONZALEZ C, BOLIVAR-MONSALVE J, RAMIREZ- TORO C, BOLIVAR G A . Effect of lactic acid fermentation on quinoa dough to prepare gluten-free breads with high nutritional and sensory quality. Journal of Food Processing and Preservation, 2018. doi: 10.1111/jfpp.13551.
[9] LORUSSO A, VERNI M, MONTEMURRO M, CODA R, GOBBETTI M, RIZZELLO C G . Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT-Food Science and Technology, 2017,78:215-221.
doi: 10.1016/j.lwt.2016.12.046
[10] 赵见营, 唐静, 吴海舟, 张迎阳, 章建浩 . Alcalase协同强化高温风干成熟工艺对狼山鸡蛋白质水解的影响. 食品科学, 2014,35(2):30-35.
doi: 10.7506/spkx1002-6630-201402006
ZHAO J Y, TANG J, WU H Z, ZHANG Y Y, ZHANG J H . Proteolysis in dry-cured Langshan chicken as influenced by alcalase combined with intensifying high-temperature air-drying. Food Science, 2014,35(2):30-35. (in Chinese)
doi: 10.7506/spkx1002-6630-201402006
[11] 王棐 . 藜麦蛋白和淀粉的分离提取及性质研究[D]. 无锡: 江南大学, 2018.
WANG F . Study on the extraction and properties of quinoa protein and starch[D]. Wuxi: Jiangnan University, 2018. (in Chinese)
[12] YAN S, LI Q Q, XUE X F, WANG K, ZHAO L W, WU L M . Analysis of improved nutritional composition of bee pollen ( Brassica campestris L.) after different fermentation treatments. International Journal of Food Science & Technology, 2019,54(6):2169-2181.
[13] LI Q Q, LIANG X W, ZHAO L, ZHANG Z Y, XUE X F, WANG K, WU L M . UPLC-Q-Exactive orbitrap/MS-based lipidomics approach to characterize lipid extracts from bee pollen and their in vitro anti-inflammatory properties. Journal of Agricultural and Food Chemistry, 2017,65(32):6848-6860.
doi: 10.1021/acs.jafc.7b02285
[14] 延莎, 毛晓慧, 杨莉榕, 张金叶, 冯翠萍, 王晓闻 . 不同蒸煮方式对藜麦营养特性及风味的影响. 中国粮油学报, 2018,33(4):20-26.
YAN S, MAO X H, YANG L R, ZHANG J Y, FENG C P, WANG X W . Effects of different cooking methods on nutritional properties and flavor of quinoa. Journal of the Chinese Cereals and Oils Association, 2018,33(4):20-26. (in Chinese)
[15] TANG Y, TSAO R . Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory and potential health beneficial effects: A review. Molecular Nutrition & Food Research, 2017,61(7):1-16.
[16] KLEMENT J T, CASSENS R G, FENNEMA O R . The association of protein solubility with physical properties in a fermented sausage. Journal of Food Science, 2010,38(7):1128-1131.
doi: 10.1111/jfds.1973.38.issue-7
[17] 韦友兵, 吴香, 周辉, 李新福, 李聪, 徐宝才 . 萨拉米香肠发酵成熟过程中蛋白质水解及脂质氧化规律的研究. 食品科学, 2019,40(20):67-73.
WEI Y B, WU X, ZHOU H, LI X F, LI C, XU B C . Protein hydrolysis and lipid oxidation during Salami fermentation and ripening. Food Science, 2019,40(20):67-73. (in Chinese)
[18] 王金水, 杨森, 贾峰, 周晓配, 冯景丽 . 酸面团发酵过程中蛋白质分解及多肽形成的变化规律. 现代食品科技, 2015,31(10):69-73.
WANG J S, YANG S, JIA F, ZHOU X P, FENG J L . Patterns of protein degradation and peptide formation during sourdough fermentation. Modern Food Science and Technology, 2015,31(10):69-73. (in Chinese)
[19] SIEUWERTS S, BRON P A, SMID E J . Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT-Food Science and Technology, 2018,90:201-206.
doi: 10.1016/j.lwt.2017.12.022
[20] GÄNZLE M G . Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 2014,37(2):2-10.
doi: 10.1016/j.fm.2013.04.007
[21] GOBBETTI M, DE ANGELIS M, CORSETTI A, DI CAGNO R . Biochemistry and physiology of sourdough lactic acid bacteria. Trends in Food Science & Technology, 2005,16(1):57-69.
doi: 10.1016/j.tifs.2004.02.013
[22] GÄNZLE M G, VERMEULEN N, VOGEL R F . Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiology, 2007,24(2):128-138.
doi: 10.1016/j.fm.2006.07.006
[23] HOLE A S, RUD I, GRIMMER S, SIGL S, NARVHUS J, SAHLSTROM S . Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 2012,60(25):6369-6375.
doi: 10.1021/jf300410h
[24] VERMEULEN N, GANZLE M G, VOGEL R F . Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451(T) and Lactobacillus plantarum TMW1.468. Journal of Agricultural & Food Chemistry, 2006,54(11):3832-3839.
[25] DE ANGELIS M, MARIOTTI L, ROSSI J, SERVILI M, FOX P F, ROLLAN G, GOBBETTI M . Arginine catabolism by sourdough lactic acid bacteria: Purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Applied and Environmental Microbiology, 2002,68(12):6193-6201.
doi: 10.1128/AEM.68.12.6193-6201.2002
[26] HANSEN A, SCHIEBERLE P . Generation of aroma compounds during sourdough fermentation: Applied and fundamental aspects. Trends in Food Science & Technology, 2005,16(1):85-94.
doi: 10.1016/j.tifs.2004.03.007
[27] HINZ C, LIGGI S, GRIFFIN J L . The potential of Ion Mobility Mass Spectrometry for high-throughput and high-resolution lipidomics. Current Opinion in Chemical Biology, 2018,42:42-50.
doi: 10.1016/j.cbpa.2017.10.018
[28] MAY J C, GOODWIN C R, LAREAU N M, LEAPOTROT K L, MORRIS C B, KURULUGAMA R T, MORDEHAI A, KLEINl C, BARRY W, DARLAND E, OVERNEY G, IMATANI K, STAFFORD G, FJELDSTED J C, MCLEAN J J . Conformational ordering of biomolecules in the gas phase: Nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Analytical Chemistry, 2014,86(4):2107-2116.
doi: 10.1021/ac4038448
[29] STOW S M, CAUSON T J, ZHENG X, KURULUGAMA R T, MAIRINGER T, MAY J C, RENNIE E E, BAKER E S, SMITH R D, MCLEAN J A, HANN S, FJELDSTED J C . An interlaboratory evaluation of Drift Tube Ion Mobility - Mass Spectrometry Collision Cross Section Measurements. Analytical Chemistry, 2017,89(17):9048-9055.
doi: 10.1021/acs.analchem.7b01729
[30] JANSSEN F, WOUTERS A G B, PAREYT B, GERITS L R, DELCOUR J A, WAELKENS E, DERUA R . Wheat ( Triticum aestivum L.) lipid species distribution in the different stages of straight dough bread making. Food Research International, 2018,112:299-311.
doi: 10.1016/j.foodres.2018.06.038
[31] EI-SEBAIY L A, METWALLI S M . Changes in some chemical characteristics and lipid composition of salted fermented Bouri Fish muscle ( Mugil cephalus). Food Chemistry, 1989,31(1):41-50.
doi: 10.1016/0308-8146(89)90149-0
[32] VISESSANGUAN W, BENJAKUL S, RIEBROY S, YARCHAI M, TAPINGKAE W . Changes in lipid composition and fatty acid profile of Nham, a Thai fermented pork sausage, during fermentation. Food Chemistry, 2006,94(4):580-588.
doi: 10.1016/j.foodchem.2004.11.051
[33] 梁言, 陈中, 刘秉杰 . 三株乳杆菌发酵籼米粉浆及其产酶特性. 食品科学, 2019. doi: 10.7506/spkx1002-6630-20190515-168.
LIANG Y, CHEN Z, LIU B J . Preliminary study on the fermentation of indica rice flour slurry by three strains of lactobacillus and its amylase production. Food Science, 2019. doi: 10.7506/spkx1002-6630-20190515-168. (in Chinese)
[34] NUMFOR F A, WALTER W M, SCHWARTZ S J . Physicochemical changes in cassava starch and flour associated with fermentation: Effect on textural properties. Starch-Starke, 1995,47:86-91.
doi: 10.1002/(ISSN)1521-379X
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[3] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[4] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[5] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[6] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[7] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[8] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[9] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[10] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[11] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[12] TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752.
[13] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[14] NUERHATI·Silafuer ,WUSIMAN·Yimiti . Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage [J]. Scientia Agricultura Sinica, 2022, 55(20): 4065-4074.
[15] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!