Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 17-30.doi: 10.3864/j.issn.0578-1752.2023.01.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HU Sheng(),LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao()
[1] | 王忠. 植物生理学. 北京: 中国农业出版社, 1999: 451-455. |
WANG Z. Plant Physiology. BeiJing: China Agriculture Press, 1999: 451-455. (in Chinese) | |
[2] |
ZHANG X K, LU G Y, LONG W H, ZOU X L, LI F, NISHIO T. Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science, 2014, 64(1): 60-73.
doi: 10.1270/jsbbs.64.60 |
[3] |
DIETZ K J, ZÖRB C, GEILFUS C M. Drought and crop yield. Plant Biology, 2021, 23(6): 881-893.
doi: 10.1111/plb.13304 pmid: 34396653 |
[4] | WIJEWARDANA C, REDDY K R, KRUTZ L J, GAO W, BELLALOUI N. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS ONE, 2019, 14(9): e0214977. |
[5] | ZHANG Y B, YANG S L, DAO J M, DENG J, SHAHZAD A N, FAN X, LI R D, QUAN Y J, BUKHARI S A H, ZENG Z H. Drought- induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS ONE, 2020, 15(7): e0235845. |
[6] |
YANG X L, WANG B F, CHEN L, LI P, CAO C G. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 2019, 9: 3742.
doi: 10.1038/s41598-019-40161-0 pmid: 30842474 |
[7] |
JOSHAN Y, SANI B, JABBARI H, MOZAFARI H, MOAVENI P. Effect of drought stress on oil content and fatty acids composition of some safflower genotypes. Plant Soil and Environment 2019, 65(11): 563-567.
doi: 10.17221/591/2019-PSE |
[8] |
HATZIG S V, NUPPENAU J N, SNOWDON R J, SCHIEßL S V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biology, 2018, 18(1): 297.
doi: 10.1186/s12870-018-1531-y |
[9] |
HU Q, HUA W, YIN Y, ZHANG X, LIU L, SHI J, ZHAO Y, QIN L, CHEN C, WANG H. Rapeseed research and production in China. The Crop Journal, 2017, 5(2): 127-135.
doi: 10.1016/j.cj.2016.06.005 |
[10] |
LI B Q, CHEN L, SUN W N, WU D, WANG M J, YU Y, CHEN G X, YANG W N, LIN Z, ZHANG X L, DUAN L F, YANG X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnology Journal, 2020, 18(12): 2533-2544.
doi: 10.1111/pbi.13431 |
[11] |
WEN L W, CHANG H X, BROWN P J, DOMIER L L, HARTMAN G L. Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. Horticulture Research, 2019, 6: 9.
doi: 10.1038/s41438-018-0085-3 |
[12] |
HUANG X H, WEI X H, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C Y, ZHU C R, LU T T, ZHANG Z W, LI M, FAN D L, GUO Y L, WANG A H, WANG L, DENG L W, LI W J, LU Y Q, WENG Q J, LIU K Y, HUANG T, ZHOU T Y, JING Y F, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J Y, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
doi: 10.1038/ng.695 pmid: 20972439 |
[13] |
XIAO Z C, ZHANG C, TANG F, YANG B, ZHANG L Y, LIU J S, HUO Q, WANG S F, LI S T, WEI L J, DU H, QU C M, LU K, LI J N, LI N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnology for Biofuels, 2019, 12: 216.
doi: 10.1186/s13068-019-1557-x |
[14] |
TANG M Q, ZHANG Y, LIU Y, TONG C, CHENG X, ZHU W, LI Z, HUANG J, LIU S. Mapping loci controlling fatty acid profiles, oil and protein content by genome-wide association study in Brassica napus. The Crop Journal, 2019, 7(2): 217-226.
doi: 10.1016/j.cj.2018.10.007 |
[15] |
KHANZADA H, WASSAN G M, HE H, MASON A S, KEERIO A A, KHANZADA S, FAHEEM M, SOLANGI A M, ZHOU Q, FU D, HUANG Y, RASHEED A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. Journal of Advanced Research, 2020, 24: 447-461.
doi: 10.1016/j.jare.2020.05.019 |
[16] |
ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science, 2015, 6: 1058.
doi: 10.3389/fpls.2015.01058 pmid: 26640475 |
[17] | XU L P, HU K N, ZHANG Z Q, GUAN C Y, CHEN S, HUA W, LI J N, WEN J, YI B, SHEN J X, MA C Z, TU J X, FU T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research, 2015, 23(1): 43-52. |
[18] |
QU C M, LI S M, DUAN X J, FAN J H, JIA L D, ZHAO H Y, LU K, LI J N, XU X F, WANG R. Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L.. Genes (Basel), 2015, 6: 1215-1229.
doi: 10.3390/genes6041215 |
[19] |
BRADBURY P J, ZHANG Z W, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[20] |
LI Y, ZHANG L, HU S, ZHANG J, WANG L, PING X, WANG J, LI J, LU K, TANG Z, LIU L. Transcriptome and proteome analyses of the molecular mechanisms underlying changes in oil storage under drought stress in Brassica napus L.. GCB Bioenergy, 2021, 13: 1071-1086.
doi: 10.1111/gcbb.12833 |
[21] |
TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036 |
[22] |
LU K, WEI L J, LI X L, WANG Y T, WU J, LIU M, ZHANG C, CHEN Z Y, XIAO Z C, JIAN H J, CHENG F, ZHANG K, DU H, CHENG X C, QU C M, QIAN W, LIU L Z, WANG R, ZOU Q Y, YING J M, XU X F, MEI J Q, LIANG Y, CHAI Y R, TANG Z L, WAN H F, NI Y, HE Y J, LIN N, FAN Y H, SUN W, LI N N, ZHOU G, ZHENG H K, WANG X W, PATERSON A H, LI J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9 |
[23] | RAZA A, RAZZAQ A, MEHMOOD S S, HUSSAIN M A, SU W, HUANG H, ZAMAN Q U, ZHANG X K, CHENG Y, HASANUZZAMAN M. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L.. GM Crops & Food, 2021, 12(1): 251-281. |
[24] | BATOOL M, EL-BADRI A M, HASSAN M U, YANG H Y, WANG C Y, YAN Z K, KUAI J, BO W, ZHOU G S. Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 2022: 1-25. |
[25] | BIANCHETTI G, CLOUET V, LEGEAI F, BARON C, GAZENGEL K, CARRILLO A, MANZANARES-DAULEUX M J, BUITINK J, NESI N. RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Brassica napus. Data in Brief, 2021, 38: 107392. |
[26] |
CHOUDHURY S, LARKIN P, XU R G, HAYDEN M, FORREST K, MEINKE H, HU H L, ZHOU M X, FAN Y. Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC Genomics, 2019, 20(1): 891.
doi: 10.1186/s12864-019-6249-1 pmid: 31752676 |
[27] |
ZHENG X M, GONG T, OU H L, XUE D Y, QIAO W H, WANG J R, LIU S, YANG Q W, OLSEN K M. Genome-wide association study of rice grain width variation. Genome, 2018, 61(4): 233-240.
doi: 10.1139/gen-2017-0106 |
[28] |
PACE J, GARDNER C, ROMAY C, GANAPATHYSUBRAMANIAN B, LÜBBERSTEDT T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16(1): 47.
doi: 10.1186/s12864-015-1226-9 |
[29] |
LIU S, FAN C C, LI J N, CAI G Q, YANG Q Y, WU J, YI X Q, ZHANG C Y, ZHOU Y M. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theoretical and Applied Genetics, 2016, 129(6): 1203-1215.
doi: 10.1007/s00122-016-2697-z |
[30] |
FLETCHER R S, HERRMANN D, MULLEN J L, LI Q F, SCHRIDER D R, PRICE N, LIN J J, GROGAN K, KERN A, MCKAY J K. Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3 (Bethesda), 2016, 6(4): 793-803.
doi: 10.1534/g3.115.021279 |
[31] |
SABAGH E A, HOSSAIN A, BARUTÇULAR C, ISLAM M S, RATNASEKERA D, KUMAR N, MEENA R S, GHARIB H, SANEOKA H, TEIXEIRA D S J. Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: A critical review. Australian Journal of Crop Science, 2019, 13: 88-97.
doi: 10.21475/ajcs.19.13.01.p1284 |
[32] | ZAHEDI H, TOHIDI MOGHADAM H R. Effect of drought stress on antioxidant enzymes activities with zeolite and selenium application in canola cultivars. Research on Crops, 2011, 12: 388-392. |
[33] | ZAMANI S, NEZAMI M T, HABIBI D, KHORSHIDI M. Effect of quantitative and qualitative performance of four canola cultivars (Brassica napus L.) to salinity conditions. Advances in Environmental Biology, 2010, 4: 422-427. |
[34] |
MOHAMMADI M, GHASSEMI-GOLEZANI K, CHAICHI M R, SAFIKHANI S. Seed oil accumulation and yield of safflower affected by water supply and harvest time. Agronomy Journal, 2018, 110(2): 586-593.
doi: 10.2134/agronj2017.06.0365 |
[35] |
GUO Y L, HUANG Y, GAO J, PU Y Y, WANG N, SHEN W Y, WEN J, YI B, MA C Z, TU J X, FU T D, ZOU J T, SHEN J X. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnology for Biofuels, 2018, 11: 124.
doi: 10.1186/s13068-018-1122-z |
[36] |
CAI G Q, WANG G L, KIM S C, LI J W, ZHOU Y M, WANG X M. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnology for Biofuels, 2021, 14(1): 49.
doi: 10.1186/s13068-021-01899-w pmid: 33640013 |
[37] |
GRAMI B, STEFANSSON B R, BAKER R J. Genetics of protein and oil content in summer rape: Heritability, number of effective factors, and correlations. Canadian Journal of Plant Science, 1977, 57(3): 937-943.
doi: 10.4141/cjps77-134 |
[38] |
GOFFMAN F D, ALONSO A P, SCHWENDER J, SHACHAR-HILL Y, OHLROGGE J B. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiology, 2005, 138(4): 2269-2279.
pmid: 16024686 |
[39] |
KWAK J S, KIM S I, PARK S W, SONG J T, SEO H S. E3 SUMO ligase AtSIZ1 regulates the cruciferin content of Arabidopsis seeds. Biochemical and Biophysical Research Communications, 2019, 519(4): 761-766.
doi: 10.1016/j.bbrc.2019.09.064 |
[40] |
XIONG J L, DAI L L, MA N, ZHANG C L. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regulation, 2018, 85(1): 73-90.
doi: 10.1007/s10725-018-0374-8 |
[41] |
KOESLIN-FINDEKLEE F, RIZI V S, BECKER M A, PARRA- LONDONO S, ARIF M, BALAZADEH S, MUELLER-ROEBER B, KUNZE R, HORST W J. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Plant Science, 2015, 233: 174-185.
doi: 10.1016/j.plantsci.2014.11.018 |
[42] |
TANG S, PENG F, TANG Q, XIA H, YAO X, LU S, GUO L. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. Journal of Advanced Research, 2022, 42: 29-40.
doi: 10.1016/j.jare.2022.07.008 |
[43] | HUANG K L, ZHANG M L, MA G J, WU H, WU X M, REN F, LI X B. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS ONE, 2017, 12(6): e0179027. |
[44] | ZHOU Z J, LIN B G, TAN J J, HAO P F, HUA S J, DENG Z P. Tandem mass tag-based quantitative proteomics reveals implication of a late embryogenesis abundant protein (BnLEA57) in seed oil accumulation in Brassica napus L.. Frontiers in Plant Science, 2022, 13: 907244. |
[1] | DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198. |
[2] | XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807. |
[3] | LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768. |
[4] | LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599. |
[5] | LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444. |
[6] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[7] | LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294. |
[8] | RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320. |
[9] | ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333. |
[10] | MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551. |
[11] | WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277. |
[12] | ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326. |
[13] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
[14] | XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285. |
[15] | LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270. |
|