Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 17-30.doi: 10.3864/j.issn.0578-1752.2023.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L.

HU Sheng(),LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2022-08-22 Accepted:2022-10-21 Online:2023-01-01 Published:2023-01-17
  • Contact: LieZhao LIU E-mail:916340758@qq.com;liezhao@swu.edu.cn

Abstract:

【Objective】 Drought is one of the most adverse abiotic stresses that hinder growth and development of Brassica napus L., threatening its yield and quality. In this study, we identified the candidate genes that influence oil and protein content changes according to the results of the genome wide association mapping (GWAS) and differentially expressed genes (DEGs) under drought stress in B. napus. 【Method】 A natural population comprising 183 B. napus lines under drought stress across two years was genotyped with a Brassica 60K Illumina Infinium SNP array to perform GWAS. Combined with drought stressed seed transcriptome data from different treatment periods, the candidate genes related to the changes in oil and protein contents under drought stress were identified. 【Result】 The analysis showed that the best model for phenotypic data analysis in 2 years was mainly the Q or naïve model, and a total of 38 significant associated loci were detected (P<1/31597 or P<1/31278). By integrating GWAS and transcriptome results, 256 common genes were selected, and by comparing the database information of B. napus and Arabidopsis thaliana, 25 related candidate genes were identified. These genes, including transcription factors (e.g., bZIP transcription factor GBF6, TALE transcription factor ATH1, MYB-like Domain transcription factor MYBD, NAC transcription factor ANAC029, ERF transcription factor ERF111), related kinases (e.g., PIP5K1, PFK7), related proteins (e.g., seed stores protein CRU3, chloroplast protein DG238 and CP12, stress-responsive proteins HUP26 and M10), are involved in multiple biological processes such as photosynthetic reaction, substance transport, and stress response. For instance, oil-related protein kinase CIPK9, ABCA9 transporter, storage-related protein CRU3, may provide basis for explaining the changes in oil and protein contents of B. napus under drought stress. 【Conclusion】 The 25 identified candidate genes may affect the accumulation of protein and oil contents under drought stress during the seed development in B. napus.

Key words: Brassica napus L., candidate genes, drought stress, oil content, protein content

Table 1

Statistical analysis of seed oil content and protein content under the drought stress and normal condition in 2019 and 2020"

环境/年份
Environment/Year
性状
Trait
处理
Treatment
范围
Range (%)
均值±标准差
Mean± SD
变异系数
CV (%)
重庆2019
CQ2019
油脂含量
Oil content
WW 26.92—44.82 38.26±3.31 8.65
DS1 27.14—44.07 33.53±2.59** 7.72
DS2 23.90—42.30 32.88±2.44** 7.41
蛋白质含量
Protein content
WW 21.75—33.96 28.16±2.18 7.75
DS1 26.90—36.70 31.18±1.48** 4.75
DS2 27.18—35.91 31.41±1.45** 4.60
重庆2020
CQ2020
油脂含量
Oil content
WW 28.81—47.14 36.45±3.10 8.52
DS1 26.53—38.23 31.86±2.43** 7.63
DS2 25.08—39.49 30.71±2.58** 8.40
蛋白质含量
Protein content
WW 24.51—32.98 29.31±1.60 5.45
DS1 27.15—36.02 31.42±1.43** 4.56
DS2 27.62—36.12 32.30±1.66** 5.14

Table 2

Correlation analysis of seed protein and oil content between treatments in two years"

年份/性状
Year/Trait
2019含油量2019_Oil 2019蛋白质含量2019_Pro 2020含油量2020_Oil 2020蛋白质含量2020_Pro
DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2
2019含油量2019_Oil DS1 1
DS2 0.788** 1
2019蛋白质含量2019_Pro DS1 -0.744** -0.656** 1
DS2 -0.580** -0.768** 0.846** 1
2020含油量2020_Oil DS1 -0.008 -0.049 0.099 0.115 1
DS2 0.036 -0.076 0.090 0.134 0.576** 1
2020蛋白质含量2020_Pro DS1 0.041 0.080 -0.065 -0.079 -0.742** -0.512** 1
DS2 0.069 0.108 -0.086 -0.081 -0.340** -0.666** 0.605** 1

Fig. 1

Correlation coefficients histogram of oil content and protein content under the drought stress A-H: Frequency distribution of drought tolerance index related to changes in oil content and protein content in 2019 and 2020; I-L: Common extreme accessions related to changes in oil content and protein content in 2019 and 2020, data between the blue-yellow histograms represent drought tolerance index of the materials"

Fig. 2

Quantile-quantile plot and Manhattan plot using the optimal model"

Table 3

Significant SNP locus associated with seed oil and protein content changes of rapeseed under the drought stress"

性状
Trait
SNP标记
SNP marker
染色体
Chr.
位置
Site (bp)
P
P-value
贡献率
R2 (%)
置信区间
Confidence interval (500 kb up/downstream)
重庆2019含油量
CQ2019_ Oil
Bn-scaff_16888_1-p1803454 C04 45940031 2.80E-05 14.13 45440031—46440031
Bn-A06-p19292104 A06 15319939 2.99E-05 10.82 14819939—15819939
Bn-A06-p14864165 A06 16344344 5.07E-06 16.40 15844344—16844344
Bn-scaff_16755_1-p1357741 C03 59428822 1.01E-05 15.61 58928822—59928822
Bn-A06-p5279490 A04 3858538 1.38E-05 15.25 3358538—4358538
Bn-scaff_16755_1-p1427195 C03 59368418 1.53E-05 15.13 58868418—59868418
Bn-A04-p4978478 A04 5117185 1.79E-05 14.95 4617185—5617185
Bn-scaff_19193_1-p527597 C01 5772854 2.46E-05 12.95 5272854—6272854
Bn-scaff_15712_8-p121910 C04 28592068 2.73E-05 14.46 28092068—29092068
Bn-A04-p4418670 A04 4543027 3.12E-05 14.30 4043027—5043027
重庆2020含油量
CQ2020_ Oil
Bn-A04-p17845366 A04 17948897 9.77E-07 23.97 17448897—18448897
Bn-scaff_23107_1-p47992 C05 44218 8.06E-06 19.52 0—544218
Bn-A04-p18595858 A04 18723761 2.38E-05 17.89 18223761—19223761
Bn-A04-p18639840 A04 18762292 3.09E-05 17.20 18262292—19262292
Bn-A04-p18620226 A04 18746954 3.16E-05 17.17 18246954—19246954
Bn-A07-p16423207 A07 18399689 1.36E-05 18.82 17899689—18899689
重庆2019蛋白质含量
CQ2019_ Pro
Bn-A06-p5260549 A04 3866976 2.70E-06 16.69 3366976—4366976
Bn-scaff_16142_1-p714220 C01 34837361 1.00E-05 13.43 34337361—35337361
Bn-scaff_16092_1-p205960 C03 27846928 1.82E-05 14.07 27346928—28346928
Bn-scaff_18181_1-p1691208 C05 6102902 1.87E-05 14.11 5602902—6602902
Bn-scaff_18549_1-p129072 C06 1368140 2.20E-05 12.97 868140—1868140
Bn-A05-p21188442 A05 19340595 3.18E-06 16.92 18840595—19840595
Bn-A03-p15615278 A03 14676315 1.52E-05 15.14 14176315—15176315
Bn-A03-p24688180 A03 23155012 1.58E-05 15.10 22655012—23655012
Bn-scaff_16755_1-p1327949 C03 59461983 3.03E-05 14.34 58961983—59961983
Bn-scaff_16755_1-p1427195 C03 59368418 3.04E-05 14.33 58868418—59868418
重庆2020蛋白质含量
CQ2020_ Pro
Bn-A08-p18820218 A08 16173557 5.73E-07 22.21 15673557—16673557
Bn-A08-p18789560 A08 16143836 6.06E-07 21.58 15643836—16643836
Bn-scaff_16231_1-p203872 C08 21771676 6.26E-07 21.36 21271676—22271676
Bn-A03-p21505530 A03 20289512 9.18E-06 19.44 19789512—20789512
Bn-A03-p21478889 A03 20250601 9.32E-06 18.72 19750601—20750601
Bn-A03-p21357849 A03 20131639 9.79E-06 19.68 19631639—20631639
Bn-A08-p18827698 A08 16181029 1.83E-05 17.08 15681029—16681029
Bn-scaff_18322_1-p2150739 C03 6946175 2.35E-05 17.38 6446175—7446175
Bn-scaff_18322_1-p2147199 C03 6948511 2.73E-05 14.41 6448511—7448511
Bn-A03-p21505363 A03 20289679 3.12E-05 16.20 19789679—20789679
Bn-A01-p1890102 A01 1424609 1.08E-05 15.34 924609—1924609
Bn-scaff_21778_1-p364556 C03 5155386 2.01E-05 18.89 4655386—5655386

Fig. 3

Shared genes Wayne Diagram of GWAS and DEGs DAF30, DAF40, DAF50: DEG sets of 30 days, 40 days and 50 days after flower"

Table 4

Identification of candidate genes"

候选基因
Candidate genes
物理位置
Physical position(bp)
拟南芥同源基因
Homologs in Arabidopsis
功能注释
Function annotation
BnaC05g00760D Chr.C05:398202-401549 AT1G01140 CBL相互作用蛋白激酶,在油菜以及拟南芥中调节种子油含量
CBL-interacting protein kinase (CIPK9), involved in seed oil regulation in Brassica napus L. and Arabidopsis
BnaA03g40520D Chr.A03:20244987-20246636 AT5G61730 ABC转运蛋白,其过表达能提高油料植物种子含油量和产量
ABC transporter protein (ABCA9), ABCA9-OEs can increase the oil content and yield of oil plant seeds
BnaC01g09900D Chr.C01:5867929-5870050 AT4G28520 种子储藏蛋白,对蛋白积累起到重要作用
Seed storage protein (CRU3) plays a key role in protein accumulation
BnaA06g24040D Chr.A06:16613640-16616541 AT5G65110 编码一种参与长链脂肪酸生物合成的酰基辅酶
Encodes an acyl-CoA (ACX2) that involves in long chain fatty acid biosynthesis
BnaA01g03890D Chr.A01:1798245-1799923 AT4G32980 TALE转录因子,参与光形态建设
TALE transcription factor (ATH1) involved in photomorphogenesis
BnaA01g02570D Chr.A01:1280574-1281038 AT4G34590 bZIP转录因子,参与氨基酸代谢
bZIP transcription factor (GBF6) involved in amino acid metabolism
BnaA07g24010D Chr.A07:17937117-17938262 AT1G70000 MYB类结构域转录因子,响应光合细胞分裂素,增加花青素积累
MYB-like Domain transcription factor (MYBD) that responses to light, cytokinins and anthocyanin accumulation
BnaA07g24270D Chr.A07:18152148-18153317 AT1G69490 NAC转录因子,响应ABA,调节叶片衰老
NAC transcription factor (ANAC029) that responses to ABA signal and regulates leaf senescence
BnaA06g23710D Chr.A06:16462716-16465107 AT5G64750 ERF转录因子,参与植物发育过程和胁迫响应
ERF transcription factor (ERF111) that involves in plant development processes and stress responses
BnaA04g25300D Chr.A04:18254430-18255160 AT2G43670 碳水化合物结合X8结构域超家族蛋白
Carbohydrate-binding X8 domain superfamily protein
BnaC01g09810D Chr.C01:5790810-5791936 AT4G28660 类植物光系统Ⅱ中PsbW亚基,参与组装和修复光系统Ⅱ复合体
Similar to PsbW subunit of photosystem II(PSB8), implicated in the assembly and repair of the photosystem II complex
BnaA05g26270D Chr.A05:19264359-19265918 AT3G12930 一种新型叶绿体蛋白,参与叶绿体发育
A novel chloroplast protein (DG238) that involves in chloroplast development
BnaA04g26990D Chr.A04:19060731-19061503 AT2G47400 一种叶绿体蛋白,响应光反应,参与碳代谢过程
A chloroplast protein (CP12) that responds to a light response and is involved in carbon metabolism processes
BnaA01g02610D Chr.A01:1304663-1306004 AT4G34540 叶片衰老的遗传变异,与还原酶相似,GSV1变异在发育中起着重要作用
Genetic Variants in leaf Senescence (GVS1), similarity to reductase, GSV1 variant plays an important role in development
BnaA03g30440D Chr.A03:14777856-14781737 AT3G10020 缺氧反应未知蛋白,增强环境耐受性
Hypoxia response unknown protein 26 (HUP26), enhances environment tolerance
BnaA03g40640D Chr.A03:20311931-20313526 AT5G67500 编码一个电压依赖性阴离子通道蛋白,在拟南芥中参与生长发育,响应干旱胁迫以及盐胁迫
Encodes a voltage-dependent anion channel (VDAC2), involved in growth and response to drought stress and salt stress
BnaA04g23790D Chr.A04:17566194-17567208 AT2G41280 类晚期胚胎丰富蛋白,能被脱落酸、盐胁迫以及干旱胁迫抑制表达
Similar to Late Embryogenesis Activated (LEA) protein (M10), Inhibited expression by ABA, salt stress and drought stress
BnaC03g10560D Chr.C03:5070625-5073146 AT5G21280 一种响应氧化反应和非生物胁迫的特异性基因
A specific gene (ATR7) that responses to oxidative and abiotic stresses
BnaA08g21050D Chr.A08:15685703-15689509 AT1G21980 编码Ⅰ型磷脂酰肌醇-4-磷酸5-激酶,响应水分胁迫信号
Encodes Type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K1) that responses to water-stress signal
BnaC03g13370D Chr.C03:6467762-6470298 AT5G56630 磷酸果糖激酶7,调节叶片代谢,促进生长发育
Phosphofructokinase 7(PFK7), Regulates leaf metabolism and promotes development
BnaA03g40200D Chr.A03:20093860-20095203 AT5G61440 定位在叶绿体中的氧硫还家族蛋白
The thioredoxin family protein(ACHT5), located in the chloroplast
BnaA03g41120D Chr.A03:20618565-20619734 AT3G51030 定位在胞质中的氧硫还家族蛋白
The thioredoxin family protein(TRX1), located in the cytosolic
BnaA08g21800D Chr.A08:16019052-16021113 AT5G38120 AMP依赖性合成酶与连接酶家族蛋白
AMP-dependent synthetase and ligase family protein (4-CL8)
BnaC01g09540D Chr.C01:5573226-5579124 AT3G23890 定位在细胞核中的拓扑异构酶Ⅱ蛋白
A topoisomerase II protein (TOP II), located in nucleus
BnaA04g26710D Chr.A04:18885632-18889024 AT2G46700 钙依赖蛋白激酶3促进靶蛋白磷酸化
CDPK kinase 3 (CRK3) promotes phosphorylation of target proteins

Fig. 4

Expression heat map of candidate genes CK30, CK40, CK50: Expression level of candidate genes for 30 d, 40 d, 50 d after flower under control condition; DS30, DS40, DS50: Expression level of candidate genes for 30 d, 40 d, 50 d after flower under drought stress"

[1] 王忠. 植物生理学. 北京: 中国农业出版社, 1999: 451-455.
WANG Z. Plant Physiology. BeiJing: China Agriculture Press, 1999: 451-455. (in Chinese)
[2] ZHANG X K, LU G Y, LONG W H, ZOU X L, LI F, NISHIO T. Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science, 2014, 64(1): 60-73.
doi: 10.1270/jsbbs.64.60
[3] DIETZ K J, ZÖRB C, GEILFUS C M. Drought and crop yield. Plant Biology, 2021, 23(6): 881-893.
doi: 10.1111/plb.13304 pmid: 34396653
[4] WIJEWARDANA C, REDDY K R, KRUTZ L J, GAO W, BELLALOUI N. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS ONE, 2019, 14(9): e0214977.
[5] ZHANG Y B, YANG S L, DAO J M, DENG J, SHAHZAD A N, FAN X, LI R D, QUAN Y J, BUKHARI S A H, ZENG Z H. Drought- induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS ONE, 2020, 15(7): e0235845.
[6] YANG X L, WANG B F, CHEN L, LI P, CAO C G. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 2019, 9: 3742.
doi: 10.1038/s41598-019-40161-0 pmid: 30842474
[7] JOSHAN Y, SANI B, JABBARI H, MOZAFARI H, MOAVENI P. Effect of drought stress on oil content and fatty acids composition of some safflower genotypes. Plant Soil and Environment 2019, 65(11): 563-567.
doi: 10.17221/591/2019-PSE
[8] HATZIG S V, NUPPENAU J N, SNOWDON R J, SCHIEßL S V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biology, 2018, 18(1): 297.
doi: 10.1186/s12870-018-1531-y
[9] HU Q, HUA W, YIN Y, ZHANG X, LIU L, SHI J, ZHAO Y, QIN L, CHEN C, WANG H. Rapeseed research and production in China. The Crop Journal, 2017, 5(2): 127-135.
doi: 10.1016/j.cj.2016.06.005
[10] LI B Q, CHEN L, SUN W N, WU D, WANG M J, YU Y, CHEN G X, YANG W N, LIN Z, ZHANG X L, DUAN L F, YANG X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnology Journal, 2020, 18(12): 2533-2544.
doi: 10.1111/pbi.13431
[11] WEN L W, CHANG H X, BROWN P J, DOMIER L L, HARTMAN G L. Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. Horticulture Research, 2019, 6: 9.
doi: 10.1038/s41438-018-0085-3
[12] HUANG X H, WEI X H, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C Y, ZHU C R, LU T T, ZHANG Z W, LI M, FAN D L, GUO Y L, WANG A H, WANG L, DENG L W, LI W J, LU Y Q, WENG Q J, LIU K Y, HUANG T, ZHOU T Y, JING Y F, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J Y, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
doi: 10.1038/ng.695 pmid: 20972439
[13] XIAO Z C, ZHANG C, TANG F, YANG B, ZHANG L Y, LIU J S, HUO Q, WANG S F, LI S T, WEI L J, DU H, QU C M, LU K, LI J N, LI N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnology for Biofuels, 2019, 12: 216.
doi: 10.1186/s13068-019-1557-x
[14] TANG M Q, ZHANG Y, LIU Y, TONG C, CHENG X, ZHU W, LI Z, HUANG J, LIU S. Mapping loci controlling fatty acid profiles, oil and protein content by genome-wide association study in Brassica napus. The Crop Journal, 2019, 7(2): 217-226.
doi: 10.1016/j.cj.2018.10.007
[15] KHANZADA H, WASSAN G M, HE H, MASON A S, KEERIO A A, KHANZADA S, FAHEEM M, SOLANGI A M, ZHOU Q, FU D, HUANG Y, RASHEED A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. Journal of Advanced Research, 2020, 24: 447-461.
doi: 10.1016/j.jare.2020.05.019
[16] ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science, 2015, 6: 1058.
doi: 10.3389/fpls.2015.01058 pmid: 26640475
[17] XU L P, HU K N, ZHANG Z Q, GUAN C Y, CHEN S, HUA W, LI J N, WEN J, YI B, SHEN J X, MA C Z, TU J X, FU T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Research, 2015, 23(1): 43-52.
[18] QU C M, LI S M, DUAN X J, FAN J H, JIA L D, ZHAO H Y, LU K, LI J N, XU X F, WANG R. Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L.. Genes (Basel), 2015, 6: 1215-1229.
doi: 10.3390/genes6041215
[19] BRADBURY P J, ZHANG Z W, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[20] LI Y, ZHANG L, HU S, ZHANG J, WANG L, PING X, WANG J, LI J, LU K, TANG Z, LIU L. Transcriptome and proteome analyses of the molecular mechanisms underlying changes in oil storage under drought stress in Brassica napus L.. GCB Bioenergy, 2021, 13: 1071-1086.
doi: 10.1111/gcbb.12833
[21] TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036
[22] LU K, WEI L J, LI X L, WANG Y T, WU J, LIU M, ZHANG C, CHEN Z Y, XIAO Z C, JIAN H J, CHENG F, ZHANG K, DU H, CHENG X C, QU C M, QIAN W, LIU L Z, WANG R, ZOU Q Y, YING J M, XU X F, MEI J Q, LIANG Y, CHAI Y R, TANG Z L, WAN H F, NI Y, HE Y J, LIN N, FAN Y H, SUN W, LI N N, ZHOU G, ZHENG H K, WANG X W, PATERSON A H, LI J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9
[23] RAZA A, RAZZAQ A, MEHMOOD S S, HUSSAIN M A, SU W, HUANG H, ZAMAN Q U, ZHANG X K, CHENG Y, HASANUZZAMAN M. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L.. GM Crops & Food, 2021, 12(1): 251-281.
[24] BATOOL M, EL-BADRI A M, HASSAN M U, YANG H Y, WANG C Y, YAN Z K, KUAI J, BO W, ZHOU G S. Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 2022: 1-25.
[25] BIANCHETTI G, CLOUET V, LEGEAI F, BARON C, GAZENGEL K, CARRILLO A, MANZANARES-DAULEUX M J, BUITINK J, NESI N. RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Brassica napus. Data in Brief, 2021, 38: 107392.
[26] CHOUDHURY S, LARKIN P, XU R G, HAYDEN M, FORREST K, MEINKE H, HU H L, ZHOU M X, FAN Y. Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC Genomics, 2019, 20(1): 891.
doi: 10.1186/s12864-019-6249-1 pmid: 31752676
[27] ZHENG X M, GONG T, OU H L, XUE D Y, QIAO W H, WANG J R, LIU S, YANG Q W, OLSEN K M. Genome-wide association study of rice grain width variation. Genome, 2018, 61(4): 233-240.
doi: 10.1139/gen-2017-0106
[28] PACE J, GARDNER C, ROMAY C, GANAPATHYSUBRAMANIAN B, LÜBBERSTEDT T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16(1): 47.
doi: 10.1186/s12864-015-1226-9
[29] LIU S, FAN C C, LI J N, CAI G Q, YANG Q Y, WU J, YI X Q, ZHANG C Y, ZHOU Y M. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theoretical and Applied Genetics, 2016, 129(6): 1203-1215.
doi: 10.1007/s00122-016-2697-z
[30] FLETCHER R S, HERRMANN D, MULLEN J L, LI Q F, SCHRIDER D R, PRICE N, LIN J J, GROGAN K, KERN A, MCKAY J K. Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3 (Bethesda), 2016, 6(4): 793-803.
doi: 10.1534/g3.115.021279
[31] SABAGH E A, HOSSAIN A, BARUTÇULAR C, ISLAM M S, RATNASEKERA D, KUMAR N, MEENA R S, GHARIB H, SANEOKA H, TEIXEIRA D S J. Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: A critical review. Australian Journal of Crop Science, 2019, 13: 88-97.
doi: 10.21475/ajcs.19.13.01.p1284
[32] ZAHEDI H, TOHIDI MOGHADAM H R. Effect of drought stress on antioxidant enzymes activities with zeolite and selenium application in canola cultivars. Research on Crops, 2011, 12: 388-392.
[33] ZAMANI S, NEZAMI M T, HABIBI D, KHORSHIDI M. Effect of quantitative and qualitative performance of four canola cultivars (Brassica napus L.) to salinity conditions. Advances in Environmental Biology, 2010, 4: 422-427.
[34] MOHAMMADI M, GHASSEMI-GOLEZANI K, CHAICHI M R, SAFIKHANI S. Seed oil accumulation and yield of safflower affected by water supply and harvest time. Agronomy Journal, 2018, 110(2): 586-593.
doi: 10.2134/agronj2017.06.0365
[35] GUO Y L, HUANG Y, GAO J, PU Y Y, WANG N, SHEN W Y, WEN J, YI B, MA C Z, TU J X, FU T D, ZOU J T, SHEN J X. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnology for Biofuels, 2018, 11: 124.
doi: 10.1186/s13068-018-1122-z
[36] CAI G Q, WANG G L, KIM S C, LI J W, ZHOU Y M, WANG X M. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnology for Biofuels, 2021, 14(1): 49.
doi: 10.1186/s13068-021-01899-w pmid: 33640013
[37] GRAMI B, STEFANSSON B R, BAKER R J. Genetics of protein and oil content in summer rape: Heritability, number of effective factors, and correlations. Canadian Journal of Plant Science, 1977, 57(3): 937-943.
doi: 10.4141/cjps77-134
[38] GOFFMAN F D, ALONSO A P, SCHWENDER J, SHACHAR-HILL Y, OHLROGGE J B. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiology, 2005, 138(4): 2269-2279.
pmid: 16024686
[39] KWAK J S, KIM S I, PARK S W, SONG J T, SEO H S. E3 SUMO ligase AtSIZ1 regulates the cruciferin content of Arabidopsis seeds. Biochemical and Biophysical Research Communications, 2019, 519(4): 761-766.
doi: 10.1016/j.bbrc.2019.09.064
[40] XIONG J L, DAI L L, MA N, ZHANG C L. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regulation, 2018, 85(1): 73-90.
doi: 10.1007/s10725-018-0374-8
[41] KOESLIN-FINDEKLEE F, RIZI V S, BECKER M A, PARRA- LONDONO S, ARIF M, BALAZADEH S, MUELLER-ROEBER B, KUNZE R, HORST W J. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Plant Science, 2015, 233: 174-185.
doi: 10.1016/j.plantsci.2014.11.018
[42] TANG S, PENG F, TANG Q, XIA H, YAO X, LU S, GUO L. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. Journal of Advanced Research, 2022, 42: 29-40.
doi: 10.1016/j.jare.2022.07.008
[43] HUANG K L, ZHANG M L, MA G J, WU H, WU X M, REN F, LI X B. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS ONE, 2017, 12(6): e0179027.
[44] ZHOU Z J, LIN B G, TAN J J, HAO P F, HUA S J, DENG Z P. Tandem mass tag-based quantitative proteomics reveals implication of a late embryogenesis abundant protein (BnLEA57) in seed oil accumulation in Brassica napus L.. Frontiers in Plant Science, 2022, 13: 907244.
[1] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[5] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[12] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[15] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!