Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 4065-4074.doi: 10.3864/j.issn.0578-1752.2022.20.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage

NUERHATI·Silafuer (),WUSIMAN·Yimiti ()   

  1. College of Life Science and Technology, Xinjiang University, Urumqi 830046
  • Received:2021-01-07 Accepted:2022-08-30 Online:2022-10-16 Published:2022-10-24
  • Contact: WUSIMAN·Yimiti E-mail:1143044185@qq.com;dilxad@sina.com

Abstract:

【Objective】 The aim of this study was to investigate the effects of appropriate amino acid by-products (ABP) on fermentation quality and digestibility of white sorghum, so as to provide ideas for reducing environmental pollution as well as developing and utilizing new feed additives.【Method】In the study, the control group without any additives and the two experimental groups with ABP and ABP+ forage bacteria were used to carry out the experiment of white sorghum silage fermentation. The effects of ABP on the fermentation quality and digestibility of silage were obtained by measuring the feed composition and in vitro digestibility, and scanning electron microscopy (SEM) was used to observe the mechanism of ABP on improving feed fermentation quality and digestibility.【Result】The study has shown that the addition of 2.0% ABP to white sorghum straw could reduce the pH of the feed to 3.65, which was significantly different from the control group (5.13) (P<0.05). The sensory score belonged to the quality silage interval. The lactic acid content of each experimental group (ABP:11.95 g·kg-1; MIX:15.14 g·kg-1) was significantly higher than that of the control group (3.54 g·kg-1) (P<0.01), the content of acetic acid and butyric acid (AA: ABP:2.87 g·kg-1, MIX:2.75 g·kg-1; BA: ABP:0.72 g·kg-1, MIX:0.78 g·kg-1) was significantly lower than that of the control group (acetic acid:3.85 g·kg-1; butyric acid: 1.39 g·kg-1) (P<0.05), and the lactic acid content of the experimental group of ABP+ forage bacteria was 327.85% higher than that of the control group; the content of dry matter (DM) in each group did not change significantly (P>0.05). Neutral detergent fiber (NDF) (ABP:58.67%; MIX:57.67%), acid detergent lignin (ADL)(ABP:4.77%; MIX:4.27%) and ash (Ash) (ABP : 1.56%; mixed: 2.04%) lower than the control group (NDF:63.66%; ADL:5.15%; Ash:2.76%), but the difference was not significant (P>0.05), the acid detergent fiber (ADF) (ABP:35.77%; MIX:28.63%) was significantly lower than that of the control group (40.58%) (P<0.01), and the crude protein content (ABP: 9.65%, MIX:9.67%) was significantly higher than the control group (6.88%) (P<0.01); the in vitro digestibility of each experimental group was DM (ABP: 74.66%; MIX: 80.03%), NDF (ABP: 72.74%; MIX: 83.08%) and ADF (ABP: 68.29%; MIX: 79.56%), which were significantly higher than the control group (DM: 60.67%, NDF: 48.06%; ADF: 44.81%) (P<0.05); the results showed that ABP significantly improved and increased the fermentation quality and digestibility of silage. From the SEM results, it was found that the cross-section and surface structure of the control group were small, and the number of adhering microorganisms was small too, while the wax layer of the surface structure of the treatment group was destroyed and adhered to a large number of forage bacteria, cross-section cells or a large amount of forage bacteria adhered inside the tissue. Therefore, it was preliminarily informed that ABP improved and increased the fermentation quality and digestibility of silage. In addition, the carbon and nitrogen sources provided by the feed bacteria, the wax layer on the surface of the feed was destroyed to promote the adhesion of the feed bacteria and degrade the cell wall cellulose.【Conclusion】2.0% ABP added to white sorghum silage could significantly improve the fermentation quality and digestibility, and had great economic and social significance for the reuse of ABP, the reduction of environmental pollution, and the development and utilization of new feed additives.

Key words: ABP, silage, fermentation quality, in vitro digestibility, SEM

Table 1

ABP composition and content"

成分Composition 含量Content (mg·kg-1) 成分Composition 含量Content (mg·kg-1)
总氮Total nitrogen 1.43×105 钾Potassium 1.21×104
总碳Total carbon 2.57×105 钙Calcium 1.35×103
硫酸根离子Sulfate ion 2.52×105 钠Sodium 1.26×104
氯离子Chloride 3.18×104 镁Magnesium 1.46×103

Table 2

White sorghum chemical composition and content"

成分Composition 含量Content (%) 成分Composition 含量Content (%)
酸碱度 Potential of hydrogen (pH) 6.08 中性洗涤纤维 Neutral detergent fiber (NDF) 63.56
干物质 Dry matter (DM) 51.79 酸性洗涤纤维 Acid detergent fiber (ADF) 34.94
粗蛋白 Crude protein (CP) 4.25 酸性洗涤木质 Acid detergent lignin (ADL) 10.51
粗纤维素 Crude fiber (CF) 25.60 半纤维素 Hemicellulose (HC) 28.62

Table 3

The sensory assessment form of white sorghum silage"

组别
Group
pH 气味
Odor
色泽
Color
质地
Texture
总分
Total score
对照
Control
5.13±0.20a 淡霉味
Light musty
暗褐色
Dun
持原状、柔软
Holding the original and soft
70.33±2.02b
中等 Medium
ABP 3.79±0.02b 淡酸酒香味
Sour wine aroma
黄绿色
Kelly
松散、柔软
Loose and soft
87.00±1.00a
优质 High quality
ABP+混合菌
ABP+Mixed bacteria
3.65±0.03b 酸酒香味
Sour flavor
亮黄绿色
Bright kelly
松散、易分离
Loose and easy to separate
88.67±2.03a
优质 High quality

Fig. 1

White sorghum silage volatile fatty acid content Different lowercase letters indicate significant differences between treatments (P<0.05), and different uppercase letters indicate significant differences between treatments (P <0.01). The same as below"

Fig. 2

White sorghum silage lactic acid ratio"

Fig. 3

White sorghum silage chemical composition DM: Dry matter; CP: Crude protein; NDF: Natural detergent fiber; ADF: Acid detergent fiber; ADL: Acid detergent lignin; HC: Aemicellulose; Ash: Ash. The same as below"

Fig. 4

White sorghum silage in vitro digestibility"

Fig. 5

White sorghum silage SEM image A1, B1 and C1 are the surface structures of the control group, ABP group, ABP and forage bacteria mixed group, respectively, and A2, B2 and C2 are the Cross-sectional structure of the control group, ABP group, ABP and forage bacteria mixed group, respectively"

[1] 赵兰坤, 徐太海, 范婷婷, 刘世周, 郇月伟. 氨基酸发酵废水的分类处理和利用. 发酵科技通讯, 2018, 47(3): 180-183. doi: 10.16774/j.cnki.issn.1674-2214.2018.03.013.
doi: 10.16774/j. cnki.issn.1674-2214.2018.03.013
ZHAO L K, XU T H, FAN T T, LIU S Z, XUN Y W. The classification and utilization of amino acid fermentation wastewater. Bulletin of Fermentation Science and Technology, 2018, 47(3): 180-183. doi: 10.16774/j.cnki.issn.1674-2214.2018.03.013. (in Chinese)
doi: 10.16774/j. cnki.issn.1674-2214.2018.03.013
[2] 梁志辉. 氨基酸生产废水处理技术探讨. 机电信息, 2013(9): 114-115. doi: 10.19514/j.cnki.cn32-1628/tm.2013.09.074.
doi: 10.19514/j.cnki.cn32-1628/tm.2013.09.074
LIANG Z H. Discussion on treatment technology of amino acid production wastewate. Mechanical and Electrical Information, 2013(9): 114-115. doi: 10.19514/j.cnki.cn32-1628/tm.2013.09.074. (in Chinese)
doi: 10.19514/j.cnki.cn32-1628/tm.2013.09.074
[3] 张彦丽. 利用味精废水培养枯草芽孢杆菌产γ-聚谷氨酸及初步表征. 生态环境学报, 2018, 27(10): 1949-1957. doi: 10.16258/j.cnki.1674-5906.2018.10.021.
doi: 10.16258/j.cnki. 1674-5906.2018.10.021
ZHANG Y L. Cultivation of Bacillus subtilis with monosodium glutamate wastewater to produce γ-polyglutamic acid and preliminary characterization. Ecology and Environmental Sciences, 2018, 27(10): 1949-1957. doi: 10.16258/j.cnki.1674-5906.2018.10.021. (in Chinese)
doi: 10.16258/j.cnki. 1674-5906.2018.10.021
[4] 本刊. 氨基酸关键技术与产业化应用*: 访中国科学院微生物研究所“赖氨酸和苏氨酸工业化生产菌改造”项目组. 科技促进发展, 2015(5): 697-699. doi: 10.11842/chips.2015.05.023.
doi: 10.11842/chips.2015.05.023
SCIENCE & TECHNOLOGY FOR DEVELOPMENT. Key Technology of Amino Acids and Industrial Application--Interview with the "Reconstruction of Industrial Production of Lysine and Threonine" by the Institute of Microbiology, Chinese Academy of Sciences. Science & Technology for Development, 2015(5): 697-699. doi: 10.11842/chips.2015.05.023. (in Chinese)
doi: 10.11842/chips.2015.05.023
[5] TOCZYLOSKA M R. Limits and perspectives of pulp and paper industry wastewater treatment-A review. Renewable and Sustainable Energy Reviews, 2017.
[6] 王宏龄, 富春江. 中国氨基酸工业现状及发展趋势. 饲料广角, 2007(10): 12-15. doi: 10.3969/j.issn.1002-8358.2007.10.005.
doi: 10.3969/j.issn.1002-8358.2007.10.005
WANG H L, FU C J. The status of Chinese amino acid industry and its tendency. Feed China, 2007(10): 12-15. doi: 10.3969/j.issn.1002-8358.2007.10.005. (in Chinese)
doi: 10.3969/j.issn.1002-8358.2007.10.005
[7] 曾德霞, 缪礼鸿, 周凤鸣, 杨雄振. 利用氨基酸废液发酵制备酵母蛋白饲料的工艺. 粮食与饲料工业, 2016(7): 39-43. doi: 10.7633/j.issn.1003-6202.2016.07.012.
doi: 10.7633/j. issn.1003-6202.2016.07.012
ZENG D X, MIAO L H, ZHOU F M, YANG X Z. Producing of yeast protein feed from amino acid waste by fermentation. Cereal & Feed Industry, 2016(7): 39-43. doi: 10.7633/j.issn.1003-6202.2016.07.012. (in Chinese)
doi: 10.7633/j. issn.1003-6202.2016.07.012
[8] 成细瑶, 杨波, 刘志刚, 尧晨光, 胡征. 利用氨基酸废水发酵生产饲料用汉逊德巴利酵母的研究. 饲料工业, 2014, 35(S1): 102-105. doi: 10.13302/j.cnki.fi.2014.z1.029.
doi: 10.13302/j.cnki.fi.2014.z1.029
CHENG X Y, YANG B, LIU Z G, YAO C G, HU Z. Study on fermentation of debaryomyces hansenii with amino acid industrial wastewater. Feed Industry, 2014, 35(S1): 102-105. doi: 10.13302/j.cnki.fi.2014.z1.029. (in Chinese)
doi: 10.13302/j.cnki.fi.2014.z1.029
[9] 成细瑶, 胡征, 王辉, 杨波, 刘志刚, 尹紫燕, 邱翠翠, 唐锐. 利用氨基酸工业废水生产饲用产朊假丝酵母. 粮食与饲料工业, 2014(7): 47-49.
CHENG X Y, HU Z, WANG H, YANG B, LIU Z G, YIN Z Y, QIU C C, TANG R. Candida utilis production with amino acid industrial wastewater. Cereal & Feed Industry, 2014(7): 47-49. (in Chinese)
[10] BAUTISTA M E, PÉREZ L, GARCÍA M T, CUADROS S, MARSAL A. Valorization of tannery wastes: Lipoamino acid surfactant mixtures from the protein fraction of process wastewater. Chemical Engineering Journal, 2015, 262: 399-408. doi: 10.1016/j.cej.2014.10.004.
doi: 10.1016/j.cej.2014.10.004
[11] WANG D H, NIE M, WEI G Y. Improved glutathione production by Candida utilis using a two-stage amino acids addition strategy. Food Science, 2017, 4(073): 116.
[12] YIMITI W, YAHAYA M S, HIRAOKA H, YAMAMOTO Y, INUI K, TAKEDA M, TSUKAHARA A, GOTO M. Effects of amino acids fermentation by-product on fermentation quality and in situ rumen degradability of Italian ryegrass (Lolium multiflorum) silage. Asian-Australasian Journal of Animal Sciences, 2004, 17(5): 633-637. doi: 10.5713/ajas.2004.633.
doi: 10.5713/ajas.2004.633
[13] 曾德霞. 酵母菌及细菌对氨基酸母液的利用研究[D]. 武汉: 武汉轻工大学, 2016.
ZENG D X. Studying the utilization of yeast and bacteria in amino acid mother liquor[D]. Wuhan: Wuhan Polytechnic University, 2016. (in Chinese)
[14] 美合热阿依·木台力甫, 乌斯满·依米提. 乳酸菌与纤维素分解菌混合菌剂对玉米青贮饲料发酵品质的影响. 饲料工业, 2016, 37(23): 51-54. doi: 10.13302/j.cnki.fi.2016.23.012.
doi: 10.13302/j.cnki.fi.2016.23.012
MIHRAY·MUTALLIP, WUSIMAN·YIMIT. Effects of mixed additive of lactobacillus and cellulose decomposition bacteria on the quality of corn stover silage. Feed Industry, 2016, 37(23): 51-54. doi: 10.13302/j.cnki.fi.2016.23.012. (in Chinese)
doi: 10.13302/j.cnki.fi.2016.23.012
[15] DEEPA K, SENTHILKUMAR S, SUGANYA T. Constraints in preparation of silage. International Journal of Science, Environment and Technology, 2016, 5(3): 1193-1199.
[16] 刘颖慧, 郭明, 贾树利, 尹建国. 影响青贮玉米品质因素研究进展. 作物杂志, 2018(2): 6-10. doi: 10.16035/j.issn.1001-7283.2018.02.002.
doi: 10.16035/j.issn.1001-7283.2018.02.002
LIU Y H, GUO M, JIA S L, YIN J G. Advance on the factors effecting on maize forage nutritive value. Crops, 2018(2): 6-10. doi: 10.16035/j.issn.1001-7283.2018.02.002. (in Chinese)
doi: 10.16035/j.issn.1001-7283.2018.02.002
[17] 努尔哈提·斯拉甫尔, 古丽努尔·吐拉甫, 乌斯满·依米提. 氨基酸副产物对饲用菌生长量的影响. 饲料研究, 2018(5): 77-81. doi: 10.13557/j.cnki.issn1002-2813.2018.05.017.
doi: 10.13557/j.cnki.issn1002-2813.2018.05.017
NUERHATI·SILAFUER, GULINUER·TULAFU, WUSIMAN·YIMIT. Effect of amino acid by-products on the growth of forage bacteria. Feed Research, 2018(5): 77-81. doi: 10.13557/j.cnki.issn1002-2813.2018.05.017. (in Chinese)
doi: 10.13557/j.cnki.issn1002-2813.2018.05.017
[18] 乌斯满·依米提, 古丽斯玛依, 张永辉, 樊振. 高效乳酸菌对青贮饲料发酵品质的改善效果. //中国微生物学会. 第三届全国微生物资源学术暨国家微生物资源平台运行服务研讨会论文集. 2011: 123-129.
W. YIMITI, GULSIMAY, ZHANG Y H, FAN Z. Effect of high- efficiency lactic acid bacteria on fermentation quality of silage. //Chinese Society of Microbiology.Proceedings of the 3rd National Microbial Resources Academic and National Microbial Resources Platform Operation Service Seminar. 2011: 123-129. (in Chinese)
[19] 买尔哈巴·艾合买提, 樊振, 李越中, 古丽斯玛依·艾拜都拉, 乌斯满·依米提. 瘤胃中纤维素分解菌的分离、鉴定及其产酶条件的优化. 微生物学报, 2013, 53(5): 470-477. doi: 10.13343/j.cnki.wsxb.2013.05.005.
doi: 10.13343/j.cnki.wsxb. 2013.05.005
MAIERHABA AIHEMAITI, FAN Z, LI Y Z, GULISIMAYI AIBAIDOULA, WUSIMAN YIMIT. Isolation and identification of rumen bacteria for cellulolytic enzyme production. Acta Microbiologica Sinica, 2013, 53(5): 470-477. doi: 10.13343/j.cnki.wsxb.2013.05.005. (in Chinese)
doi: 10.13343/j.cnki.wsxb. 2013.05.005
[20] 赵云. 青贮饲料制作注意事项. 现代农村科技, 2016(16): 70.
ZHAO Y. Silage production considerations. Modern Rural Technology, 2016(16): 70. (in Chinese)
[21] 李玲, 马小强. 全株青贮玉米不同生长期青贮技术研究. 畜牧兽医杂志, 2015, 34(4): 68-69. doi: 10.3969/j.issn.1004-6704.2015.04.024.
doi: 10.3969/j.issn.1004-6704.2015.04.024
LI L, MA X Q. Research whole plant silage corn silage different growth techniques. Journal of Animal Science and Veterinary Medicine, 2015, 34(4): 68-69. doi: 10.3969/j.issn.1004-6704.2015.04.024. (in Chinese)
doi: 10.3969/j.issn.1004-6704.2015.04.024
[22] 王杰, 张养东, 郑楠, 王加启, 张佩华. 青贮饲料感官评定研究进展. 中国奶牛, 2019(1): 1-3. doi: 10.19305/j.cnki.11-3009/s.2019.01.001.
doi: 10.19305/j.cnki.11-3009/s.2019.01.001
WANG J, ZHANG Y D, ZHENG N, WANG J Q, ZHANG P H. Research rrogress in sensory evaluation of sliage. China Dairy Cattle, 2019(1): 1-3. doi: 10.19305/j.cnki.11-3009/s.2019.01.001. (in Chinese)
doi: 10.19305/j.cnki.11-3009/s.2019.01.001
[23] WILSON R F, TILLEY J M, STEEMERS M A. Comparison of oven drying and toluene distillation in the determination of the dry-matter content of silage. Journal of the Science of Food and Agriculture, 1964, https://doi.org/10.1002/jsfa.2740150310.
[24] ROBERT-PEILLARD F, MATTIO E, KOMINO A, BOUDENNE J, COULOMB B. Development of a simple, low-cost and rapid thin-layer chromatography method for the determination of individual volatile fatty acids. Analytical methods, 2019, 11(14): 1891-1897.
doi: 10.1039/C9AY00158A
[25] 王丽霞. 甲醛法在玉米粗蛋白测定中的应用. 甘肃农业大学学报, 2010, 45(4): 147-150. doi: 10.13432/j.cnki.jgsau.2010.04.009.
doi: 10.13432/j.cnki.jgsau.2010.04.009
WANG L X. Comparison of formol-titration method and Kjeldahl method on determination of crude protein in maize. Journal of Gansu Agricultural University, 2010, 45(4): 147-150. doi: 10.13432/j.cnki.jgsau.2010.04.009. (in Chinese)
doi: 10.13432/j.cnki.jgsau.2010.04.009
[26] 王晓娜, 徐春城, 温定英, 陶雅, 孙启忠, 韩海波. 不同测定方法对青贮饲料中NDF和ADF含量的影响. 草业科学, 2012, 29(1): 144-149.
WANG X N, XU C C, WEN D Y, TAO Y, SUN Q Z, HAN H B. Effects of different methods on NDF and ADF of silage. Pratacultural Science, 2012, 29(1): 144-149. (in Chinese)
[27] 袁玖, 万欣杰, 孙烈涛, 孔维斌, 赵奇天. 不同降温方法对饲料中粗灰分测定的影响. 中国饲料, 2014(18): 35-37. doi: 10.15906/j.cnki.cn11-2975/s.2014.18.023.
doi: 10.15906/j.cnki. cn11-2975/s.2014.18.023
YUAN J, WAN X J, SUN L T, KONG W B, ZHAO Q T. Effects of different cooling methods on measuring crude ash of feeds. China Feed, 2014(18): 35-37. doi: 10.15906/j.cnki.cn11-2975/s.2014.18.023. (in Chinese)
doi: 10.15906/j.cnki. cn11-2975/s.2014.18.023
[28] 杨曙明. 测定反刍动物饲料消化率体外方法的研究进展. 中国饲料, 1997(20): 33-35.
YANG S M. Advances in in vitro methods for determination of ruminant feed digestibility. China Feed, 1997(20): 33-35. (in Chinese)
[29] 甘肃农业大学. 一种制备青贮玉米叶片扫描电镜样品的方法: CN201510205563.9. 2015-07-15.
Gansu Agricultural University. Method for preparing scanning electron microscope sample of silage corn leaf: CN201510205563.9. 2015-07-15. (in Chinese)
[30] 张养东, 杨军香, 王宗伟, 郑楠, 李松励, 赵圣国, 文芳, 王加启. 青贮饲料理化品质评定研究进展. 中国畜牧杂志, 2016, 52(12): 37-42.
ZHANG Y D, YANG J X, WANG Z W, ZHENG N, LI S L, ZHAO S G, WEN F, WANG J Q. Progress assessment of chemical indicators of silage. Chinese Journal of Animal Science, 2016, 52(12): 37-42. (in Chinese)
[31] 董妙音, 王曙阳, 姜伯玲, 张修坤, 李文建, 陈积红, 胡伟, 刘敬. 添加不同的青贮菌剂对甜高粱青贮品质的影响. 饲料工业, 2016, 37(1): 28-31. doi: 10.13302/j.cnki.fi.2016.01.006.
doi: 10.13302/j.cnki.fi.2016.01.006
DONG M Y, WANG S Y, JIANG B L, ZHANG X K, LI W J, CHEN J H, HU W, LIU J. Effects of different silage inoculants on silage quality of sweet sorghum silage. Feed Industry, 2016, 37(1): 28-31. doi: 10.13302/j.cnki.fi.2016.01.006. (in Chinese)
doi: 10.13302/j.cnki.fi.2016.01.006
[32] 陈丽君. 不同青贮添加剂对甜高粱青贮质量的影响. 中国甜菜糖业, 2018(1): 33-35. doi: 10.3969/j.issn.1002-0551.2018.01.007.
doi: 10.3969/j.issn.1002-0551.2018.01.007
CHEN L J. Effects of different silage additives on the quality of sweet sorghum silage. China Beet & Sugar, 2018(1): 33-35. doi: 10.3969/j.issn.1002-0551.2018.01.007. (in Chinese)
doi: 10.3969/j.issn.1002-0551.2018.01.007
[33] 李永凯. 西藏乳酸菌的分离筛选及对青贮饲料发酵品质的影响[D]. 南京: 南京农业大学, 2012.
LI Y K. Screening, identification and evaluation of lactic acid bacteria for the fermentation and quality of silage in Tibet[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[34] 张树攀, 陈铮, 韩娟, 刘大林. 不同添加剂对杂交高粱-苏丹草青贮性能及体外降解特性的影响. 饲料广角, 2009(13): 45-49. doi: 10.3969/j.issn.1002-8358.2009.13.017.
doi: 10.3969/j.issn.1002-8358.2009.13.017
ZHANG S P, CHEN Z, HAN J, LIU D L. Effects of different additives on silage performance and in vitro degradation behavior of sorghum- Sudanense hybrids. Feed China, 2009(13): 45-49. doi: 10.3969/j.issn.1002-8358.2009.13.017. (in Chinese)
doi: 10.3969/j.issn.1002-8358.2009.13.017
[35] 努尔哈提·斯拉甫尔, 麦提图尔荪·阿卜杜克热木, 乌斯满·依米提. 氨基酸副产物对青贮饲料发酵品质及消化率的影响. 中国畜牧兽医, 2020, 47(10): 3183-3192. doi: 10.16431/j.cnki.1671-7236.2020.10.017.
doi: 10.16431/j.cnki.1671-7236.2020.10.017
NUERHATI·SILAFUER, MAIMAITITUERSUN·ABUDUKEREMU, WUSIMAN·YIMITI. Effects of amino acid by-products on fermentation quality and digestibility of silage. China Animal Husbandry & Veterinary Medicine, 2020, 47(10): 3183-3192. doi: 10.16431/j.cnki.1671-7236.2020.10.017. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2020.10.017
[36] 杨红, 张庆, 侯建建, 玉柱. 生物添加剂对羊草青贮饲料超微结构和纤维变化的影响. 草业学报, 2016, 25(12): 94-101. doi: 10.11686/cyxb2016059.
doi: 10.11686/ cyxb2016059
YANG H, ZHANG Q, HOU J J, YU Z. Effect of biological additives on ultrastructure and fiber content of Leymus chinensis silage. Acta Prataculturae Sinica, 2016, 25(12): 94-101. doi: 10.11686/cyxb2016059. (in Chinese)
doi: 10.11686/ cyxb2016059
[37] 杨志刚, 沈益新. 纤维素酶制剂在青贮饲料中的应用. 畜牧与兽医, 2002, 34(9): 37-40. doi: 10.3969/j.issn.0529-5130.2002.09.022.
doi: 10.3969/j.issn.0529-5130.2002.09.022
YANG Z G, SHEN Y X. Application of cellulytic enzymes to ensilage. Animal Husbandry & Veterinary Medicine, 2002, 34(9): 37-40. doi: 10.3969/j.issn.0529-5130.2002.09.022. (in Chinese)
doi: 10.3969/j.issn.0529-5130.2002.09.022
[38] YAMAMOTO Y, YIMAMU A, YIMITI W, KENICHI H, MASAKAZU G. Effects of various amino acid fermentation byproducts on the fermentation quality and feed characteristics of Italian ryegrass (Lolium multiflorum Lam.) silage. Japanese Journal of Grassland Science, 2008, 4(53): 289-294.
[1] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[4] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[5] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[6] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[7] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[8] XingXiang GAO,Jian LI,Shuai ZHANG,YueLi ZHANG,Feng FANG,Mei LI,LianYang BAI,ShuangYing ZHANG. Spread and Resistance Level of Aegilops tauschii to Mesosulfuron- Methyl in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 969-979.
[9] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[10] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[11] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[12] CHEN GuangJi,XIONG XianQin,HE RunXia,TIAN Xiong,SHEN YingLong,ZOU XiaoMin,YANG Hong,SHANG YiShun,ZHAO MingKun,LI XiaoDong,LI ShiGe,ZHANG Rong,SHU JianHong. Evaluation of Feeding Value for Whole Broussonetia papyrifera Silage in Diet of Wuchuan Black Beef Cattle [J]. Scientia Agricultura Sinica, 2021, 54(19): 4218-4228.
[13] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[14] ZHANG ChengQi,WANG XiaoYan,CHEN Li. The Actin Binding Protein FgAbp1 is Involved in Growth, Development and Toxisome Formation in Fusarium graminearum [J]. Scientia Agricultura Sinica, 2021, 54(13): 2759-2768.
[15] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!