Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1846-1858.doi: 10.3864/j.issn.0578-1752.2022.09.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp

WANG Ji(),ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun*()   

  1. College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, Shanxi
  • Received:2021-08-10 Revised:2021-11-01 Online:2022-05-01 Published:2022-05-19
  • Contact: YingChun ZHU E-mail:17835422765@163.com;yingchun0417@163.com

Abstract:

【Objective】This study aimed to screen out the fermentation strains with high lipolysis and antioxidant ability, which provided the theoretical basis for development of new starter cultures. 【Method】The sterilized pork pulp was inoculated with Staphylococcus xylosus YSZ11, Staphylococcus xylosus YCC3, Staphylococcus saprophyticus YCC2, Macrococcus caseolyticus YZC2, and Macrococcus caseolyticus YZC3, respectively. The sterilized pork pulp without inoculation of strains was used as the control group. The changes of pH, peroxide value (POV), thiobarbituric acid reactive substances (TBARS), lipase activity, lipid composition and free fatty acid content were measured after 4 d fermentation.【Result】5 fermentation strains could reduce the pH value of the pork pulp. The POV and TBARS values were 2.51-2.96 mmol∙kg-1 and 0.21-0.24 mg/100g in pork pulp inoculated with fermentation strains, which were significantly lower (P<0.05) than that in CK group. The activity of neutral lipase, acid lipase and phospholipase were all detected in the groups inoculated with the fermentation strains, while higher activity of acid lipase and phospholipase were found in the groups inoculated with the fermentation strains than that of neutral lipase. After 4 d of fermentation, the phospholipid content decreased significantly (P<0.05), while the free fatty acid content increased by 21.1%-73.7% in the groups inoculated with the fermentation strains. At the same time, the amount of saturated fatty acids decreased significantly, while the amount of unsaturated fatty acids especially the content of palmitoleic (C16:1), oleic (C18:1) and linoleic acids (C18:2) increased significantly, and the linolenic acid (C18:3) was also detected. 【Conclusion】This study showed that five fermentation strains could inhibit lipid oxidation, and promoted lipid hydrolysis by secreting lipase, which led to the increase of the content of free fatty acids, especially unsaturated fatty acids. Staphylococcus saprophyticus YCC2 and Staphylococcus xylosus YCC3 had better lipolysis and antioxidant ability, and showed a more prominent promoting effect on improving the quality of fermented meat products.

Key words: sterilized pork pulp, fermentation strain, lipase activity, lipolysis, lipid oxidation

Fig. 1

Changes of pH value during the fermentation of pork pulp Different capital letters indicate significant difference at the different culture time of same strains (P<0.05); Different lowercase letters indicate significant difference at the same culture time among different strains (P<0.05). The same as below"

Table 1

Changes of lipid content during the fermentation of pork pulp (g/100g)"

发酵初始
Initial fermentation (0 d)
发酵终点 End of fermentation (4 d)
CK YSZ11 YCC2 YCC3 YZC2 YZC3
中性脂质 Neutral lipid 80.3±0.71A 79.4±0.72Aa 79.2±0.84Aa 79.9±0.66Aa 79.2±0.89Aa 79.2±0.77Aa 79.1±0.73Aa
磷脂 Phospholipid 16.1±0.25A 15.7±0.05Aa 15.3±0.01Bb 13.1±0.08Bc 13.7±0.06Bc 14.1±0.17Bb 14.2±0.13Bb
游离脂肪酸 Free fatty acid 3.6±0.10A 3.8±0.05Ac 5.2±0.04Bb 6.6±0.14Ba 6.0±0.12Ba 4.7±0.12Bb 4.6±0.05Bb

Fig. 2

The Changes of lipase activity during the fermentation of pork pulp"

Table 2

Free fatty acid composition of pork pulp at the end of fermentation (mg/100 mg)"

脂肪酸 Fatty acid CK YCC2 YCC3 YZC2 YZC3 YSZ11
C8:0 0.02±0.00a 0.02±0.00a 0.02±0.00a 0.02±0.00a 0.02±0.000a 0.02±0.00a
C10:0 0.22±0.00a 0.23±0.01a 0.23±0.01a 0.18±0.00b 0.15±0.00c 0.17±0.01b
C12:0 0.20±0.00c 0.21±0.01bc 0.26±0.01a 0.18±0.00d 0.15±0.00e 0.22±0.01b
C14:0 4.53±0.26a 3.55±0.31c 3.99±0.40b 3.03±0.16e 2.96±0.26e 3.21±0.32d
C15:0 0.07±0.00d 0.09±0.00c 0.12±0.01b 0.06±0.00d 0.01±0.00e 0.52±0.02a
C16:0 24.97±1.62a 22.82±0.76c 22.32±0.68c 24.90±1.35a 23.80±1.14b 23.45±0.60b
C17:0 0.47±0.10c 0.61±0.14b 0.89±0.16a 0.39±0.08d 0.45±0.30c 0.51±0.10c
C18:0 17.54±1.12a 15.77±0.84e 16.09±0.66c 16.58±0.64b 16.08±1.02d 16.47±1.26b
C20:0 0.45±0.02c 0.49±0.02b 0.75±0.01a 0.37±0.02e 0.41±0.02d 0.44±0.01c
C21:0 - 0.01±0.00a 0.01±0.00a - - -
C22:0 - - 0.02±0.00a - - 0.01±0.00a
SFA 48.48±2.64a 43.80±2.62d 44.86±1.68c 45.71±1.94ab 44.03±2.07d 45.32±1.44b
C14:1 0.08±0.00b 0.08±0.00b 0.10±0.01a 0.03±0.00d 0.06±0.00c 0.03±0.00d
C16:1 5.76±0.38c 6.46±0.12b 8.16±0.22a 5.03±0.10e 5.05±0.14e 5.27±0.10d
C18:1n9t 28.13±0.18d 30.67±0.14a 28.98±0.22c 29.16±0.18b 27.15±0.20e 27.15±0.16e
C18:1n9c 0.41±0.01e 0.33±0.10f 0.65±0.01d 1.83±0.08c 5.06±0.14a 2.26±0.20b
MUFA 34.38±3.04d 37.54±2.46a 37.88±0.10a 36.04±1.22b 37.31±1.84a 35.20±0.01c
C18:2n6t 0.02±0.00e - 0.34±0.01a 0.14±0.00d 0.19±0.00c 0.22±0.01b
C18:2n6c 16.59±0.86e 18.12±0.64b 16.88±1.02d 17.66±0.08c 17.89±0.08bc 18.56±0.10a
C18:3n3 - - 0.01±0.00a - 0.01±0.00a -
C20:4n6 0.51±0.01b 0.51±0.02b 0.01±0.00d 0.45±0.01c 0.56±0.03a 0.43±0.02c
C22:6n3 0.01±0.00b - 0.02±0.00a 0.01±0.00b 0.01±0.00b 0.01±0.00b
PUFA 17.12±0.14e 18.65±1.02b 17.25±0.01d 18.25±0.84c 18.66±0.62b 19.48±1.22a
UFA 51.50±2.02d 56.19±1.84a 55.14±1.94b 54.29±1.76c 55.98±2.38a 54.68±2.06c
UFA/SAF 1.15±0.04d 1.28±0.02a 1.23±0.03b 1.19±0.02bc 1.27±0.01a 1.21±0.02c

Fig. 3

Heatmap of free fatty acids in fermented meat pulp"

Fig. 4

Changes of POV during the fermentation of pork pulp"

Fig. 5

Changes of TBARS value during the fermentation of pork pulp"

Fig. 6

PCA score graph for different fermented pork pulp"

Fig. 7

Correlation heatmap of lipid oxidation and hydrolysis"

[1] 刘英丽, 杨梓妍, 万真, 于青林, 曹雅婷, 蒋逸萱, 李洪岩, 刘洁, 王静. 发酵剂对发酵香肠挥发性风味物质形成的作用及影响机制研究进展. 食品科学, 2021, 42(11): 284-296. doi: 10.7506/spkx1002-6630-20201012-085.
doi: 10.7506/spkx1002-6630-20201012-085
LIU Y L, YANG Z Y, WAN Z, YU Q L, CAO Y T, JIANG Y X, LI H Y, LIU J, WANG J. Progress in understanding the effect and mechanism of starter cultures on the formation of volatile flavor compounds in fermented sausage. Food Science, 2021, 42(11): 284-296. doi: 10.7506/spkx1002-6630-20201012-085. (in Chinese)
doi: 10.7506/spkx1002-6630-20201012-085
[2] MARIUTTI L R B, BRAGAGNOLO N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International, 2017, 94: 90-100. doi: 10.1016/j.foodres.2017.02.003.
doi: 10.1016/j.foodres.2017.02.003
[3] CHEN Q, KONG B H, HAN Q, XIA X F, XU L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT, 2017, 77: 389-396. doi: 10.1016/j.lwt.2016.11.075.
doi: 10.1016/j.lwt.2016.11.075
[4] LORENZO J M, GÓMEZ M, FONSECA S. Effect of commercial starter cultures on physicochemical characteristics, microbial counts and free fatty acid composition of dry-cured foal sausage. Food Control, 2014, 46: 382-389. doi: 10.1016/j.foodcont.2014.05.025.
doi: 10.1016/j.foodcont.2014.05.025
[5] XIAO Y Q, LIU Y N, CHEN C G, XIE T T, LI P J. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Research International, 2020, 135: 109247. doi: 10.1016/j.foodres.2020.109247.
doi: 10.1016/j.foodres.2020.109247
[6] NAVARRO J L, NADAL M I, IZQUIERDO L, FLORES J. Lipolysis in dry cured sausages as affected by processing conditions. Meat Science, 1997, 45(2): 161-168. doi: 10.1016/S0309-1740(96)00118-0.
doi: 10.1016/S0309-1740(96)00118-0
[7] FLORES M, DURÁ M A, MARCO A, TOLDRÁ F. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science, 2004, 68(3): 439-446.
doi: 10.1016/j.meatsci.2003.04.001
[8] BOZKURT H, ERKMEN O. Effects of starter cultures and additives on the quality of Turkish style sausage (sucuk). Meat Science, 2002, 61(2): 149-156.
doi: 10.1016/S0309-1740(01)00176-0
[9] VESTERGAARD C S, SCHIVAZAPPA C, VIRGILI R. Lipolysis in dry-cured ham maturation. Meat Science, 2000, 55(1): 1-5. doi: 10.1016/S0309-1740(99)00095-9.
doi: 10.1016/S0309-1740(99)00095-9
[10] HUANG Y C, LI H J, HUANG T, LI F, SUN J. Lipolysis and lipid oxidation during processing of Chinese traditional smoke-cured bacon. Food Chemistry, 2014, 149: 31-39. doi: 10.1016/j.foodchem.2013.10.081.
doi: 10.1016/j.foodchem.2013.10.081
[11] FOLCH J, LEES M, SLOANE S G H. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 1957, 226(1): 497-509.
doi: 10.1016/S0021-9258(18)64849-5
[12] KALUZNY M A, DUNCAN L A, MERRITT M V, EPPS D E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. Journal of Lipid Research, 1985, 26(1): 135-140.
doi: 10.1016/S0022-2275(20)34412-6
[13] GANDEMER G. Lipids in muscles and adipose tissues, changes during processing and sensory properties of meat products. Meat Science, 2002, 62(3): 309-321. doi: 10.1016/S0309-1740(02)00128-6.
doi: 10.1016/S0309-1740(02)00128-6
[14] MUGUERZA E, ANSORENA D, ASTIASARÁN I. Functional dry fermented sausages manufactured with high levels of n‐3 fatty acids: nutritional benefits and evaluation of oxidation. Journal of the Science of Food and Agriculture, 2004, 84(9): 1061-1068. doi: 10.1002/jsfa.1786.
doi: 10.1002/jsfa.1786
[15] ÖZYURT G, KULEY E, ÖZKÜTÜK S, ÖZOGUL F. Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food Chemistry, 2008, 114(2): 505-510. doi: 10.1016/j.foodchem.2008.09.078.
doi: 10.1016/j.foodchem.2008.09.078
[16] JUN M, KATRIN G, REHM B H A. Production of functionalized biopolyester granules by recombinant Lactococcus lactis. Applied and Environmental Microbiology, 2009, 75(14): 4668-4675. doi: 10.1128/AEM.00487-09.
doi: 10.1128/AEM.00487-09
[17] BARRIÈRE C, CENTENO D, LEBERT A, LEROY-SÉTRIN S, BERDAGUÉ J L, TALON R. Roles of superoxide dismutase and catalase of Staphylococcus xylosus in the inhibition of linoleic acid oxidation. FEMS Microbiology Letters, 2001, 201(2): 181-185. doi: 10.1111/j.1574-6968.2001.tb10754.x.
doi: 10.1111/j.1574-6968.2001.tb10754.x.
[18] MEJRI L, VÁSQUEZ-VILLANUEVA R, HASSOUNA M, MARINA M L, GARCÍA M C. Identification of peptides with antioxidant and antihypertensive capacities by RP-HPLC-Q-TOF-MS in dry fermented camel sausages inoculated with different starter cultures and ripening times. Food Research International, 2017, 100: 708-716. doi: 10.1016/j.foodres.2017.07.072.
doi: 10.1016/j.foodres.2017.07.072
[19] CHEN Q, KONG B H, SUN Q, DONG F, LIU Q. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: In vitro and in a sausage model. Meat Science, 2015, 110: 180-188.
doi: 10.1016/j.meatsci.2015.07.021
[20] HAN Q, KONG B H, CHEN Q, SUN F D, ZHANG H. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. Journal of Functional Foods, 2017, 32: 391-400. doi: 10.1016/j.jff.2017.03.020.
doi: 10.1016/j.jff.2017.03.020
[21] BAÑÓ M C, GONZÁLEZ-NAVARRO H, ABAD C. Long- chain fatty acyl-CoA esters induce lipase activation in the absence of a water-lipid interface. Biochimica et Biophysica Acta, 2003, 1632: 55-61.
[22] GARCIA M L, SELGAS M D, FERNANDEZ M, ORDOÑEZ J A. Microorganisms and lipolysis in the ripening of dry fermented sausages. International Journal of Food Science & Technology, 1992, 27(6): 675-682. doi: 10.1111/j.1365-2621.1992.tb01237.x.
doi: 10.1111/j.1365-2621.1992.tb01237.x.
[23] TALON R, MONTEL M C, GANDEMER G, VIAU M, CANTONNETET M. Lipolysis of pork fat by Staphylococcus warneri, S. Saprophyticus and Micrococcus varians. Applied Microbiology and Biotechnology, 1993, 38(5): 606-609.
[24] LUCILLA I, LUCA C, CARLO C, GIUSEPPE C. Preliminary analysis of the lipase gene (gehM) expression of Staphylococcus xylosus in vitro and during fermentation of naturally fermented sausages. Journal of Food Protection, 2007, 70(11): 2665-2669.
doi: 10.4315/0362-028X-70.11.2665
[25] SELGAS M D, SANZ B, ORDÓÑEZ J A. Selected characteristics of micrococci isolated from Spanish dry fermented sausages. Food Microbiology, 1988, 5(4): 185-193. doi: 10.1016/0740-0020(88)90017-2.
doi: 10.1016/0740-0020(88)90017-2
[26] KENNEAL LY, LEUSCHN ER, AREND T. Evaluation of the lipolytic activity of starter cultures for meat fermentation purposes. Journal of Applied Microbiology, 1998, 84(5): 839-846. doi: 10.1046/j.1365-2672.1998.00420.x.
doi: 10.1046/j.1365-2672.1998.00420.x.
[27] JIN G F, ZHANG J B, YU X, ZHANG Y P, LEI Y X, WANG J M. Lipolysis and lipid oxidation in bacon during curing and drying- ripening. Food Chemistry, 2010, 123: 465-471.
doi: 10.1016/j.foodchem.2010.05.031
[28] SOLANGE B, GANDEMER G, MONIN G. Time-related changes in intramuscular lipids of French dry-cured ham. Meat Science, 1994, 37(2): 245-255. doi: 10.1016/0309-1740(94)90084-1.
doi: 10.1016/0309-1740(94)90084-1
[29] 刘志国, 王华林, 王丽梅, 刘烈炬. 多不饱和脂肪酸对神经细胞保护作用的研究进展. 食品科学, 2016, 37(7): 239-248.
LIU Z G, WANG H L, WANG L M, LIU L J. Advances in research on neuron-protective role of polyunsaturated fatty acids. Food Science, 2016, 37(7): 239-248.(in Chinese)
[30] VON ELERT E. Food quality constraints in daphnia: Interspecific differences in the response to the absence of a long chain polyunsaturated fatty acid in the food source. Hydrobiologia, 2004, 526(1): 187-196. doi: 10.1023/B:HYDR.0000041604.01529.00.
doi: 10.1023/B:HYDR.0000041604.01529.00
[31] ZANARDI E, GHIDINI S, BATTAGLIA A, CHIZZOLINI R. Lipolysis and lipid oxidation in fermented sausages depending on different processing conditions and different antioxidants. Meat Science, 2004, 66(2): 415-423. doi: 10.1016/S0309-1740(03)00129-3.
doi: 10.1016/S0309-1740(03)00129-3
[32] DOMÍNGUEZ R, MUNEKATA P E, AGREGÁN R, LORENZO J M. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT-Food Science and Technology, 2016, 71: 47-53. doi: 10.1016/j.lwt.2016.03.016.
doi: 10.1016/j.lwt.2016.03.016
[33] FLORES M, TOLDRÁ F. Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology, 2010, 22(2): 81-90. doi: 10.1016/j.tifs.2010.09.007.
doi: 10.1016/j.tifs.2010.09.007
[34] ZHAO L H, JIN Y, MA C W, SONG H L, LI H, WANG Z Y, XIAO S. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices. Meat Science, 2011, 88(4): 761-766. doi: 10.1016/j.meatsci.2011.03.010.
doi: 10.1016/j.meatsci.2011.03.010
[35] 张开屏, 田建军, 景智波, 曹凯慧, 马牧然, 马俊杰, 靳烨. 产脂肪酶乳酸菌对羊肉发酵香肠脂肪酸的影响. 农业工程学报, 2020, 36(12): 310-320. doi: 10.11975/j.issn.1002-6819.2020.12. 037.
doi: 10.11975/j.issn.1002-6819.2020.12. 037
ZHANG K P, TIAN J J, JING Z B, CAO K H, MA M R, MA J J, JIN Y. Influences of lactic acid bacteria producing lipase on fatty acids of mutton fermented sausage. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 310-320. doi: 10.11975/j.issn.1002-6819.2020.12.037.(in Chinese)
doi: 10.11975/j.issn.1002-6819.2020.12. 037
[36] BERDAGUE J L, MONTEIL P, MONTEL M C, R TALON R. Effect of starter cultures on the formation of flavor compounds in dry sausage. Meat Science, 1993, 35(3): 275-287.
doi: 10.1016/0309-1740(93)90033-E
[37] FENG L, TANG N C, LIU R J, GONG M Y, WANG Z T, GUO Y W, WANG Y D, ZHANG Y, CHANG M. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food & Function, 2021, 12: 5685-5702. doi: 10.1039/D1FO00692D.
doi: 10.1039/D1FO00692D
[38] KHAN M I, JO C, TARIQ M R. Meat flavor precursors and factors influencing flavor precursors-A systematic review. Meat Science, 2015, 110: 278-284.
doi: 10.1016/j.meatsci.2015.08.002
[1] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[2] . Antioxidant Activity and the Possible Mode of Action of Bone Protein Hydrolysates
[J]. Scientia Agricultura Sinica, 2009, 42(1): 238-244 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!