Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4614-4625.doi: 10.3864/j.issn.0578-1752.2022.23.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton

YIN YanYu(),XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua*(),ZHANG Xiang*()   

  1. Yangzhou University/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, Jiangsu
  • Received:2022-01-04 Accepted:2022-04-19 Online:2022-12-01 Published:2022-12-06
  • Contact: DeHua CHEN,Xiang ZHANG E-mail:2026231662@qq.com;cdh@yzu.edu.cn;zhangxiang@yzu.edu.cn

Abstract:

【Objective】 This study was conducted to investigate the effects of alternating high temperature and drought on the content of Cry1Ac protein in Bt cotton and the underlying physiological mechanism, so as to provide a reference for the safe and stable utilization of insect resistance of Bt cotton in production.【Method】 The conventional cultivar Sikang 1 (SK-1) and hybrid cultivar Sikang 3 (SK-3) were used in 2019 and 2020 in experimentally controlled greenhouse, Yangzhou University. From 7:00 am to 7:00 pm, two high-temperature treatments [34℃ (A1) and 38℃ (A2)] were imposed on cotton plants, followed by an optimum temperature 28℃ during the remaining night hours. There were two treatments for soil moisture content, which were 50% (B1) and 60% (B2) field capacity. The treatment with 32℃/28℃ and 75% field capacity was set as the control (CK). The leaf Cry1Ac protein content and its physiological mechanism were detected on 4, 7, and 10 days after stress (DAS), respectively.【Result】 Compared with CK, the Cry1Ac protein content all decreased under the stresses of high temperature and drought, and with the extension of the stress time, greater decrease was observed. The extent of decline for A1B2 was the smallest, followed by A1B1, while A2B1 and A2B1 were the largest. The Cry1Ac protein content under A1B2 was significantly lower than CK after 7 DAS, while the significant differences between A1B1, A2B2, A2B2 and CK were detected after 4 DAS. The Bt gene expression level, soluble protein (SP), free amino acid (aa) contents, nitrate reductase (NR), the glutamic pyruvic transaminase (GPT), glutamic oxaloacetate transaminase (GOT), glutamine synthetase (GS) and glutamate synthase (GOGAT) activities showed a downward trend. While the tannin content, the activities of protease and peptidase showed an upward trend. The correlation analysis and path analysis showed SP, aa, NR, GPT, GOT, GS, and GOGAT were positively correlated with Cry1Ac protein content. The tannin content, activities of protease, and peptidase were negatively correlated with Cry1Ac protein content. NR, GPT and GS could be key indices for the Cry1Ac protein content.【Conclusion】 The interaction of high temperature and drought resulted in the decrease of Cry1Ac protein content in Bt cotton, with greater decrease observed as the stress extended. There was no significant difference between the treatment with 34℃/28℃ and 60% field capacity and CK in 7-10 DAS. The reduction extent of Cry1Ac for alternating high temperature regime and drought decreased and the period was delayed. NR, GPT and GS could be key indices for the Cry1Ac protein content.

Key words: Bt cotton, Cry1Ac protein, high temperature, drought, physiological mechanism

Table 1

Effects of high temperature and drought on Cry1Ac protein content in branch leaves (ng·g-1 FW)"

年份
Year
品种
Cultivar
处理
Treatment
胁迫后天数Days after stress (DAS)
4 d 7 d 10 d
2019 SK-1 CK 894.29±5.56a 670.72±2.62a 558.93±16.4a
A1B1 422.30±1.60abc 345.67±82.45bc 227.52±42.32b
A1B2 598.00±4.66ab 438.14±3.77b 434.73±34.66a
A2B1 111.75±1.45c 83.81±1.45d 60.16±9.53c
A2B2 274.57±2.66bc 219.62±9.61cd 181.69±2.82bc
2020 SK-1 CK 835.63±14.62ab 826.02±5.32a 810.17±0.34b
A1B1 424.98±40.69def 343.43±52.67de 294.50±1.93f
A1B2 654.28±26.05abcd 387.93±4.16cde 366.11±2.79e
A2B1 104.20±2.40g 93.39±2.04g 33.62±2.06i
A2B2 255.69±2.02fg 214.81±1.70f 114.88±0.66h
SK-3 CK 873.93±16.69a 859.89±17.97a 892.94±3.23a
A1B1 606.27±60.58bcde 502.56±58.28bc 464.49±1.64d
A1B2 705.66±25.49abc 605.46±58.32b 523.92±4.19c
A2B1 370.71±3.29ef 313.82±2.61ef 282.39±1.88g
A2B2 481.85±1.99cdef 457.19±1.64cd 368.96±7.99e

Fig. 1

Effects of high temperature and drought on Bt gene expressions in branch leaves Different letters in the figures represent significant difference at P<0.05"

Table 2

Effects of high temperature and drought on tannin content in branch leaves (mg·g-1 FW) (2020)"

品种
Cultivar
处理
Treatment
胁迫后天数Days after stress (DAS)
4 d 7 d 10 d
SK-1 CK 3.15±0.20c 3.81±0.25d 4.04±0.01ef
A1B1 3.84±0.09bc 4.84±0.61c 5.38±0.14c
A1B2 3.17±0.02c 3.95±0.04d 4.96±0.04cd
A2B1 5.50±1.03a 6.17±0.19a 8.01±1.18a
A2B2 4.49±0.50b 5.45±0.24b 6.73±0.61b
SK-3 CK 0.73±0.13g 0.77±0.07g 1.15±0.06h
A1B1 1.76±0.22de 1.94±0.05f 3.87±0.07f
A1B2 1.02±0.11fg 1.53±0.01f 1.77±0.04h
A2B1 2.25±0.31d 2.51±0.36e 4.61±0.30de
A2B2 1.51±0.47ef 1.82±0.22f 2.80±0.07g

Table 3

Effects of high temperature and drought on SP and aa contents in branch leaves (mg·g-1 FW)"

年份
Year
品种
Cultivar
处理
Treatment
SP含量 SP content aa含量 aa content
4 DAS 7 DAS 10 DAS 4 DAS 7 DAS 10 DAS
2019 SK-1 CK 2.60±0.20a 2.02±0.05a 1.14±0.05a 1.50±0.10a 1.05±0.04a 0.91±0.02a
A1B1 1.42±0.00bc 0.97±0.04c 0.67±0.03c 0.98±0.07b 0.82±0.05bc 0.64±0.04c
A1B2 2.21±0.11ab 1.68±0.23b 0.97±0.02b 1.15±0.20b 0.90±0.08ab 0.70±0.00b
A2B1 0.72±0.01c 0.36±0.05e 0.34±0.02e 0.67±0.02c 0.54±0.01d 0.53±0.03d
A2B2 1.34±0.08bc 0.62±0.01d 0.55±0.06d 0.95±0.01b 0.69±0.16cd 0.54±0.03d
2020 SK-1 CK 5.36±0.19b 4.42±0.10b 2.5±0.19b 1.81±0.47a 1.37±0.06a 1.06±0.04a
A1B1 4.70±0.13cd 3.35±0.03e 1.17±0.02f 1.22±0.11b 1.03±0.10c 0.81±0.02c
A1B2 5.03±0.14bc 3.76±0.07d 1.74±0.08d 1.42±0.08ab 1.18±0.08b 0.92±0.02b
A2B1 3.57±0.22f 2.23±0.08h 0.63±0.02h 0.69±0.04c 0.68±0.01d 0.62±0.04e
A2B2 4.20±0.17e 2.99±0.30f 0.95±0.04g 1.12±0.04bc 0.92±0.10c 0.72±0.01d
SK-3 CK 5.81±0.53a 4.73±0.06a 3.08±0.02a 2.19±0.02a 1.85±0.02a 1.50±0.05a
A1B1 4.83±0.05c 3.36±0.03e 1.34±0.01e 1.88±0.10b 1.34±0.06b 1.01±0.02c
A1B2 5.27±0.28b 3.98±0.08c 2.11±0.03c 2.06±0.16ab 1.39±0.04b 1.10±0.02b
A2B1 3.65±0.01f 2.44±0.02g 0.91±0.04g 1.59±0.04c 0.98±0.18c 0.80±0.03e
A2B2 4.33±0.03de 3.17±0.03ef 1.15±0.03f 1.66±0.12c 1.10±0.07c 0.89±0.04d

Table 4

Effects of high temperature and drought on GPT and GOT activities in branch leaves (μmol·g-1 FW·h-1)"

年份
Year
品种
Cultivar
处理
Treatment
GPT活性 GPT Activity GOT活性 GOT Activity
4DAS 7DAS 10DAS 4DAS 7DAS 10DAS
2019 SK-1 CK 22.31±3.57a 21.29±0.14a 18.65±0.11a 31.02±5.34a 27.57±2.13a 26.19±0.70a
A1B1 18.88±0.15bc 16.82±0.80c 10.48±0.25c 25.93±0.21b 23.83±024b 19.95±0.57c
A1B2 20.57±2.87ab 18.91±0.25b 14.01±0.22b 27.05±2.64ab 26.47±0.63ab 24.57±0.64b
A2B1 16.56±0.36d 10.24±0.35e 5.42±0.20e 22.33±0.34b 18.45±0.23d 13.03±0.36e
A2B2 17.41±0.15cd 12.52±0.23d 8.69±0.16d 25.31±0.21b 20.91±0.10c 17.09±0.25d
2020 SK-1 CK 24.05±3.48c 22.81±1.73c 20.64±0.63b 36.55±2.32c 35.14±0.36c 29.84±0.89c
A1B1 18.65±2.48f 14.81±0.80e 11.10±0.35g 31.71±2.25d 26.20±0.52e 20.19±0.10f
A1B2 22.70±1.06cd 18.51±0.86d 12.89±0.82f 34.84±1.55c 30.95±1.54d 25.82±0.40e
A2B1 13.01±0.21h 7.42±0.15g 4.25±0.18j 24.13±0.82f 19.90±0.41f 14.21±0.04g
A2B2 16.19±0.30g 10.73±0.19f 9.60±0.73i 27.03±0.37e 21.45±0.14f 18.53±0.36f
SK-3 CK 30.79±0.37a 29.70±0.38a 26.23±0.28a 45.76±1.54a 41.33±1.30a 40.71±0.43a
A1B1 28.67±0.17b 22.24±1.09c 16.59±0.68d 39.80±2.54b 36.01±1.61c 28.06±1.07d
A1B2 29.92±1.46ab 24.57±0.84b 19.57±0.63c 43.99±1.38a 38.69±0.93b 35.98±0.67b
A2B1 20.85±0.08e 15.76±0.54e 10.37±0.36h 31.88±1.38d 26.41±1.25e 19.67±1.67f
A2B2 22.47±0.29d 18.12±0.58d 15.04±1.18e 34.48±2.14cd 31.81±1.47d 26.28±1.78e

Table 5

Effects of high temperature and drought on GS and GOGAT activities in branch leaves"

年份
Year
品种
Cultivar
处理
Treatment
GS活性
GS activity (U·g-1 FW·min-1)
GOGAT活性
GOGAT activity (μmol·g-1 FW·min-1)
4DAS 7DAS 10DAS 4DAS 7DAS 10DAS
2019 SK-1 CK 7.35±0.30a 6.61±0.28a 5.95±0.31a 3.36±0.43a 3.19±0.02a 3.03±0.04a
A1B1 4.96±0.10ab 3.42±0.06bc 3.31±0.45c 2.33±0.00abc 2.01±0.09bc 1.93±0.03b
A1B2 5.28±0.11ab 4.73±0.09b 3.86±0.04b 2.55±0.15ab 2.27±0.14ab 2.01±0.26b
A2B1 3.63±0.09b 2.32±0.24c 1.58±0.39e 1.33±0.11c 1.26±0.04c 0.90±0.04c
A2B2 4.63±0.08b 2.88±0.11c 2.17±0.32d 2.00±0.12bc 1.94±0.04bc 1.74±0.19bc
2020 SK-1 CK 8.68±0.25c 7.17±0.11bc 6.21±0.07b 3.41±0.19d 3.16±0.02c 2.80±0.24d
A1B1 8.21±0.06d 5.09±0.30de 4.27±0.19e 3.12±0.17e 2.22±0.10f 1.55±0.01f
A1B2 8.47±0.20cd 6.59±0.40c 5.66±0.32c 3.30±0.10de 2.95±0.24d 2.50±0.15e
A2B1 5.46±0.32f 3.71±0.17g 1.43±0.29h 1.80±0.15g 1.65±0.07h 0.98±0.02h
A2B2 6.89±0.10e 4.33±0.29f 2.5±0.35g 2.25±0.05f 1.97±0.08g 1.32±0.03g
SK-3 CK 10.29±0.21a 9.32±0.44a 7.31±0.25a 4.91±0.09a 4.49±0.17a 4.53±0.11a
A1B1 9.84±0.09b 7.58±0.68b 5.18±0.07d 4.15±0.08b 3.97±0.17b 3.24±0.02c
A1B2 9.88±0.09ab 8.74±0.38a 6.49±0.32b 4.76±0.11a 4.34±0.03a 3.55±0.05b
A2B1 6.87±0.36e 4.87±0.12ef 2.48±0.18g 3.22±0.07de 2.44±0.09e 1.65±0.10f
A2B2 8.37±0.39cd 5.70±0.10d 3.31±0.15f 3.65±0.02c 3.11±0.03cd 2.36±0.09e

Table 6

Effects of high temperature and drought on NR activity in branch leaves (μg·g-1 FW·h-1)"

年份
Year
品种
Cultivar
处理
Treatment
胁迫后天数Days after stress (DAS)
4 d 7 d 10 d
2019 SK-1 CK 58.99±6.12a 51.42±5.94a 43.95±1.39a
A1B1 39.74±0.27bc 31.05±0.44bc 22.82±0.12c
A1B2 45.56±7.25b 39.58±9.02b 26.22±2.70b
A2B1 30.41±2.32c 24.61±0.48c 19.78±2.06e
A2B2 36.00±0.34c 26.93±1.08c 20.17±0.04d
2020 SK-1 CK 65.47±0.79b 58.61±0.53c 49.16±0.32b
A1B1 38.91±0.60d 30.31±0.32f 24.38±0.43de
A1B2 61.91±11.76b 41.64±0.37d 31.93±0.70cd
A2B1 23.29±0.44f 20.84±0.16h 14.18±0.08f
A2B2 32.45±0.69de 25.56±0.35g 29.42±1.36de
SK-3 CK 74.15±8.60a 65.26±0.49a 58.78±0.62a
A1B1 47.34±0.86c 37.98±0.71ef 32.42±2.82cd
A1B2 68.35±0.18ab 60.83±0.24b 41.40±0.59bc
A2B1 28.23±2.94ef 19.79±0.25i 19.22±1.17ef
A2B2 37.79±1.74d 30.47±0.22f 25.56±1.31de

Table 7

Effects of high temperature and drought on protease and peptidase activities in branch leaves"

年份
Year
品种
Cultivar
处理
Treatment
蛋白酶活性 Protease activity (μg·g-1 FW·min-1) 肽酶活性 Peptidase activity (U·g-1 FW·h-1)
4DAS 7DAS 10DAS 4DAS 7DAS 10DAS
2019 SK-1 CK 75.33±2.52c 77.33±2.08d 84.75±5.91e 24.62±4.59d 28.09±3.07d 30.55±2.58d
A1B1 98.70±3.09b 106.30±0.79c 125.23±2.64c 31.38±1.56bc 40.02±0.87c 42.54±2.96c
A1B2 95.11±1.84b 102.77±1.22c 110.86±5.21d 28.34±0.86cd 30.50±0.53d 33.58±1.36d
A2B1 103.92±4.55a 128.04±1.54a 170.00±3.00a 36.99±2.18a 57.73±1.95a 62.02±3.81a
A2B2 104.40±3.77a 123.70±3.77b 137.94±6.48b 35.16±0.38ab 51.93±4.13bc 53.51±0.83b
2020 SK-1 CK 99.18±10.35f 115.80±0.12j 128.82±1.29g 26.87±1.26f 31.97±2.14g 34.34±0.41j
A1B1 127.90±2.25bcd 140.95±1.86f 187.63±2.18d 33.12±0.18d 42.41±2.03e 56.11±0.39f
A1B2 111.72±10.87e 129.59±1.23h 164.03±3.51f 27.97±2.05f 34.78±2.35fg 47.22±0.05h
A2B1 144.17±2.05a 161.83±1.23b 242.90±1.32b 38.26±0.23b 65.21±0.69b 78.69±0.45b
A2B2 128.62±0.52bc 151.57±0.32d 213.31±3.05c 35.27±0.88c 57.50±0.3c 65.34±1.29d
SK-3 CK 101.52±1.46f 120.74±0.05i 134.49±1.07g 30.56±0.83e 36.19±2.23f 38.46±0.65i
A1B1 125.04±1.74cd 142.67±1.05e 176.90±2.45e 35.69±0.67c 46.51±2.33d 63.61±0.07e
A1B2 119.80±3.11de 134.69±1.05g 165.01±2.32f 31.14±2.01e 37.82±2.93f 50.66±0.40g
A2B1 143.35±3.10a 165.09±0.35a 250.28±9.54a 41.26±0.56a 70.72±0.18a 80.03±0.69a
A2B2 134.80±1.43b 154.68±0.14c 212.89±3.64c 38.48±0.53b 62.39±0.17b 69.17±0.56c

Fig. 2

Correlation coefficient between Cry1Ac protein content and main substances of nitrogen metabolism and key enzyme activities in Bt cotton Bt protein, ELBG, SP, aa, GPT, GOT, GS, GOGAT, NR, Protease, Peptidase, and Tannin represent Cry1Ac protein, Bt gene expression level, soluble protein, amino acid, free amino acid, glutamic pyruvic transaminase, glutamic oxaloacetate transaminase, glutamine synthetase, glutamate synthase, and nitrate reductase, respectively"

Table 8

Results of stepwise regression analysis"

因变量
Dependent variable
显著水平
Significant level
自变量进入方程顺序
The order of stepwise
回归方程
Regression equation
Cry1Ac毒蛋白含量 Cry1Ac protein content 0.05 X7X4X5 Y=-122.141+8.097X7+39.188X4-74.192X5

Table 9

Path coefficients of key physiological index"

自变量
Factor
综合效应
Combined effect
直接效应
Direct effect
间接效应Indirect effect
NR GPT GS
NR 0.911 0.543 1.003 -0.635
GPT 0.906 1.128 0.483 -0.704
GS 0.827 -0.731 0.471 1.086
[1] 夏兰芹, 郭三堆. 高温对转基因抗虫棉中Bt杀虫基因表达的影响. 中国农业科学, 2004, 37(11): 1733-1737.
XIA L Q, GUO S D. The expression of Bt toxin gene under different thermal treatments. Scientia Agricultura Sinica, 2004, 37(11): 1733-1737. (in Chinese)
[2] CHEN D H, YE G Y, YANG C Q, CHEN Y. The effect of high temperature on the insecticidal properties of Bt cotton. Environmental and Experimental Botany, 2005, 53(3): 333-342.
doi: 10.1016/j.envexpbot.2004.04.004
[3] BENEDICT J H, SACHS E S, ALTMAN D W, DEATON W R, KOHEL R J, RING D R, BERBERICH S A. Field performance of cottons expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1996, 89(1): 230-238.
doi: 10.1093/jee/89.1.230
[4] MARTINS C M, BEYENE G, HOFS J L, KRUGER K, VYVER C V D, SCHLUTER U, KUNERT K J. Effect of water-deficit stress on cotton plants expressing the Bacillus thuringiensis toxin. Annals of Applied Biology, 2008, 152(2): 255-262.
doi: 10.1111/j.1744-7348.2007.00214.x
[5] 张祥, 王剑, 彭盛, 芮秋治, 李丽楠, 陈媛, 陈源, 陈德华. 温度和土壤水分与Bt棉铃壳中杀虫蛋白表达关系及其氮代谢生理机制. 中国农业科学, 2018, 51(7): 1261-1271.
ZHANG X, WANG J, PENG S, RUI Q Z, LI L N, CHEN Y, CHEN Y, CHEN D H. Relationship between temperature, soil moisture, and insecticidal protein content in Bt cotton boll shell and the mechanism of nitrogen metabolism. Scientia Agricultura Sinica, 2018, 51(7): 1261-1271. (in Chinese)
[6] STAM M, MOL J N M, KOOTER J M. The silence of genes in transgenic plants. Annals of Botany, 1997, 79(1): 3-12
[7] ALLAH B, SAIMA S, TAYYAB H. A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica, 2012, 183(1): 65-74
doi: 10.1007/s10681-011-0497-8
[8] SHINJI I, TAKESHI S, MADOKA N, YASUHISA K. Influence of tannic acid on the insecticidal activity of a Bacillus thuringiensis serovar aizawai formulation against Spodoptera litura fabricius (Lepidoptera: Noctuidae). Biological Control, 2021, 157(1): 104558
doi: 10.1016/j.biocontrol.2021.104558
[9] CHEN Y, LIU Z Y, TAMBEL L, ZHANG X, CHEN Y, CHEN D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. Journal of Integrative Agriculture, 2021, 20(1):100-108.
doi: 10.1016/S2095-3119(20)63190-2
[10] WANG J, CHEN Y, YAO M H, LI Y, WEN Y J, CHEN Y, ZHANG X, CHEN D H. The effects of high temperature level on square Bt protein concentration of Bt cotton. Journal of Integrative Agriculture, 2015, 14(10): 1971-1979.
doi: 10.1016/S2095-3119(15)61049-8
[11] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997(3): 27-29.
CHEN S, WU J Y, HE X L, HUANG J Q, ZHOU B L, ZHANG R X. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect-resistant cotton. Jiangsu Journal of Agriculture Science, 1997(3): 27-29. (in Chinese)
[12] ZHANG X, WANG J, PENG S, LI Y, ZHANG L Y, CHEN Y, CHEN D H. Effects of soil water deficit on insecticidal protein expression in boll shells of transgenic Bt cotton and the mechanism. Frontiers in Plant Science, 2017, 8: 1-11.
[13] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 127-130.
ZOU Q. Experimental Instruct of Plant Physiology. Beijing: China Agriculture Press, 2000: 127-130. (in Chinese)
[14] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008(2):162-165.
SHAO J L, LI Q W, DONG B S, LIU H C, SHU J H. Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Additives, 2008(2): 162-165. (in Chinese)
[15] HOWARD T. Regulation of alanine aminotransferase in leaves of Lolium temulentum during senescence. Zeitschrift fü Pflanzenphysiologie, 1975, 74(3): 208-218.
[16] 赵鹏, 何建国, 熊淑萍, 马新明. 氮素形态对专用小麦旗叶酶活性及籽粒蛋白质和产量的影响. 中国农业大学学报, 2010, 15(3): 29-34.
ZHAO P, HE J G, XIONG S P, MA X M. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses. Journal of China Agricultural University, 2010, 15(3): 29-34. (in Chinese)
[17] 李文才, 林振武, 汤玉玮. 硝酸还原酶的研究——Ⅶ.棉花不同品种的硝酸还原酶活力. 作物学报, 1986, 12(2): 95-100.
LI W C, LIN Z W, TANG Y W. Studies on nitrate reductase VII. Nitrate reductase activities in different cotton cultivars. Acta Agronomica Sinica, 1986, 12(2): 95-100. (in Chinese)
[18] HU W, ZHAO W Q, YANG J S, OOSTERHUIS D M, LOKA D A, ZHOU Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiology and Biochemistry, 2016, 101: 113-123.
doi: 10.1016/j.plaphy.2016.01.019
[19] 杨宇晖, 张青文, 刘小侠. 棉花营养物质和单宁含量与其对绿盲蝽抗性的关系. 中国农业科学, 2013, 46(22): 4688-4697.
YANG Y H, ZHANG Q W, LIU X X. The relationship between the contents of nutrients and tannins in different cotton varieties and their resistance to Apolygus lucorum. Scientia Agricultura Sinica, 2013, 46(22): 4688-4697. (in Chinese)
[20] ZHANG X, RUI Q Z, LIANG P P, WEI C H, DENG G Q, CHEN Y, DONG Z D, CHEN D H. Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism. Journal of Integrative Agriculture, 2018, 17(9): 1991-1998.
doi: 10.1016/S2095-3119(17)61878-1
[21] 刘震宇, 王桂霞, 李丽楠, 蔡泽洲, 梁潘潘, 吴莘玲, 张祥, 陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制. 作物学报, 2020, 46(3): 440-447.
doi: 10.3724/SP.J.1006.2020.94080
LIU Z Y, WANG G X, LI L N, CAI Z Z, LIANG P P, WU X L, ZHANG X, CHEN D H. Recovery characteristics of Bt insecticidal protein and relative physiology mechanisms after high temperature stress termination in square of Bt cotton. Acta Agronomica Sinica, 2020, 46(3): 440-447. (in Chinese)
doi: 10.3724/SP.J.1006.2020.94080
[22] CHEN S L, LI P, TAN S L, PU X J, ZHOU Y, HU K M, HUANG W, LIU L. Combined proteomic and physiological analysis of chloroplasts reveals drought and recovery response mechanisms in Nicotiana benthamiana. Plants-Basel, 2021, 10(6): 1127.
[23] LIU Z Y, ELTAYIB H M A A, WU H, ZHOU M Y, ZHANG X, CHEN Y, CHEN D H. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. Journal of Cotton Research, 2019, 2(1): 1-6.
doi: 10.1186/s42397-018-0018-6
[24] MAIKE S, JOSEPH N M M, JAN M K. The silence of genes in transgenic plants. Annals of Botany, 1997, 79(1): 3-12.
[25] 陆宴辉, 杨益众, 余月书. 棉花单宁的研究简介. 中国棉花, 2004(5): 21-22.
LU Y H, YANG Y Z, YU Y S. Review of the cotton tannin. China Cotton, 2004(5): 21-22. (in Chinese)
[26] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康. 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003, 15(5): 288-292.
CHEN D H, YANG C Q, CHEN Y, NIE A Q, WU Y K. The effects of the high temperature stress on the leaf Bt protein content and nitrogen metabolism of Bt cotton. Cotton Science, 2003, 15(5): 288-292. (in Chinese)
[27] YANG J, LIN L, ZHANG L L, WANG K, LI X X, CAI M L, ZHAN M, LI C F, WANG J P, CAO C G. Comparison of transgenic Bt rice and their non-Bt counterpart in yield and physiological response to drought stress. Field Crops Research, 2018, 217: 45-52.
doi: 10.1016/j.fcr.2017.12.007
[28] OLSEN K M, DALY J C, FINNEGAN E J, MAHON R J. Changes in Cry1Ac Bt transgenic cotton in response to two environmental factors: Temperature and insect damage. Journal of Economic Entomology, 2005, 98(4): 1382-1390.
doi: 10.1603/0022-0493-98.4.1382 pmid: 16156594
[29] STULEN I, KOCH B T, KOSTER A. An endogenous inhibitor of nitrate reductase in radish cotyledons. Acta Botanica Neerlandica, 1971, 20(4): 389-396.
doi: 10.1111/j.1438-8677.1971.tb00724.x
[30] SAIF A, ABDUL H, MA X L, TUNG S A, CHATTHA M S, SHAH A N, LUO D, AHMAD S, LIU J H, YANG G Z. Equal potassium- nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products, 2019, 129: 231-241.
doi: 10.1016/j.indcrop.2018.12.009
[31] ELTAYIB H M A, YUAN L, HEN L, CHEN Y, LEILA I M, HU D P, ZHANG X, CHEN D H. Amino acid composition and level affect Bt protein concentration in Bt cotton. Plant Growth Regulation, 2017, 82(3): 439-446.
doi: 10.1007/s10725-017-0270-7
[1] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[2] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[3] LIU ZiGang, WEI JiaPing, CUI JunMei, WU ZeFeng, FANG Yan, DONG XiaoYun, ZHENG GuoQiang. Status, Existing Problems and Strategy Discussion on Northward Expansion of Winter Rapeseed in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 2854-2862.
[4] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[7] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[8] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[9] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[10] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[11] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[12] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[13] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[14] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[15] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!