Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 613-624.doi: 10.3864/j.issn.0578-1752.2022.03.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana

ZHAO HuiTing1,*(),PENG Zhu1(),JIANG YuSuo1,ZHAO ShuGuo1,HUANG Li1,DU YaLi2,GUO LiNa2   

  1. 1 College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2021-07-28 Accepted:2021-08-30 Online:2022-02-01 Published:2022-02-11
  • Contact: HuiTing ZHAO E-mail:zhaohting@126.com;pzhu66@126.com

Abstract:

【Objective】 Apis cerana cerana is the indigenous bee of China, which is also one of the important pollinator and economic insect. Odorant binding proteins (OBPs) are the key proteins in the olfactory perception of A. c. cerana. Based on the previous analysis about the sequence characteristics of AcerOBP7, the present study intends to further research its expression profiles and binding properties, so as to provide basic data for revealing the role of OBPs in the olfactory system of A. c. cerana.【Method】 In this paper, qRT-PCR was used to detect the spatio-temporal expression characteristics of AcerOBP7 in worker bees. AcerOBP7 protein was obtained by prokaryotic expression system, and the recombinant protein was purified using Ni-NTA column. Competitive fluorescence binding method was adopted, with 1-NPN (N-phenyl-1-naphthylamine) was used as a fluorescent probe, to determine the binding affinity of AcerOBP7 with pheromone and plant volatiles. dsAcerOBP7 was designed and synthesized, and the gene was silenced by feeding method, the silencing efficiency was detected by qRT-PCR. Combined with RNAi method, EAG was conducted to test and compare the difference of response values of AcerOBP7 to the candidate volatiles between the control and RNAi group.【Result】 qRT-PCR results showed that AcerOBP7 expressed significantly higher in the antennae of worker bees than that in other tissues (P<0.01), and the expression reached to the highest level at 20-day-old and the lowest at 1-day-old. The pET28a/AcerOBP7 expression vector was successfully constructed, and the high-purity recombinant protein was obtained using the Escherichia coli prokaryotic expression system. Fluorescence competition binding assay showed that AcerOBP7 had the strongest binding affinities with 9-ODA and 1-nonanol among 37 ligand molecules, with the Ki values was both 1.85 µmol·L-1, followed by (+)-limonene, 1-octene-3-ol, linalool, trans-ethyl-cinnamate, eucalyptol, (+)-3-carene and nonanal, and the Ki values were 1.87, 2.66, 2.72, 3.05, 3.88, 4.14 and 4.40 µmol·L-1, respectively, while AcerOBP7 had no binding ability with all the tested larval pheromone components. AcerOBP7 was successfully silenced by feeding dsRNA, and the highest interference efficiency could reach to 70.63%. The results of EAG assay after RNAi showed that the EAG values response to the tested odorant chemicals were all decreased, and the relative EAG values of 1-octen-3-ol, nonanal, eucalyptol and 9-ODA decreased significantly (P<0.05).【Conclusion】 AcerOBP7 is highly expressed in antennae of the forager bees and the recombinant protein can bind to a variety of odor molecules, suggesting that AcerOBP7 is a binding protein with broad spectrum, which may play an important role in the foraging behavior and feeding the queen of the worker bees. In addition, 1-octen-3-ol, nonanal, eucalyptol and 9-ODA are the ligands with high binding specificity to AcerOBP7.

Key words: Apis cerana cerana, odorant binding protein (OBP), expression profile, protein purification, binding property

Table 1

List of the information of primers"

引物
Primer
序列
Sequence
产物长度
Product length (bp)
退火温度
Annealing temperature (℃)
用于荧光定量 For qRT-PCR
OBP7 F CTTTCCGTTGCCGTAATCAT 165 60
R TTCCTCCGATATGTCTTCCTCT
Arp1 F ACTACGGCCGAACGTGAAAT 144
R GGAAAAGAGCCTCGGGACAA
用于原核表达 For prokaryotic expression
OBP7 F cgcggatccAATGGAATAAACGAAATCTTG 438 58
R cccaagcttTTACATATCGCTTAAGAATTTC
用于dsRNA的合成 For dsRNA synthesis
OBP7 T7 F1 taatacgactcactatagggAGAGGAAGACATATCGGAGGA 219 58
R1 CCATTCTCGCATTTGTCCGT
F1 AGAGGAAGACATATCGGAGGA
T7 R1 taatacgactcactatagggCCATTCTCGCATTTGTCCGT
T7 F2 taatacgactcactatagggTGCATGATACACATGGGCTTG 265
R2 TGTCCGTACCTTTGTTCGCT
F2 TGCATGATACACATGGGCTTG
T7 R2 taatacgactcactatagggTGTCCGTACCTTTGTTCGCT
GFP T7 F taatacgactcactatagggCACAAGTTCAGCGTGTCC 539 56
R CTGGGTGCTCAGGTAGTG
F CACAAGTTCAGCGTGTCC
T7 R taatacgactcactatagggCTGGGTGCTCAGGTAGTG

Fig. 1

Expression levels of AcerOBP7 in the antennae of worker bees at different developmental stagesIt was extremely significant difference between groups when there was no same letter on columns (P<0.01). The same as"

Fig. 2

Expression levels of AcerOBP7 in different tissues of foragers"

Fig. 3

SDS-PAGE analysis of recombinant protein of AcerOBP7"

Fig. 4

Competitive fluorescence binding property of AcerOBP7The binding result and relative Scatchard plot of 1-NPN with AcerOBP7;b:AcerOBP7与部分气味物质的竞争结合曲线 Competitive binding curves of AcerOBP7 to some of the odorant compounds"

Table 2

Binding data for all odorant compounds to AcerOBP7"

种类 Category配体 LigandCAS登记号 CAS numberIC50 (μmol·L-1)Ki (μmol·L-1)
蜂王信息素Queen pheromone
反式-9-氧代-2-癸烯酸 9-ODA 14436-32-9 1.98 1.85
告警信息素 Alarm pheromone
2-庚酮2-Heptanone 110-43-0 17.12 14.60
乙酸异戊酯Isoamyl acetate 123-92-2 - -
那氏信息素Nasonov pheromone
香叶醇Geraniol 106-24-1 8.21 7.00
橙花醇Nerol 106-25-2 12.95 11.04
法呢醇Farnesol 4602-84-0 10.76 9.18
柠檬醛Citral 5392-40-5 8.75 8.20
幼虫信息素 Brood pheromone
油酸甲酯Methyl oleate 112-62-9 - -
硬脂酸甲酯Methyl stearate 112-61-8 - -
棕榈酸甲酯Methyl palmitate 112-39-0 - -
油酸乙酯Ethyl oleate 111-62-6 - -
亚油酸乙酯Ethyl linoleate 544-35-4 - -
亚油酸甲酯 Methyl linoleate 112-63-0 - -
亚麻酸甲酯Methyl linolenate 310-00-8 - -
植物挥发物 Plant volatiles
1-壬醇 1-Nonanol 143-08-8 1.97 1.85
1-辛烯-3-醇1-Octen-3-ol 3391-86-4 3.12 2.66
月桂烯Myrcene 123-35-3 6.93 5.91
β-石竹烯β-Caryophllene 87-44-5 6.27 5.35
香茅醇Citronellol 106-22-9 11.08 10.38
亚麻酸Linolenic acid 463-40-1 8.98 8.42
胡椒酮Piperitone 89-81-6 6.50 6.09
桉树脑Eucalyptol 470-82-6 4.55 3.88
丁香酚Eugenol 97-53-0 8.11 6.92
反式肉桂酸乙酯Ethyl-trans-cinnamate 4192-77-2 3.58 3.05
(+)-3-蒈烯 (+)-3-Carene 13466-78-9 4.85 4.14
β-罗勒烯 β-Ocimene 13877-91-3 6.67 5.69
壬醛Nonanal 124-19-6 5.16 4.40
肉桂酸乙酯Ethyl cinnamate 103-36-6 7.13 6.08
香草醇Vanillyl alcohol 498-00-0 7.62 7.14
α-亚麻酸乙酯α-Ethyl linolenic 1191-41-9 9.31 7.94
芳樟醇Linalool 78-70-6 3.19 2.72
(+)-柠檬烯 (+)-Cinene 138-86-3 1.99 1.87
β-蒎烯 β-Pinene 127-91-3 9.44 8.85
水杨酸甲酯Methyl salicylate 119-36-8 6.83 6.40
1-辛醇1-Octanol 111-87-5 8.83 8.27
β-紫罗酮β-Ionone 14901-07-6 - -
乙酸乙酯Ethyl acetate 141-78-6 - -

Fig. 5

Analysis of mRNA expression of AcerOBP7 under different interference conditions"

Fig. 6

EAG response to different volatiles after feeding dsAcerOBP7"

[1] ZWIEBEL L J, TAKKEN W.Olfactory regulation of mosquito-host interactions. Insect Biochemistry and Molecular Biology, 2004, 34(7): 645-652.
doi: 10.1016/j.ibmb.2004.03.017
[2] ZHAO H, GAO P, DU H, MA W, TIAN S, JIANG Y.Molecular characterization and differential expression of two duplicated odorant receptor genes, AcerOr1 and AcerOr3, in Apis cerana cerana. Journal of Genetics, 2014, 93(1): 53-61.
[3] PELOSI P, ZHOU J J, BAN L P, CALVELLO M.Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences, 2006, 63(14): 1658-1676.
doi: 10.1007/s00018-005-5607-0
[4] LEAL W S.Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013, 58: 373-391.
doi: 10.1146/ento.2013.58.issue-1
[5] ZHAO H X, ZENG X N, LIANG Q, ZHANG X F, HUANG W Z, CHEN H S, LUO Y X.Study of the obp5 gene in Apis mellifera ligustica and Apis cerana cerana. Genetics and Molecular Research, 2015, 14(2): 6482-6494.
doi: 10.4238/2015.June.12.1
[6] RADLOFF S E, HEPBURN C, HEPBURN H R, FUCHS S, HADISOESILO S, TAN K, ENGEL M S, KUZNETSOV V.Population structure and classification of Apis cerana. Apidologie, 2010, 41(6): 589-601.
doi: 10.1051/apido/2010008
[7] PELOSI P, MAIDA R.Odorant-binding proteins in insects. Comparative Biochemistry and Physiology, 1995, 111(3): 503-514.
[8] VOGT R G, CALLAHAN F E, ROGERS M E, DICKENS J C.Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chemical Senses, 1999, 24(5): 481-495.
doi: 10.1093/chemse/24.5.481
[9] ZHANG J, WANG B, DONG S, CAO D, DONG J, WALKER W B, LIU Y, WANG G.Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS ONE, 2015, 10(2): e0117054.
doi: 10.1371/journal.pone.0117054
[10] WEI H S, LI K B, ZHANG S, CAO Y Z, YIN J.Identification of candidate chemosensory genes by transcriptome analysis in Loxostege sticticalis (Linnaeus). PLoS ONE, 2017, 12(4): e0174036.
doi: 10.1371/journal.pone.0174036
[11] HE X, HE Z B, ZHANG Y J, ZHOU Y, XIAN P J, QIAO L, CHEN B.Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector Anopheles sinensis (Diptera: Culicidae). Insect Science, 2016, 23(3): 366-376.
doi: 10.1111/ins.2016.23.issue-3
[12] WANG B, CAO S, LIU W, WANG G.Effect of OBPs on the response of olfactory receptors. Methods in Enzymology, 2020, 642: 279-300.
[13] VENTHUR H, ZHOU J J.Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Frontiers in Physiology, 2018, 9: 1163.
doi: 10.3389/fphys.2018.01163
[14] FORET S, MALESZKA R.Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Research, 2006, 16(11): 1404-1413.
doi: 10.1101/gr.5075706
[15] SPPINELLI S, LAGARDE A, IOVINELLA I, LEGRAND P, TEGONI M, PELOSI P, CAMBILLAU C.Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochemistry and Molecular Biology, 2012, 42: 41-50.
doi: 10.1016/j.ibmb.2011.10.005
[16] ZHAO H, DU Y, GAO P, WANG S, PAN J, JIANG Y.Antennal transcriptome and differential expression analysis of five chemosensory gene families from the Asian honeybee Apis cerana cerana. PLoS ONE, 2016, 11(10): e0165374.
doi: 10.1371/journal.pone.0165374
[17] LOVINELLA I, CAPPA F, CINI A, PETROCELLI I, CERVO R, TURILLAZZI S, DANI F R.Antennal protein profile in honeybees: Caste and task matter more than age. Frontiers in Physiology, 2018, 9: 748.
doi: 10.3389/fphys.2018.00748
[18] PELOSI P, LOVINELLA I, ZHU J, WANG G, DANI F R.Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biological Reviews of the Cambridge Philosophical Society, 2018, 93(1): 184-200.
doi: 10.1111/brv.2018.93.issue-1
[19] DONG K, SUN L, LIU J T, GU S H, ZHOU J J, YANG R N, DHILOO K H, GAO X W, GAO Y Y, ZHANG Y J.RNAi-induced electrophysiological and behavioral changes reveal two pheromone binding proteins of Helicoverpa armigera involved in the perception of the main sex pheromone component Z11-16:Ald. Journal of Chemical Ecology, 2017, 43(2): 207-214.
doi: 10.1007/s10886-016-0816-6
[20] AI H, LIU Y, LONG G, YUAN Y, HUANG S, CHEN Y.Functional characteristics of a novel odorant binding protein in the legume pod borer, Maruca vitrata. Scientific Reports, 2021, 11(1): 14027.
doi: 10.1038/s41598-021-93382-7
[21] 秦健辉, 李金桥, 赵旭, 李克斌, 曹雅忠, 尹姣. 铜绿丽金龟气味结合蛋白AcorOBP11的表达纯化及功能分析. 中国农业科学, 2021, 54(14): 3017-3028.
QIN J H, LI J Q, ZHAO X, LI K B, CAO Y Z, YIN J.Expression, purification and functional analysis of odorant binding protein 11 (OBP11) in Anomala corpulenta. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028. (in Chinese)
[22] LEAL W S, PARRA-PEDRAZZOLI A L, KAISSLING K E, MORGAN T I, ZALOM F G, PESAK D J, DUNDULIS E A, BURKS C S, HIGBEE B S. Unusual pheromone chemistry in the navel orangeworm: Novel sex attractants and a behavioral antagonist. Naturwissenschaften, 2005, 92(3): 139-146.
doi: 10.1007/s00114-004-0598-5
[23] LEAL W S, BARBOSA R M, XU W, ISHIDA Y, SYED Z, LATTE N, CHEN A M, MORGAN T I, CORNEL A J, FURTADO A.Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS ONE, 2008, 3(8): e3045.
doi: 10.1371/journal.pone.0003045
[24] 吴帆. 中华蜜蜂气味结合蛋白配基结合特征和OBP12与吡虫啉结合机理研究[D]. 杭州: 中国计量大学, 2016.
WU F.Study binding characterization of Chinese honeybee’s (Apis cerana cerana) odorant binding proteins with ligands and binding mechanism of OBP12 with imidacloprid (Hymenoptera: Apidae)[D]. Hangzhou: China Jiliang University, 2016. (in Chinese)
[25] SONG X M, ZHANG L Y, FU X B, WU F, TAN J, LI H L.Various bee pheromones binding affinity, exclusive chemosensillar localization, and key amino acid sites reveal the distinctive characteristics of odorant-binding protein 11 in the eastern honey bee, Apis cerana cerana. Frontiers in Physiology, 2018, 9: 422.
doi: 10.3389/fphys.2018.00422
[26] GUO D, HAO C, CUI X, WANG Y, LIU Z, XU B, GUO X.Molecular and functional characterization of the novel odorant- binding protein gene AccOBP10 from Apis cerana cerana. Journal of Biochemistry, 2021, 169(2): 215-225.
[27] 陈艺杰, 李英娇, 张瑾, 缪晓青. 中华蜜蜂气味结合蛋白基因AcerOBP7的克隆及序列分析. 生物技术, 2020, 30(4): 313-317.
CHEN Y J, LI Y J, ZHANG J, MIAO X Q.Cloning and sequence analysis of odorant-binding protein gene AcerOBP7 from Apis cerana cerana. Biotechnology, 2020, 30(4): 313-317. (in Chinese)
[28] GADENNE C, BARROZO R B, ANTON S.Plasticity in insect olfaction: To smell or not to smell? Annual Review of Entomology, 2016, 61: 317-333.
doi: 10.1146/ento.2016.61.issue-1
[29] 曾志将. 养蜂学. 北京: 中国农业出版社, 2009: 28-45.
ZENG Z J.Apiculture. Beijing: China Agriculture Press, 2009: 28-45. (in Chinese)
[30] MASSON C, ARNOLD G.Ontogeny, maturation, and plasticity of the olfactory system in the worker bee. Journal of Insect Physiology, 1984, 30(1): 7-14.
doi: 10.1016/0022-1910(84)90104-5
[31] 王钰冲, 陈伟文, 谭垦. 9-ODA对工蜂卵巢的抑制. 蜜蜂杂志, 2013(3): 4-5.
WANG Y C, CHEN W W, TAN K.The inhibition of 9-ODA to worker bee’s ovary. Journal of Bee, 2013(3): 4-5. (in Chinese)
[32] 蒋欣. 麦长管蚜气味结合蛋白原核表达及结合特性分析[D]. 北京: 中国农业科学院, 2018.
JIANG X.Expression and binding specificity analysis of odorant binding proteins in the grain aphid Sitobion avenae (Fabricius)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[33] 李都, 牛长缨, 李峰奇, 罗晨. 斑翅果蝇气味结合蛋白OBP56h与小分子化合物的结合特征. 中国农业科学, 2019, 52(15): 2616-2623.
LI D, NIU C Y, LI F Q, LUO C.Binding characterization of odorant binding protein OBP56h in Drosophila suzukii with smell molecular compounds. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623. (in Chinese)
[34] 彭竹, 黄丽, 赵慧婷. 荧光竞争结合技术在昆虫嗅觉相关蛋白结合能力检测上的应用. 激光生物学报, 2020, 29(2): 106-112.
PENG Z, HAUNG L, ZHAO H T.Application of fluorescence competitive binding technology in detection of the binding ability of insects olfactory related proteins. Acta Laser Biology Sinica, 2020, 29(2): 106-112. (in Chinese)
[35] 翁琛, 张林雅, 赵磊, 付余霞, 罗晨, 李洪亮. 中华蜜蜂性信息素结合蛋白 ASP1 的原核表达及配基结合特性分析. 昆虫学报, 2013, 56(10): 1110-1116.
WENG C, ZHANG L Y, ZHAO L, FU Y X, LUO C, LI H L.Prokaryotic expression and ligand binding characteristics of pheromone binding protein ASP1 in the Chinses honeybee (Apis cerana cerana). Acta Entomologica Sinica, 2013, 56(10): 1110-1116. (in Chinese)
[36] 吴帆, 黄君君, 谭静, 唐明珠, 李红亮. 中华蜜蜂信息素结合蛋白OBP10的基因克隆、原核表达和配基结合特性分析. 昆虫学报, 2016, 59(1): 25-32.
WU F, HUANG J J, TAN J, TANG M Z, LI H L.Molecular cloning, prokaryotic expression and ligand-binding characterization of a novel pheromone binding protein OBP10 in Apis cerana cerana (Hymenoptera: Apidae). Acta Entomologica Sinica, 2016, 59(1): 25-32. (in Chinese)
[37] DU Y L, XU K, ZHAO H T, JIANG Y S, LI H Q.Identification and functional characterization of AcerOBP15 from Apis cerana cerana (Hymenoptera: Apidae). Apidologie, 2021, 52: 668-683.
doi: 10.1007/s13592-021-00854-w
[38] 彭竹, 黄丽, 赵淑果, 吕建华, 赵慧婷. 中华蜜蜂气味结合蛋白AcerOBP14的表达及配体结合特性分析. 昆虫学报, 2021, 64(2): 178-186.
PENG Z, HUANG L, ZHAO S G, LÜ J H, ZHAO H T.Expression and ligand binding characterization of the odorant binding protein AcerOBP14 of Apis cerana cerana. Acta Entomologica Sinica, 2021, 64(2): 178-186. (in Chinese)
[39] SUN S F, ZENG F F, YI S C, WANG M Q.Molecular screening of behaviorally active compounds with CmedOBP14 from the rice leaf folder Cnaphalocrocis medinalis. Journal of Chemical Ecology, 2019, 45: 849-857.
doi: 10.1007/s10886-019-01106-z
[40] 黄京平, 郭伟华. 利用固相微萃取方法分析蜜源植物的挥发性化合物. 中国蜂业, 2014, 65(5): 59-60.
HAUNG J P, GUO W H.Analysis of volatile compounds in honey plants by solid phase microextraction. Apiculture of China, 2014, 65(5): 59-60. (in Chinese)
[41] 关天旺, 刘嘉煜. 柠檬烯的防腐作用及抑菌机理研究进展. 保鲜与加工, 2015, 15(6): 83-87.
GUAN T W, LIU J Y.Research progress on preservative activity and antimicrobial mechanism of limonene. Storage and Process, 2015, 15(6): 83-87. (in Chinese)
[42] 于荣荣, 丁国伟, 杨美玲, 马恩波, 张建珍. 注射dsRNA对飞蝗Knickkopf 基因在mRNA和蛋白水平的沉默效率. 昆虫学报, 2016, 59(12): 1395-1400.
YU R R, DING G W, YANG M L, MA E B, ZHANG J Z.Silence efficiency of mRNA and protein expression of Knickkopf in Locusta migratoria (Orthoptera: Acridiae) by dsRNA injection. Acta Entomologica Sinica, 2016, 59(12): 1395-1400. (in Chinese)
[43] 李晨雨, 裴新国, 张伊杰, 高聪芬. RNAi技术在昆虫防控研究中的应用和发展前景. 现代农药, 2021, 20(1): 1-6.
LI C Y, PEI X G, ZHANG Y J, GAO C F.Application and development prospect of RNAi technology in pest control. Modern Agrochemicals, 2021, 20(1): 1-6. (in Chinese)
[44] BROWN S J, MANAFFEY J P, LORENZEN M D, DENELL R E, MAHAFFEY J W.Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evolution and Development, 1999, 1(1): 11-15.
doi: 10.1046/j.1525-142x.1999.99013.x
[45] SCHOPPMEIER M, DAMEN W G.Double-stranded RNA interference in the spider Cupienniuss alei: The role of Distal-less is evolutionarily conserved in arthropod appendage formation. Development Genes and Evolution, 2001, 211(2): 76-82.
doi: 10.1007/s004270000121
[46] LACOIJNT D J, BRUSE S, HILL K L, DONELSON J E.Double-stranded RNA interference in Trypanosome brucei using head-to-head promoters. Molecular and Biochemical Parasitology, 2000, 111(1): 67-76.
doi: 10.1016/S0166-6851(00)00300-5
[47] 陈艺杰. 中华蜜蜂和意大利蜜蜂takeout基因的克隆、时空表达及功能分析[D]. 福州: 福建农林大学, 2017.
CHEN Y J.Molecular cloning, spatiotemporal expression and functional analyses of the takeout genes in Apis cerana cerana and Apis mellifera ligustica[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese)
[48] 郭丽娜, 赵慧婷, 任有蛇, 徐兵, 姜玉锁. 中华蜜蜂气味受体基因AcerOr1 RNA最佳干扰片段的筛选. 环境昆虫学报, 2020, 42(5): 1068-1075.
GUO L N, ZHAO H T, REN Y S, XU B, JIANG Y S.Construction of RNA interference plasmid targeting of AcerOr1 and optimal interference efficiency determination. Journal of Environmental Entomology, 2020, 42(5): 1068-1075. (in Chinese)
[49] 徐伟, 马延旭, 张益恺, 董亚南, 孙晓玲. 中华弧丽金龟甲对十二种常见植物挥发物的触角电位和嗅觉反应. 植物保护学报, 2018, 45(5): 1028-1034.
XU W, MA Y X, ZHANG Y K, DONG Y N, SUN X L.Electroantennographic and behavioral responses of four spotted beetle Popillia quadriguttata to 12 plant volatiles. Journal of Plant Protection, 2018, 45(5): 1028-1034. (in Chinese)
[50] 刘爱华, 孔婷婷, 张静文, 温俊宝, 焦淑萍. 苹果小吉丁虫对病虫害诱导野苹果树挥发物触角电位和行为反应. 浙江农林大学学报, 2020, 37(6): 1149-1158.
LIU A H, KONG T T, ZHANG J W, WEN J B, JIAO S P.Electroantennogram and behavioral responses of Agrilus mali to the volatiles from Malus sieversii trees induced by pest and disease. Journal of Zhejiang A&F University, 2020, 37(6): 1149-1158. (in Chinese)
[51] 林方辉, 童应华. 椰心叶甲对植物挥发化合物的触角电位与行为反应. 森林与环境学报, 2019, 39(2): 214-219.
LIN F H, TONG Y H.Electrophysiological and behavioral responses of Brontispa longissima to plant volatile compounds. Journal of Forest and Environment, 2019, 39(2): 214-219. (in Chinese)
[52] MCCORMICK A C, UNSICKER S B, GERSHENZON J.The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 2012, 17(5): 303-310.
doi: 10.1016/j.tplants.2012.03.012
[53] 林健, 刘文波, 孟昭军, 严善春. 缓释单萜类挥发物对落叶松毛虫行为及落叶松主要防御蛋白的影响. 生态学报, 2014, 34(11): 2978-2985.
LIN J, LIU W B, MENG Z J, YAN S C.Monoterpene volatiles affecting host selection behavior of Dendrolimus superans and the activities of defense protein in larch needles. Acta Ecologica Sinica, 2014, 34(11): 2978-2985. (in Chinese)
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[3] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[4] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[5] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[6] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[7] ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070.
[8] CHEN WenFeng,WANG HongFang,LIU ZhenGuo,ZHANG WeiXing,CHI XuePeng,XU BaoHua. Recombinant Expression and Antimicrobial Activity of Apidaecin in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2019, 52(4): 767-776.
[9] XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang. Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination [J]. Scientia Agricultura Sinica, 2018, 51(8): 1431-1447.
[10] LIU XiaoQiang, JIANG HongBo, LI HuiMin, XIONG Ying, WANG JinJun. The cDNA Cloning, Expression Profiling and Functional Characterization of Octopamine Receptor 3 (TcOctβR3) in Tribolium castaneum [J]. Scientia Agricultura Sinica, 2018, 51(7): 1315-1324.
[11] HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118.
[12] WEI YuanJie, WANG YaMei, HUANG LiNa, LIU Ning, ZHAO Jie, AI XinYu, LIU XiaoNing. Cloning, Prokaryotic Expression and Preparation of the Polyclonal Antibody Against CYP6CY3 from Aphis gossypii [J]. Scientia Agricultura Sinica, 2017, 50(7): 1351-1360.
[13] ZHAO Pan, ZHANG XueYao, LIU XiaoJian, ZHAO XiaoMing, YU RongRong, DONG Wei, MA EnBo, ZHANG JianZhen, ZHANG Min. Eukaryotic Expression, Affinity Purification and Enzyme Activity of Chitin Deacetylase in Locusta migratoria [J]. Scientia Agricultura Sinica, 2017, 50(6): 1057-1066.
[14] PAN GuangZhao, ZHANG Kui, LI ChongYang, ZHAO YuZu, SHEN Li, XU Man, SU JingJing, LIN Xi, CUI HongJuan. Identification, Expression, and Functional Analysis of Cathepsin L in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3236-3246.
[15] YANG Li-qun, JIA Le-mei, TANG Mei, CHEN Yi-biao, CUI Hong-juan. Identification and Expression Analysis of BmYki-1 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(8): 1607-1616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!