Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 807-815.doi: 10.3864/j.issn.0578-1752.2022.04.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse

WANG LÜYang(),CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin()   

  1. National Center for International Research on Animal Gut Nutrition/Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health/Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-12-24 Accepted:2021-05-13 Online:2022-02-16 Published:2022-02-23
  • Contact: SuQin HANG E-mail:2018105079@njau.edu.cn;suqinhang69@njau.edu.cn

Abstract:

【Objective】The study aimed to investigate the effects and mechanisms of soy protein hydrolysate (SPH) on the appetite in mice, so as to provide the new frame work guidelines for strategies towards manipulating feed intake in pigs. 【Method】In this study, the pepsin was used to hydrolyze soy protein to produce SPH. Firstly, the effects on short-term feed intake and the expressions of duodenal peptide sensing receptors calcium sensing receptor (CaSR), G protein-coupled receptor 93 (GPR9)3 and oligopeptide transporter 1 (PepT1) were investigated by intragastrically different concentrations of SPH in mice. Based on this, the CaSR inhibitor NPS2143 and the peripheral cholecystokinin-1 receptor (CCK-1R) inhibitor Devazepide were intraperitoneally injected, respectively, to investigate whether SPH inhibited feed intake by the CASR-CCK-CCK-1R-hypothalamus pathway. 【Result】The amount of 1.5g·kg-1 SPH reduced the 0-1 h feed intake (P<0.05), and increased the CaSR expression (P<0.05). Compared with SPH group, the feed intake of SPH+NPS2143 group were increased at 0-1 h, and the plasma CCK levels were decreased, and there were no differences from the control group (0.05<P<0.5). Meanwhile, SPH reduced 0-1 h gastric emptying rate and increased the expression of hypothalamus anorexia nerve factor pro-opiomelanocortin (POMC) (P<0.05), while the effects disappeared in SPH+Devazepide group. However, SPH had no effect on the small intestine transit rate or the expression of the hypothalamic food-promoting factors neuropeptide Y (NPY) and agouti related peptide (AgRP). 【Conclusion】CaSR mediated SPH to promote CCK secretion, delayed gastric emptying rate through the peripheral CCK-1 receptor, and improved the expression of hypothalamic anorexia nerve factor POMC to suppress appetite.

Key words: soy protein hydrolysate, food intake, calcium sensing receptor, cholecystokinin, CCK-1 receptor, hypothalam

Fig. 1

The experiment timelines"

Table 1

Primer sequences of Real-Time PCR"

基因
Gene
引物序列
Primer sequences (5'-3')
参考文献
Reference
β-actin F: AAATCGTGCGTGACATCAAA
R: AAGGAAGGCTGGAAAAGAGC
[15]
CaSR F: GCATCAGGTATAACTTCCGTGG
R: TTGGAGACGGTGTTACAGGTG
GPR93 F: GCTGTCGTCTATTCGTCTGGC
R: CGAAGCACAGCAGGAAGATG
PepT1 F: CCACGGCCATTTACCATACG
R: TGCGATCAGAGCTCCAAGAA
[16]
POMC F: AAGAGGTTAAGAGCAGTGA
R: ACATCTATGGAGGTCTGAAG
[17]
NPY F: CTAGGTAACAAGCGAATGG
R: GGTGATGAGATTGATGTAGTG
AGRP F: ACAAGAGACCAGGACATC
R: CAACAGCAGAACACAACT

Fig. 2

Effects of SPH on the feed intake and the expression of duodenum peptide sensing receptors/transporter in mice (n = 7-8) Control: Saline; SPH: 大豆蛋白水解物; “*” represents Control vs SPH and significant difference (P<0.05); different letters represent significant difference (P<0.05). The same as below"

Fig. 3

Effects of CaSR inhibitor on feed intake and CCK secretion in mice (n = 7-8)"

Fig. 4

Effects of CCK-1R inhibitor on feed intake, gastric emptying rate, small intestine transit and gene expression of appetite-related factors in hypothalamus in mice (n = 7-8) Devazepid: CCK-1R inhibitor; “#” represents SPH vs SPH+Devazepid and significant difference (P<0.05)"

[1] SANTOS-HERNÁNDEZ M, MIRALLES B, AMIGO L, RECIO I. Intestinal signaling of proteins and digestion-derived products relevant to satiety. Journal of Agricultural and Food Chemistry, 2018, 66(39):10123-10131. doi: 10.1021/acs.jafc.8b02355.
doi: 10.1021/acs.jafc.8b02355
[2] VELDHORST M, SMEETS A, SOENEN S, HOCHSTENBACH- WAELEN A, HURSEL R, DIEPVENS K, LEJEUNE M, LUSCOMBE- MARSH N, WESTERTERP-PLANTENGA M. Protein-induced satiety: effects and mechanisms of different proteins. Physiology & Behavior, 2008, 94(2):300-307. doi: 10.1016/j.physbeh.2008.01.003.
doi: 10.1016/j.physbeh.2008.01.003
[3] CARON J, DOMENGER D, DHULSTER P, RAVALLEC R, CUDENNEC B. Protein digestion-derived peptides and the peripheral regulation of food intake. Frontiers in Endocrinology, 2017, 8:85. doi: 10.3389/fendo.2017.00085.
doi: 10.3389/fendo.2017.00085
[4] CUBER J C, BERNARD C, LEVENEZ F, CHAYVIALLE J A. Lipids, proteins and carbohydrates stimulate the secretion of intestinal cholecystokinin in the pig. Reproduction, Nutrition, Development, 1990, 30(2):267-275.
[5] NAKAJIMA S, HIRA T, HARA H. Calcium-sensing receptor mediates dietary peptide-induced CCK secretion in enteroendocrine STC-1 cells. Molecular Nutrition & Food Research, 2012, 56(5):753-760. doi: 10.1002/mnfr.201100666.
doi: 10.1002/mnfr.201100666
[6] MACE O J, TEHAN B, MARSHALL F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacology Research & Perspectives, 2015, 3(4):e00155. doi: 10.1002/prp2.155.
doi: 10.1002/prp2.155
[7] REIMANN F, TOLHURST G, GRIBBLE F M. G-protein-coupled receptors in intestinal chemosensation. Cell Metabolism, 2012, 15(4):421-431. doi: 10.1016/j.cmet.2011.12.019.
doi: 10.1016/j.cmet.2011.12.019
[8] LIOU A P, CHAVEZ D I, ESPERO E, HAO S Z, WANK S A, RAYBOULD H E. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. American Journal of Physiology Gastrointestinal and Liver Physiology, 2011, 300(5):G895-G902. doi: 10.1152/ajpgi.00521.2010.
doi: 10.1152/ajpgi.00521.2010
[9] KIM S S, AHN C B, MOON S W, JE J Y. Purification and antioxidant activities of peptides from sea squirt (Halocynthia roretzi) protein hydrolysates using pepsin hydrolysis. Food Bioscience, 2018, 25:128-133. doi: 10.1016/j.fbio.2018.08.010.
doi: 10.1016/j.fbio.2018.08.010
[10] NISHI T, HARA H, TOMITA F. Soybean beta-conglycinin peptone suppresses food intake and gastric emptying by increasing plasma cholecystokinin levels in rats. The Journal of Nutrition, 2003, 133(2):352-357. doi: 10.1093/jn/133.2.352.
doi: 10.1093/jn/133.2.352
[11] WU W D, ZHOU H R, PESTKA J J. Potential roles for calcium- sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin). Archives of Toxicology, 2017, 91(1):495-507. doi: 10.1007/s00204-016-1687-x.
doi: 10.1007/s00204-016-1687-x
[12] FLANNERY B M, CLARK E S, PESTKA J J. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicological Sciences, 2012, 130(2):289-297. doi: 10.1093/toxsci/kfs255.
doi: 10.1093/toxsci/kfs255
[13] SHIN S J, KIM D, KIM J S, KIM I, LEE J R, KIM S C, KIM B J. Effects of gamisoyo-San decoction, a traditional Chinese medicine, on gastrointestinal motility. Digestion, 2018, 98(4):231-237. doi: 10.1159/000489455.
doi: 10.1159/000489455
[14] LE THUC O, NOËL J, ROVÈRE C. An ex vivo perifusion method for quantitative determination of neuropeptide release from mouse hypothalamic explants. BIO-PROTOCOL, 2017, 16(7):1-9. doi: 10.21769/bioprotoc.2521.
doi: 10.21769/bioprotoc.2521
[15] SYMONDS E L, PEIRIS M, PAGE A J, CHIA B, DOGRA H, MASDING A, GALANAKIS V, ATIBA M, BULMER D, YOUNG R L, BLACKSHAW L A. Mechanisms of activation of mouse and human enteroendocrine cells by nutrients. Gut, 2015, 64(4):618-626. doi: 10.1136/gutjnl-2014-306834.
doi: 10.1136/gutjnl-2014-306834
[16] HU Y J, XIE Y H, WANG Y Q, CHEN X M, SMITH D E. Development and characterization of a novel mouse line humanized for the intestinal peptide transporter PEPT1. Molecular Pharmaceutics, 2014, 11(10):3737-3746. doi: 10.1021/mp500497p.
doi: 10.1021/mp500497p
[17] PATKAR P P, HAO Z, MUMPHREY M B, TOWNSEND R L, BERTHOUD H R, SHIN A C. Unlike calorie restriction, Roux-en-Y gastric bypass surgery does not increase hypothalamic AgRP and NPY in mice on a high-fat diet. International Journal of Obesity, 2019, 43(11):2143-2150. doi: 10.1038/s41366-019-0328-x.
doi: 10.1038/s41366-019-0328-x
[18] SUFIAN M, HIRA T, MIYASHITA K, NISHI T, ASANO K, HARA H. Pork peptone stimulates cholecystokinin secretion from enteroendocrine cells and suppresses appetite in rats. Bioscience, Biotechnology, and Biochemistry, 2006, 70(8):1869-1874. doi: 10.1271/bbb.60046.
doi: 10.1271/bbb.60046
[19] LIU C, WANG H L, CUI Z M, HE X L, WANG X S, ZENG X X, MA H. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chemistry, 2007, 102(4):1310-1316. doi: 10.1016/j.foodchem.2006.07.017.
doi: 10.1016/j.foodchem.2006.07.017
[20] NISHI T, HARA H, ASANO K, TOMITA F. The soybean beta- conglycinin beta 51-63 fragment suppresses appetite by stimulating cholecystokinin release in rats. The Journal of Nutrition, 2003, 133(8):2537-2542. doi: 10.1093/jn/133.8.2537.
doi: 10.1093/jn/133.8.2537
[21] OHSU T, AMINO Y, NAGASAKI H, YAMANAKA T, TAKESHITA S, HATANAKA T, MARUYAMA Y, MIYAMURA N, ETO Y. Involvement of the calcium-sensing receptor in human taste perception. Journal of Biological Chemistry, 2010, 285(2):1016-1022. doi: 10.1074/jbc.M109.029165.
doi: 10.1074/jbc.M109.029165
[22] RAY K, NORTHUP J. Evidence for distinct cation and calcimimetic compound (NPS 568) recognition domains in the transmembrane regions of the human Ca2+ receptor. Journal of Biological Chemistry, 2002, 277(21):18908-18913. doi: 10.1074/jbc.M202113200.
doi: 10.1074/jbc.M202113200
[23] DIAKOGIANNAKI E, PAIS R, TOLHURST G, PARKER H E, HORSCROFT J, RAUSCHER B, ZIETEK T, DANIEL H, GRIBBLE F M, REIMANN F. Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium- sensing receptor. Diabetologia, 2013, 56(12):2688-2696. doi: 10.1007/s00125-013-3037-3.
doi: 10.1007/s00125-013-3037-3
[24] PAIS R, GRIBBLE F M, REIMANN F. Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides, 2016, 77:9-15. doi: 10.1016/j.peptides.2015.07.019.
doi: 10.1016/j.peptides.2015.07.019
[25] 王绿阳, 李英英, 李忠鑫, 杭苏琴. 动物胃肠道氨基酸感应与转运. 动物营养学报, 2020, 32(7):3031-3038. doi: 10.3969/j.issn.1006-267x.2020.07.011.
doi: 10.3969/j.issn.1006-267x.2020.07.011
WANG L Y, LI Y Y, LI Z X, HANG S Q. Amino acid sensing and transport in animal gastrointestinal tract. Chinese Journal of Animal Nutrition, 2020, 32(7):3031-3038. doi: 10.3969/j.issn.1006-267x.2020.07.011. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2020.07.011
[26] SAM A H, TROKE R C, TAN T M, BEWICK G A. The role of the gut/brain axis in modulating food intake. Neuropharmacology, 2012, 63(1):46-56. doi: 10.1016/j.neuropharm.2011.10.008.
doi: 10.1016/j.neuropharm.2011.10.008
[27] WÓJCIK-GŁADYSZ A, SZLIS M. Hypothalamo-gastrointestinal axis-role in food intake regulation. Journal of Animal and Feed Sciences, 2016, 25(2):97-108. doi: 10.22358/jafs/65569/2016.
doi: 10.22358/jafs/65569/2016
[28] LIU W L, JIN Y Y, WILDE P J, HOU Y Y, WANG Y P, HAN J Z. Mechanisms, physiology, and recent research progress of gastric emptying. Critical Reviews in Food Science and Nutrition, 2021, 61(16):2742-2755. doi: 10.1080/10408398.2020.1784841.
doi: 10.1080/10408398.2020.1784841
[29] RAYBOULD H E, ZITTEL T T, HOLZER H H, LLOYD K C, MEYER J H. Gastroduodenal sensory mechanisms and CCK in inhibition of gastric emptying in response to a meal. Digestive Diseases and Sciences, 1994, 39(12 Suppl.):41S-43S. doi: 10.1007/BF02300368.
doi: 10.1007/BF02300368
[30] GOYAL R K, GUO Y, MASHIMO H. Advances in the physiology of gastric emptying. Neurogastroenterology and Motility, 2019, 31(4):e13546. doi: 10.1111/nmo.13546.
doi: 10.1111/nmo.13546
[31] FAN W, ELLACOTT K L J, HALATCHEV I G, TAKAHASHI K, YU P X, CONE R D. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nature Neuroscience, 2004, 7(4):335-336. doi: 10.1038/nn1214.
doi: 10.1038/nn1214
[32] 隋啸一, 高琴, 刘磊, 李福昌. 饲粮蛋白质水平对家兔食欲肽基因表达的影响. 动物营养学报, 2015, 27(9):2947-2954.
SUI X Y, GAO Q, LIU L, LI F C. Effects of dietary protein level on appetitive peptide gene expression of rabbits. Chinese Journal of Animal Nutrition, 2015, 27(9):2947-2954. (in Chinese)
[33] CHU S C, CHEN P N, HO Y J, YU C H, HSIEH Y S, KUO D Y. Both neuropeptide Y knockdown and Y1 receptor inhibition modulate CART-mediated appetite control. Hormones and Behavior, 2015, 67:38-47. doi: 10.1016/j.yhbeh.2014.11.005.
doi: 10.1016/j.yhbeh.2014.11.005
[1] HU Yan, XU Wen-Juan, LIU Hong-Xiang, SONG Wei-Tao, SONG Chi, TAO Zhi-Yun, DAN Yan-Ju, LI Hui-Fang. The Profiles of Related Genes mRNA Expression in Duck Hypothalamus-Pituitary Growth Axis During Early Development [J]. Scientia Agricultura Sinica, 2013, 46(17): 3712-3720.
[2] TANG Li, WEI Lan, ZHANG Yong, PENG Ke-Mei. Histological Observation and Expression Patterns of GABA in Development of Ostrich Chicks’ Paraventricular Hypothalamic Nucleus [J]. Scientia Agricultura Sinica, 2012, 45(14): 2999-3006.
[3] KONG Xue,SONG Zhi-gang,JIAO Hong-chao,LIN Hai
. Effects of Glucocorticoid and Tryptophan Perfusion on Hypothalamic Metabolites of Broilers
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3440-3446 .
[4] ,. Immunohistochemical Localization of Inhibin α Subunit in Hypothalamus and Pituitary of Rat [J]. Scientia Agricultura Sinica, 2005, 38(01): 171-175 .
[5] ,. Effect of Energy on Serotonin-like Neurons in Duck Hypothalamus [J]. Scientia Agricultura Sinica, 2004, 37(10): 1560-1563 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!