Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4196-4210.doi: 10.3864/j.issn.0578-1752.2022.21.008

• PLANT PROTECTION • Previous Articles     Next Articles

Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection

PEI YueHong(),LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao()   

  1. Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715
  • Received:2022-06-28 Accepted:2022-07-19 Online:2022-11-01 Published:2022-11-09
  • Contact: XianChao SUN E-mail:pjustdoit@163.com;sunxianchao@163.com

Abstract:

【Objective】The objective of this study is to identify the effects of Nicotiana benthamiana cysteine proteinase (CP) induced by the antiviral compound chloroinconazide (CHI) on the infection of tobacco mosaic virus (TMV) and its gene family characteristics, and to provide a theoretical basis for understanding the antiviral molecular mechanism and chemical regulation of Solanaceae crops.【Method】Genome-wide analysis of NbCP genes was identified from Sol Genomics Network and the evolutionary relationships, motifs and promoter cis-acting elements of NbCP gene family were analyzed by bioinformatics. According to the results of bioinformatics analysis, the expression of NbCP genes after TMV infection was analyzed by real-time fluorescence quantitative PCR (qRT-PCR), so as to screen out potential disease-resistant protein. The effect of this key protein on TMV-GFP infection was verified by gene silencing mediated by tobacco rattle virus (TRV) and gene overexpression mediated by potato virus X (PVX). qRT-PCR and biochemical methods were combined to determine the antiviral mechanism of this key protein.【Result】There were 24 NbCP genes in N. benthamiana, which were named NbCP1-NbCP24 according to their chromosome location. The phylogenetic analysis showed that the NbCPs were divided into five subfamilies, of which Group V contained seven NbCPs, while Group I contained only two NbCPs. Motif analyses showed that NbCPs of different branches had similar motif distribution. Promoter cis-acting elements analysis showed that NbCP family genes were all regulated by light, and several NbCP family gene promoters contained hormone response elements such as methyl jasmonate (MeJA), methyl salicylate (MeSA), abscisic acid (ABA), gibberellin (GA) and auxin (IAA). Combined with bioinformatics analysis, five key potential disease-resistant related NbCP genes (NbCP8, NbCP12, NbCP13, NbCP18, and NbCP22) were screened from the above subfamilies, and the expression of these NbCP genes under TMV infection at the 5th day was analyzed by qRT-PCR, and it was found that the expression difference of NbCP8 was the greatest, which increased 2.6 times. The expression of NbCP8 was highest in leaves, followed by stems and roots, and lowest in flowers. TRV-mediated NbCP8 silencing significantly increased TMV-GFP infection, while PVX-mediated NbCP8 overexpression significantly inhibited TMV-GFP infection, suggesting that NbCP8 acts as a positive regulatory factor in plant to inhibit virus infection. Furthermore, silencing NbCP8 significantly inhibited the expression of salicylic acid (SA) signaling pathway related gene PR1 and jasmonic acid (JA) signaling pathway related gene MYC2, while the expressions of NPR1, COI1, and ABA related genes ABA1, NCED1 were not significantly affected. The overexpression of NbCP8 enhanced the expression of PR1 and ABA1, but had no significant effect on expression of NPR1, MYC2, COI1 and NCED1. 【Conclusion】N. benthamiana NbCPs are involved in plant stress defense, while NbCP8 plays a key role in TMV defense, which can induce SA signaling pathway to participate in the defense. The research results will provide evidence for the molecular mechanism of antiviral in Solanaceae crops.

Key words: Nicotiana benthamiana, genome-wide, cysteine proteinase (CP), NbCP8, tobacco mosaic virus (TMV)

Table 1

Primer sequences used in this study"

引物名称
Primers name
引物序列F
Primer sequence F (5′-3′)
引物序列R
Primer sequence R (5′-3′)
PCR NbCP8 ATGTCTCGTTTCTCACTTCTATTGGC TCCTACCCTGTCGTTGCCTGA
qRT-PCR
CP8 TCGCTTTGCTCACAGGTATG TGGTGGCTGAACAGTTTTGA
CP12 GAAAGCTGCACTGAACCCTC GTGCTACAGTTAGGCCAAGC
CP22 CGGCAGTGAGAGAGCATTTC CCACCCTTCCTCATAAGCCA
CP18 CCCTTATCGCGGTGTTGAAG GATGCTTCAATGGCTACGCA
CP13 TAAGAACCAAGGGCAATGCG GAGACCTCCTTGACAACCCA
MYC2 CGGTTCTTCTTCCGTCTTCTT ACGCTGTTGAAGGGTTTCT
TMV MP TTAGGTTCCCTGACGGTGAC ACCGTTGCGTCGTCTACTCT
ABA1 GCCGTTGTTTGTTCATCTC ACTGTATCACCTTGCCTCC
NCED1 ACCCGACTCGATTTTCAATG AACTTTTGGCCATGGTTCTG
COI1 CAGCAGCCCATTGTTTCTTAC TACTGGCCAAGTACTTCCAATC
PR1 CGTGAAGATGTGGGTCAATG CCATACGGACGTTGTCCTCT
NPR1 TGTTGCTGCCATGAGAAAAG TAACCGATCCTTTGGAGCAG
Actin CGGTGCCCACTTTCCGATCT TCCTCACCGTCAGCCATTTT
TRV TRV:NbCP8 CGCGGATCCGGCTGCAATGGTGGGCT CCGCTCGAGTACATCCATGGGAGTGTTGC
PVX PVX:NbCP8 ACGCGTCGACATGTCTCGTTTCTCACTTCTATTGGC CCATCGATCATGTCTCGTTTCTCACTTCTATTGGC

Table 2

Identification and characterization of NbCP gene family"

名称
Name
基因定位
Gene locus ID
蛋白质编码区长度
CDS (bp)
分子量
MW (Da)
等电点
pI
分子式
Formula
NbCP1 Niben101Scf00712g02010.1 1068 39921.29 5.74 C1790H2756N468O538S15
NbCP2 Niben101Scf00973g01002.1 1113 40808.02 5.95 C1801H2786N498O551S18
NbCP3 Niben101Scf01369g00024.1 1068 39907.19 5.64 C1782H2746N470O540S16
NbCP4 Niben101Scf01631g00002.1 999 36623.07 5.29 C1614H2486N428O512S17
NbCP5 Niben101Scf02159g01012.1 1086 40558.46 5.78 C1800H2755N489O554S14
NbCP6 Niben101Scf02336g00010.1 1311 48758.34 5.71 C2175H3349N573O656S23
NbCP7 Niben101Scf02336g00012.1 1482 55407.91 5.82 C2460H3771N661O736S32
NbCP8 Niben101Scf02763g05012.1 1059 38333.52 7.00 C1712H2658N464O511S13
NbCP9 Niben101Scf02832g01014.1 1074 38845.02 5.09 C1705H2679N473O527S19
NbCP10 Niben101Scf02853g06021.1 1086 40508.59 6.20 C1798H2765N491O548S15
NbCP11 Niben101Scf02976g00007.1 1086 39876.46 6.00 C1781H2733N481O520S21
NbCP12 Niben101Scf03867g02046.1 1092 40222.77 5.67 C1801H2739N479O526S22
NbCP13 Niben101Scf04209g00004.1 1023 37952.64 6.67 C1674H2566N460O515S18
NbCP14 Niben101Scf04653g01012.1 1059 39469.28 6.23 C1747H2691N483O537S13
NbCP15 Niben101Scf04934g02006.1 1035 38571.66 8.89 C1711H2628N468O513S19
NbCP16 Niben101Scf05035g01005.1 2052 74678.53 5.18 C3261H4973N891O1032S47
NbCP17 Niben101Scf05047g04012.1 987 36843.67 5.72 C1649H2522N434O496S15
NbCP18 Niben101Scf05135g02002.1 1125 42280.54 6.73 C1861H2883N523O572S17
NbCP19 Niben101Scf05469g01014.1 336 11947.10 4.37 C505H778N140O178S9
NbCP20 Niben101Scf05469g01024.1 1623 59602.30 4.45 C2638H3964N682O840S29
NbCP21 Niben101Scf08921g02020.1 1584 59286.05 8.87 C2632H4069N729O789S23
NbCP22 Niben101Scf10490g00007.1 990 36122.34 4.81 C1597H2446N420O509S14
NbCP23 Niben101Scf11030g00003.1 720 26115.98 7.95 C1146H1786N310O344S22
NbCP24 Niben101Scf15022g00015.1 1113 40804.10 6.01 C1797H2790N502O548S19

Fig. 1

Phylogenetic tree of CP gene family of N. benthamiana, S. lycopersicum and C. annuum"

Fig. 2

Motif analyses of CP gene family in N. benthamiana"

Fig. 3

Cis-acting element analysis of promoter of CP gene family in N. benthamiana"

Fig. 4

Expression analysis of some NbCP genes after TMV infection at the 5th day The statistical analyses were performed using Student’s t-test (**0.001<P?<0.01, ***P<0.001). The experiments were repeated three times with three plants each time. Values represent means±SE from three biological replications"

Fig. 5

Protein three-dimensional structure and tissue expression of NbCP8"

Fig. 6

Silencing of NbCP8 promotes TMV-GFP infection"

Fig. 7

Overexpression of NbCP8 inhibits TMV-GFP infection"

Fig. 8

Effects of NbCP8 on the expression of genes related to plant hormone signaling pathway"

[1] SCHOLTHOF K B, ADKINS S, CZOSNEK H, PALUKAITIS P, JACQUOT E, HOHN T, HOHN B, SAUNDERS K, CANDRESSE T, AHLQUIST P, HEMENWAY C, FOSTER G. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 2011, 12(9): 938-954.
[2] CREAGER A N, SCHOLTHOF K B, CITOVSKY V, SCHOLTHOF H B. Tobacco mosaic virus: Pioneering research for a century. The Plant Cell, 1999, 11(3): 301-308.
[3] SHINDO T, MISAS-VILLAMIL J C, HÖRGER A C, SONG J, VAN DER HOORN R A L. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS ONE, 2012, 7(1): e29317.
[4] BAR-ZIV A, LEVY Y, HAK H, METT A, BELAUSOV E, CITOVSKY V, GAFNI Y. The tomato yellow leaf curl virus (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1. Plant Signaling & Behavior, 2012, 7(8): 983-989.
[5] MISAS-VILLAMIL J C, VAN DER HOORN R A L, DOEHLEMANN G. Papain-like cysteine proteases as hubs in plant immunity. New Phytologist, 2016, 212(4): 902-907.
[6] BAR-ZIV A, LEVY Y, CITOVSKY V, GAFNI Y. The tomato yellow leaf curl virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. Biochemical and Biophysical Research Communications, 2015, 460(3): 525-529.
[7] BERNOUX M, TIMMERS T, JAUNEAU A, BRIÈRE C, DE WIT P, MARCO Y, DESLANDES L. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. The Plant Cell, 2008, 20(8): 2252-2264.
[8] MUELLER A N, ZIEMANN S, TREITSCHKE S, ASSMANN D, DOEHLEMANN G. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathogens, 2013, 9(2): e1003177.
[9] VAN DER LINDE K, MUELLER A N, HEMETSBERGER C, KASHANI F, VAN DER HOORN R A L, DOEHLEMANN G. The maize cystatin CC9 interacts with apoplastic cysteine proteases. Plant Signaling & Behavior, 2012, 7(11): 1397-1401.
[10] VAN DER LINDE K, HEMETSBERGER C, KASTNER C, KASCHANI F, VAN DER HOORN R A L, KUMLEHN J, DOEHLEMANN G. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. The Plant Cell, 2012, 24(3): 1285-1300.
[11] LV X, XIANG S, WANG X, WU L, LIU C, YUAN M, GONG W, WIN H, HAO C, XUE Y, MA L, CHENG D, SUN X. Synthetic chloroinconazide compound exhibits highly efficient antiviral activity against tobacco mosaic virus. Pest Management Science, 2020, 76(11): 3636-3648.
[12] LV X, YUAN M, PEI Y, LIU C, WANG X, WU L, CHENG D, MA X, SUN X. The enhancement of antiviral activity of chloroinconazide by aglinate-based nanogel and its plant growth promotion effect. Journal of Agricultural and Food Chemistry, 2021, 69(17): 4992-5002.
[13] LIU Y, SCHIFF M, MARATHE R, DINESH-KUMAR S P. Tobacco Rar1, EDS1and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. The Plant Journal, 2002, 30(4): 415-429.
[14] FERNANDEZ-POZO N, MENDA N, EDWARDS J D, SAHA S, TECLE I Y, STRICKLER S R, BOMBARELY A, FISHER-YORK T, PUJAR A, FOERSTER H, YAN A, MUELLER L A. The Sol Genomics Network (SGN)—From genotype to phenotype to breeding. Nucleic Acids Research, 2015, 43(Database issue): D1036-D1041.
[15] LIU C, PENG H, LI X, LIU C, LV X, WEI X, ZOU A, ZHANG J, FAN G, MA G, MA L, SUN X. Genome-wide analysis of NDR1/ HIN1-like genes in pepper (Capsicum annuum L.) and functional characterization of CaNHL4 under biotic and abiotic stresses. Horticulture Research, 2020, 7: 93.
[16] LETUNIC I, KHEDKAR S, BORK P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Research, 2021, 49(D1): D458-D460.
[17] OLONEN A, KALKKINEN N, PAULIN L. A new type of cysteine proteinase inhibitor—The salarin gene from Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus). Biochimie, 2003, 85(7): 677-681.
[18] YAMAMOTO Y, KURATA M, WATABE S, MURAKAMI R, TAKAHASHI S Y. Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases. Current Protein & Peptide Science, 2002, 3(2): 231-238.
[19] PENG H, PU Y, YANG X, WU G, QING L, MA L, SUN X. Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to tobacco mosaic virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway. Plant Science, 2019, 283: 147-156.
[20] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
[21] LIU C, PU Y, PENG H, LV X, TIAN S, WEI X, ZHANG J, ZOU A, FAN G, SUN X. Transcriptome sequencing reveals that photoinduced gene IP-L affects the expression of PsbO to response to virus infection in Nicotiana benthamiana. Physiological and Molecular Plant Pathology, 2021, 114: 101613.
[22] LESCOT M, DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN DE PEER Y, ROUZÉ P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327.
[23] CHEN C, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
[24] BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208.
[25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Method, 2001, 25(4): 402-408.
[26] LIU Y, NAKAYAMA N, SCHIFF M, LITT A, IRISH V F, DINESH- KUMAR S P. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Molecular Biology, 2004, 54(5): 701-711.
[27] FERNANDEZ-POZO N, ROSLI H G, MARTIN G B, MUELLER L A. The SGN VIGS tool: User-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Molecular Plant, 2015, 8(3): 486-488.
[28] LIU C, TIAN S, LV X, PU Y, PENG H, FAN G, MA X, MA L, SUN X. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. Molecular Plant Pathology, 2022, 23(1): 60-77.
[29] 彭浩然, 潘琪, 魏周玲, 蒲运丹, 张永至, 吴根土, 青玲, 孙现超. 番茄抗性相关基因SlHin1的克隆、表达与抗病毒功能. 中国农业科学, 2017, 50(7): 1242-1251.
PENG H R, PAN Q, WEI Z L, PU Y D, ZHANG Y Z, WU G T, QING L, SUN X C. Cloning,expression and anti-virus function analysis of tomato resistance-related gene SlHin1. Scientia Agricultura Sinica, 2017, 50(7): 1242-1251. (in Chinese)
[30] ZHANG J, ZOU A, WEN Y, WEI X, LIU C, LV X, MA X, FAN G, SUN X. SlCML55, a novel Solanum lycopersicum calmodulin-like gene, negatively regulates plant immunity to Phytophthora pathogens. Scientia Horticulturae, 2022, 299: 111049.
[31] HUANG C. From player to pawn: Viral avirulence factors involved in plant immunity. Viruses, 2021, 13(4): 688.
[32] 刘昌云, 李欣羽, 田绍锐, 王靖, 裴悦宏, 马小舟, 樊光进, 汪代斌, 孙现超. 番茄SlN-like的克隆、表达与抗病毒功能. 中国农业科学, 2021, 54(20): 4348-4357.
LIU C Y, LI X Y, TIAN S R, WANG J, PEI Y H, MA X Z, FAN G J, WANG D B, SUN X C. Cloning,expression and anti-virus function analysis of Solanum lycopersicum SlN-like. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357. (in Chinese)
[33] WHITHAM S, DINESH-KUMAR S P, CHOI D, HEHL R, CORR C, BAKER B. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell, 1994, 78(6): 1101-1115.
[34] MARATHE R, ANANDALAKSHMI R, LIU Y, DINESH-KUMAR S P. The tobacco mosaic virus resistance gene, N. Molecular Plant Pathology, 2002, 3(3): 167-172.
[35] 张洁琳, 付畅. 半胱氨酸蛋白酶及半胱氨酸蛋白酶抑制剂对逆境胁迫的应答. 分子植物育种, 2018, 16(13): 4453-4459.
ZHANG J L, FU C. Response of cysteine protease and cysteine protease inhibitor to adverse stress. Molecular Plant Breeding, 2018, 16(13): 4453-4459. (in Chinese)
[36] UEDA T, SEO S, OHASHI Y, HASHIMOTO J. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. Plant Molecular Biology, 2000, 44(5): 649-657.
[37] 张炳慧, 高翔, 杨明明, 王宪国, 何庆梦, 姚晓露, 李晓燕, 赵万春, 董剑. 小麦TaCP3基因的克隆及其参与非生物胁迫的表达分析. 麦类作物学报, 2019, 39(5): 513-519.
ZHANG B H, GAO X, YANG M M, WANG X G, HE Q M, YAO X L, LI X Y, ZHAO W C, DONG J. Cloning of TaCP3gene and its expression in abiotic stress. Journal of Triticeae Crops, 2019, 39(5): 513-519. (in Chinese)
[38] 闫龙凤, 杨青川, 韩建国, 刘志鹏. 植物半胱氨酸蛋白酶研究进展. 草业学报, 2005, 14(5): 11-19.
YAN L F, YANG Q C, HAN J G, LIU Z P. Summary of cysteine protease in plants. Acta Prataculturae Sinica, 2005, 14(5): 11-19. (in Chinese)
[39] NARUSAKA Y, NAKASHIMA K, SHINWARI Z K, SAKUMA Y, FURIHATA T, ABE H, NARUSAKA M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal, 2003, 34(2): 137-148.
[40] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
[41] UNO Y, FURIHATA T, ABE H, YOSHIDA R, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11632-11637.
[42] BAKER S S, WILHELM K S, THOMASHOW M F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology, 1994, 24(5): 701-713.
[43] ZANG Q W, WANG C X, LI X Y, GUO Z A, JING R L, ZHAO J, CHANG X P. Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. Journal of Biosciences, 2010, 35(3): 379-388.
[44] 马岩岩, 张军, 陈娇, 张凌云, 朱世平, 闫树堂, 钟广炎. 柑橘半胱氨酸蛋白酶基因CsCysP的分离、亚细胞定位及表达分析. 园艺学报, 2014, 41(4): 621-630.
MA Y Y, ZHANG J, CHEN J, ZHANG L Y, ZHU S P, YAN S T, ZHONG G Y. Isolation, subcellular localization and expression analysis of a citrus cysteine protease gene, CsCysP. Acta Horticulturae Sinica, 2014, 41(4): 621-630. (in Chinese)
[45] HAO L, HSIANG T, GOODWIN P H. Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato. Plant Science, 2006, 170(5): 1001-1009.
[46] LI M, LI C, JIANG K, LI K, ZHANG J, SUN M, WU G, QING L. Characterization of pathogenicity-associated V2 protein of tobacco curly shoot virus. International Journal of Molecular Sciences, 2021, 22(2): 923.
[47] 温玉霞, 张坚, 王琴, 王靖, 裴悦宏, 田绍锐, 樊光进, 马小舟, 孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能. 中国农业科学, 2022, 55(18): 3543-3555.
WEN Y X, ZHANG J, WANG Q, WANG J, PEI Y H, TIAN S R, FAN G J, MA X Z, SUN X C. Cloning,expression and anti-TMV function analysis of Nicotiana benthamiana NbMBF1c. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. (in Chinese)
[48] PIETERSE C M J, LEON-REYES A, VAN DER ENT S, VAN WEES S C M. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009, 5(5): 308-316.
[49] DING P, DING Y. Stories of salicylic acid: A plant defense hormone. Trends in Plant Science, 2020, 25(6): 549-565.
[50] BOL J F, LINTHORST H J M, CORNELISSEN B J C. Plant pathogenesis-related proteins induced by virus infection. Annual Review of Phytopathology, 1990, 28: 113-138.
[51] CUTT J R, HARPSTER M H, DIXON D C, CARR J P, DUNSMUIR P, KLESSIG D F. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis- related PR1b gene. Virology, 1989, 173(1): 89-97.
[52] 魏周玲, 彭浩然, 潘琪, 张永至, 蒲运丹, 吴根土, 青玲, 孙现超. 核糖体失活蛋白(α-MC)亚细胞定位及对TMV的抑制作用. 中国农业科学, 2017, 50(5): 840-848.
WEI Z L, PENG H R, PAN Q, ZHANG Y Z, PU Y D, WU G T, QING L, SUN X C. Subcellular localization of the ribosome-inactivating protein α-MC and its antiviral effect on TMV. Scientia Agricultura Sinica, 2017, 50(5): 840-848. (in Chinese)
[53] RAUSCHER M, ÁDÁM A L, WIRTZ S, GUGGENHEIM R, MENDGEN K, DEISING H B. PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. The Plant Journal, 1999, 19(6): 625-633.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[4] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[5] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[8] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[9] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[10] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[11] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[12] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[13] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[14] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[15] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!