Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 193-202.doi: 10.3864/j.issn.0578-1752.2023.01.015

• RESEARCH NOTES • Previous Articles    

Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango

MO WenJing(),ZHU JiaWei(),HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong()   

  1. College of Agriculture, Guangxi University/State Key Laboratory of Subtropical Agricultural Biological Resources Protection and Utilization/National Experimental Teaching Demonstration Center of Plant Science, Nanning 530004
  • Received:2022-03-02 Accepted:2022-05-12 Online:2023-01-01 Published:2023-01-17
  • Contact: Cong LUO;;


【Objective】Zinc finger protein (ZFP) plays an important role in plant abiotic stress response. Therefore, to provide a theoretical basis for stress resistance breeding, this study aimed to analyze the response of two zinc finger protein genes of MiZAT10A and MiZAT10B transgenic Arabidopsis to abiotic stresses, such as salt, drought, heavy metals and exogenous hormones. 【Method】 The promoter cis acting elements and motif of mango MiZAT10A and MiZAT10B genes were predicted and analyzed by online software PLACE and MEME, respectively. The chromosome location map was drawn by TBtools software and SiJiMi gene annotation file (GFF file and unpublished). Tissue expression patterns of MiZAT10A and MiZAT10B genes were analyzed by qRT-PCR. The overexpression vectors of MiZAT10A and MiZAT10B genes were constructed and transformed into Arabidopsis thaliana by Agrobacterium floral-dip method. The phenotype of MiZAT10A and MiZAT10B transgenic plant were observed and recorded under salt, drought, heavy metals, abscisic acid and gibberellin treatments. 【Result】 Promoter cis element analysis showed that there were many light response elements, hormone response elements and abiotic stress response elements in the promoter region of MiZAT10A and MiZAT10B genes. Expression analysis showed that MiZAT10A and MiZAT10B were highly expressed in buds and flowers. 9 of MiZAT10A and 14 of MiZAT10B transgenic Arabidopsis strains were obtained. Overexpression of MiZAT10A and MiZAT10B significantly resulted early flowering compared with the control lines. The root length of MiZAT10A and MiZAT10B overexpressing transgenic Arabidopsis was significantly longer than that of control lines under salt stress, drought stress, heavy metal stress, GA3 and ABA hormone treatments. 【Conclusion】 Overexpression of MiZAT10A and MiZAT10B not only promoted transgenic Arabidopsis flowering early but also improved salt, drought, heavy metals and exogenous hormones GA3 and ABA resistance.

Key words: mango, abiotic stress, zinc finger protein, expression, function analysis

Table 1

Primer sequences used in this study"

引物 Primer 序列 Sequences (5′-3′) 用途 Usage
AtActin2-F GCAGAGCGGGAAATTGTAAG 半定量Semi-quantitative
AtActin2-R GTACAGATCCTTCCTGATATCC 半定量Semi-quantitative

Fig. 1

Sequence analysis of MiZAT10A and MiZAT10B genes A: Chromosomal mapping of MiZAT10A and MiZAT10B genes; B: Conserved motif distribution of MiZAT10A and MiZAT10B proteins"

Fig. 2

Promoter cis-regulatory element analysis of MiZAT10A and MiZAT10B genes"

Fig. 3

Tissue expression analysis of MiZAT10A and MiZAT10B genes A: MiZAT10A tissue expression; B: MiZAT10B tissue expression. Different lowercase letters represent significant difference at P<0.05 level. The same as below"

Fig. 4

Flowering phenotypic analysis of overexpressed MiZAT10A and MiZAT10B genes A1: Flowering photos of overexpressed MiZAT10A gene in Arabidopsis thaliana; A2: Flowering data of overexpressed MiZAT10A gene in Arabidopsis thaliana; B1: Flowering photos of overexpressed MiZAT10B gene in Arabidopsis thaliana; B2: Flowering data of overexpressed MiZAT10B gene in Arabidopsis thaliana"

Fig. 5

Abiotic stress resistance analysis of overexpression MiZAT10A and MiZAT10B in Arabidopsis thaliana A1: Root length data of overexpressed MiZAT10A transgenic Arabidopsis thaliana under stress; A2: Root length data of over-expressed MiZAT10B transgenic Arabidopsis under stress; B1: Root-length data of over-expressed MiZAT10A transgenic Arabidopsis under stress; B2: Root-length photos of overexpressed MiZAT10B gene in Arabidopsis; *represent significant difference at 0.05 level"

[1] MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158. doi: 10.1016/
doi: 10.1016/ pmid: 16309626
[2] 黄骥, 王建飞, 张红生. 植物C2H2型锌指蛋白的结构与功能. 遗传, 2004, 26(3): 414-418.
HUANG J, WANG J F, ZHANG H S. Structure and function of plant C2H2zinc finger protein. Hereditas, 2004, 26(3): 414-418. (in Chinese)
[3] IUCHI S. Three classes of C2H2zinc finger proteins. Cellular and Molecular Life Sciences, 2001, 58(4): 625-635. doi: 10.1007/PL00000885.
doi: 10.1007/PL00000885
[4] KIEŁBOWICZ-MATUK A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Science, 2012, 185/186: 78-85. doi: 10.1016/j.plantsci.2011.11.015.
doi: 10.1016/j.plantsci.2011.11.015
[5] 张佳, 刘俊芳, 赵婷婷, 任婧, 许向阳. 植物C2H2型锌指蛋白研究进展. 分子植物育种, 2018(2): 427-433.
ZHANG J, LIU J F, ZHAO T T, REN J, XU X Y. Research progress of C2H2 zinc finger protein in plant. Molecular Plant Breeding, 2018(2): 427-433. (in Chinese)
[6] ENGLBRECHT C C, SCHOOF H, BÖHM S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 2004, 5(1): 39. doi: 10.1186/1471-2164-5-39.
doi: 10.1186/1471-2164-5-39
[7] AGARWAL P, ARORA R, RAY S, SINGH A K, SINGH V P, TAKATSUJI H, KAPOOR S, TYAGI A K. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 2007, 65(4): 467-485. doi: 10.1007/s11103-007-9199-y.
doi: 10.1007/s11103-007-9199-y
[8] WEI K F, PAN S, LI Y. Functional characterization of maize C2H2 zinc-finger gene family. Plant Molecular Biology Reporter, 2016, 34(4): 761-776. doi: 10.1007/s11105-015-0958-7.
doi: 10.1007/s11105-015-0958-7
[9] LAWRENCE S D, NOVAK N G. Comparative analysis of the genetic variability within the Q-type C2H2 zinc-finger transcription factors in the economically important cabbage, canola and Chinese cabbage genomes. Hereditas, 2018, 155(1): 29.
doi: 10.1186/s41065-018-0065-5
[10] CHEN Y, WANG G, PAN J, WEN H F, DU H, SUN J X, ZHANG K Y, LV D, HE H L, CAI R, PAN J S. Comprehensive genomic analysis and expression profiling of the C2H2 Zinc finger protein family under abiotic stresses in cucumber (Cucumis sativus L.). Genes, 2021, 11(2): 171. doi: 10.21203/
doi: 10.21203/
[11] JIANG L, PAN L J. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses. Molecular Biology Reports, 2012, 39(6): 7105-7115. doi: 10.1007/s11033-012-1542-y.
doi: 10.1007/s11033-012-1542-y
[12] ARREY-SALAS O, CARIS-MALDONADO J C, HERNÁNDEZ- ROJAS B, GONZALEZ E. Comprehensive genome-wide exploration of C2H2 zinc finger family in grapevine (Vitis vinifera L.): Insights into the roles in the pollen development regulation. Genes, 2021, 12(2): 302. doi: 10.3390/genes12020302.
doi: 10.3390/genes12020302
[13] CAI S Q, LASHBROOK C C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: Enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis zinc finger protein2. Plant Physiology, 2008, 146(3): 1305-1321. doi: 10.1104/pp.107.110908.
doi: 10.1104/pp.107.110908
[14] WANG L, BAI X D, ZHAO F F, LI R, HAN X. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2. Plant Biotechnology Journal, 2016, 14(12): 2310-2321. doi: 10.1111/pbi.12584.
doi: 10.1111/pbi.12584
[15] 杨阔. 苹果C2H2型锌指蛋白MdZAT10调控叶片衰老和干旱胁迫的机理研究[D]. 泰安: 山东农业大学, 2021.
YANG K. Molecular mechanism of C2H2-type zinc finger protein MdZAT10 regulating leaf senescence and drought stress in apple[D]. Taian: Shandong Agricultural University, 2021. (in Chinese)
[16] ZHANG A D, LIU D D, HUA C M, YAN A, LIU B H, WU M J, LIU Y H, HUANG L L, ALI I, GAN Y B. The Arabidopsis gene zinc finger protein 3 (ZFP3) is involved in salt stress and osmotic stress response. PLoS ONE, 2016, 11(12): e0168367. doi: 10.1371/journal.pone.0168367.
doi: 10.1371/journal.pone.0168367
[17] XIE Y J, MAO Y, LAI D W, ZHANG W, SHEN W B. H2 Enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS ONE, 2012, 7(11): e49800. doi: 10.1371/journal.pone.0049800.
doi: 10.1371/journal.pone.0049800
[18] 杜娟. 枳低温响应基因ERF109ZFP1转化柑橘及转基因植株鉴定[D]. 武汉: 华中农业大学, 2016.
DU J. Citrus transformation of Poncirus trifoliata cold-responsive genes ERF109 and ZFP1 and analysis of transgenic plants[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[19] TIAN Z D, ZHANG Y, LIU J, XIE C H. Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biology, 2010, 12(5): 689-697. doi: 10.1111/j.1438-8677.2009.00276.x.
doi: 10.1111/j.1438-8677.2009.00276.x
[20] LUO C, HE X H, HU Y, YU H X, OU S J, FANG Z B. Oligo-dT anchored cDNA-SCoT: A novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene, 2014, 548(2): 182-189. doi:10.1016/j.gene.2014.07.024.
doi: 10.1016/j.gene.2014.07.024
[21] 余海霞, 罗聪, 樊琰, 张秀娟, 王逸涵, 黄方, 卢新喜, 何新华. 芒果MiZFP1MiZFP2基因克隆与表达模式分析. 分子植物育种, 2019, 17(23): 7692-7699. doi: 10.13271/j.mpb.017.007692.
doi: 10.13271/j.mpb.017.007692
YU H X, LUO C, FAN Y, ZHANG X J, WANG Y H, HUANG F, LU X X, HE X H. Cloning and expression analysis of MiZFP1and MiZFP2genes in mango. Molecular Plant Breeding, 2019, 17 (23): 7692-7699. doi: 10.13271/j.mpb.017.007692. (in Chinese)
doi: 10.13271/j.mpb.017.007692
[22] LUO C, HE X H, CHEN H, HU Y, OU S J. Molecular cloning and expression analysis of four actin genes (MiACT) from mango. Biologia Plantarum, 2013, 57(2): 238-244.
doi: 10.1007/s10535-012-0278-9
[23] CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998.00343.x.
doi: 10.1046/j.1365-313x.1998.00343.x
[24] 余海霞, 罗聪, 徐趁, 何新华. 一种简单高效提取高质量转基因拟南芥和烟草DNA的方法. 分子植物育种, 2016, 14(6): 1436-1440. doi: 10.13271/j.mpb.014.001436.
doi: 10.13271/j.mpb.014.001436
YU H X, LUO C, XU C, HE X H. A simple and efficient method for high quality DNA extraction from transgenic Arabidopsis and tobacco. Molecular Plant Breeding, 2016, 14(6): 1436-1440. doi: 10.13271/j.mpb.014.001436. (in Chinese)
doi: 10.13271/j.mpb.014.001436
[25] 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20(4): 358-364. doi: 10.16605/j.cnki.1007-7847.2016.04.013.
doi: 10.16605/j.cnki.1007-7847.2016.04.013
WANG C, LAN H Y. Advances in functional studies of plant bHLH transcription factors under abiotic stress. Life Science Research, 2016, 20(4): 358-364. doi: 10.16605/j.cnki.1007-7847. (in Chinese)
doi: 10.16605/j.cnki.1007-7847.2016.04.013
[26] LUO X, BAI X, ZHU D, LI Y, JI W, CAI H, WU J, LIU B H, ZHU Y M. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012, 2012, 235(6): 1141-1155. doi: 10.1007/s00425-011-1563-0.
doi: 10.1007/s00425-011-1563-0 pmid: 22160567
[27] 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展. 中国农学通报, 2021, 37(33): 112-119.
WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. (in Chinese)
[28] LIU Q G, WANG J C, XU X M, ZHANG H Z, LI C H. Genome-wide analysis of C2H2zinc-finger family transcription factors and their responses to abiotic stresses in Poplar (Populus trichocarpa). PLoS ONE, 2015, 10(8): e0134753. doi: 10.1371/journal.pone.0134753.
doi: 10.1371/journal.pone.0134753
[29] YANG K, LI C Y, AN J P, WANG D R, WANG X, WANG C K, YOU C X. The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. Plant Physiology and Biochemistry, 2021, 167: 390-399. doi: 10.1016/j.plaphy.2021.08.014.
doi: 10.1016/j.plaphy.2021.08.014 pmid: 34404010
[30] 李诗娟, 张伟, 魏磊, 黄晓明, 林娜, 徐莺, 陈放. 一个麻疯树C2H2型锌指蛋白基因JcZFP1的克隆与表达分析. 四川大学学报(自然科学版), 2014, 51(1): 206-212.
LI S J, ZHANG W, WEI L, HUANG X M, LIN N, XU Y, CHEN F. Cloning and expression analysis of a C2H2 type zinc finger protein, JcZFP1, from Jatropha curcas L. Journal of Sichuan University (Natural Science Edition), 2014, 51(1): 206-212. (in Chinese)
[31] YU Y H, LI X Z, WU Z J, CHEN D X, LI G R, LI X Q, ZHANG G H. VvZFP11, a Cys2His2-type zinc finger transcription factor, is involved in defense responses in Vitis vinifera. Biologia Plantarum, 2016, 60(2): 292-298. doi: 10.1007/s10535-016-0598-2.
doi: 10.1007/s10535-016-0598-2
[32] SUN B G, ZHAO Y J, SHI S Y, YANG M Y, XIAO K. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136: 127-142.
doi: 10.1016/j.plaphy.2019.01.014
[33] WANG S, WEI X L, CHENG L J, TONG Z K. Identification of a C2H2-type zinc finger gene family from Eucalyptus grandis and its response to various abiotic stresses. Biologia Plantarum, 2014, 58(2): 385-390. doi: 10.1007/s10535-014-0399-4.
doi: 10.1007/s10535-014-0399-4
[34] 孙姝璟. 水稻TFIIIA型锌指蛋白ZFP179和ZFP182的功能分析[D]. 南京: 南京农业大学, 2010.
SUN S J. Functional analysis of TFIIIA-type Zinc finger proteins ZFP179 and ZFP182 from rice (Oryza sativa L.)[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[35] JIAO Z J, WANG L P, DU H, WANG Y, WANG W X, LIU J J, HUANG J H, HUANG W, GE L F. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC Plant Biology, 2020, 20(1): 401. doi: 10.1186/s12870-020-02619-6.
doi: 10.1186/s12870-020-02619-6
[36] 任美艳, 王志林, 郭慧琴, 薛敏, 殷玉梅, 王茅雁. 沙冬青C2H2型锌指蛋白基因AmZFP1的克隆与表达分析. 华北农学报, 2017, 32(2): 8-13. doi: 10.7668/hbnxb.2017.02.002.
doi: 10.7668/hbnxb.2017.02.002
REN M Y, WANG Z L, GUO H Q, XUE M, YIN Y M, WANG M Y. Cloning and expression analysis of AmZFP1, A C2H2-type ZFP gene from Ammopiptanthus mongolicus. Acta Agriculturae Boreali-Sinica, 2017, 32(2): 8-13. doi: 10.7668/HBNXB2017.02.002. (in Chinese)
doi: 10.7668/hbnxb.2017.02.002
[37] 刘慧, 郭丹丽, 蔡大润, 黄先忠. 小拟南芥ApZFP基因异源超表达促进拟南芥开花并提高耐逆性. 植物学报, 2016, 51(3): 296-305. doi: 10.7668/hbnxb.2017.02.002.
doi: 10.11983/CBB15127
LIU H, GUO D L, CAI D R, HUANG X Z. Heterologous overexpression of ApZFP promotes flowering and improves abiotic tolerance in Arabidopsis thaliana. Bulletin of Botany, 2016, 51(3): 296-305. doi: 10.7668/HBNXB2017.02.002. (in Chinese)
doi: 10.11983/CBB15127
[38] WENG L, ZHAO F F, LI R, XU C J, CHEN K S, XIAO H. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiology, 2015, 167(3): 931-49. doi: 10.1104/pp.114.255174.
doi: 10.1104/pp.114.255174
[39] HUANG J, SUN S J, XU D Q, LAN H G, SUN H, WANG Z F, BAO Y M, WANG J F, TANG H J, ZHANG H S. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Molecular Biology, 2012, 80(3):337-350. doi: 10.1007/s11103-012-9955-5.
doi: 10.1007/s11103-012-9955-5
[40] MA X L, LIANG W J, GU P H, HUANG Z J. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiology and Biochemistry, 2016, 106:129-140. doi: 10.1016/j.plaphy.2016.04.033.
doi: 10.1016/j.plaphy.2016.04.033 pmid: 27156137
[41] 赵栗. 外源GA3和SA对棉花幼苗根系生长的影响. 安徽农学通报, 2021, 27(10): 45-48.
ZHAO L. Effects of gibberellins and salicylic acid on cotton seedling root growth. Anhui Agricultural Science Bulletin, 2021, 27(10): 45-48. (in Chinese)
[42] 张幸福, 韩栓, 王伟, 江静. ABA和GA刺激的ROS代谢调节水稻幼根伸长分析. 河南大学学报(自然科学版), 2010(1): 62-66.
ZHANG X F, HAN S, WANG W, JIANG J. Analysis of ABA-and GA-stimulated reactive oxygen species mediating the elongation of rice seeding roots. Journal of Henan University (Natural Science Edition), 2010(1): 62-66. (in Chinese)
[43] 葛坤, 王培军, 邵海林, 郭家雁, 杜宾. 重金属胁迫对植物生理生化的影响及其抗性机理研究. 山西林业科技, 2021, 50(3): 43-46.
GE K, WANG P J, SHAO H L, GUO J Y, DU B. Study on the effects of heavy metal stress on plant physiology and biochemistry and its resistance mechanism. Shanxi Forestry Science and Technology, 2021, 50(3): 43-46. (in Chinese)
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[8] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[11] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[12] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[13] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[14] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[15] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
Full text



No Suggested Reading articles found!