Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 796-806.doi: 10.3864/j.issn.0578-1752.2022.04.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves

KONG FanLin1(),LI Yuan1,FU Tong2,DIAO QiYu1,TU Yan1()   

  1. 1Feed Research Institute, Chinese Academy of Agricultural Sciences/Beijing Key Laboratory for Dairy Cow Nutrition, Beijing 100081
    2College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000
  • Received:2020-06-30 Accepted:2021-12-30 Online:2022-02-16 Published:2022-02-23
  • Contact: Yan TU E-mail:a895833622@163.com;tuyan@caas.cn

Abstract:

【Objective】2-Hydroxy-4-(Methylthio)-Butanoic Acid (HMBi) is widely used to satisfy the absent of methionine (Met) in ruminal diet. Although the characteristic of HMBi is a rumen protected product, there is still an amount of HMBi degraded in rumen, which should be taken seriously. Hence, this study was conducted to evaluate the effects of HMBi on rumen fermentation and microbiota. 【Method】The experiment was conducted for 97 days with 36 Holstein female calves aged about 84 day-old with (101±10) kg body weight, and those calves were allocated to 2 groups, including PC group (0.40% Met) and PCMet group (0.28% Met). The treatment was achieved by deducting HMBi in diet of PCMet group and made Met level 30% lower than that of PC group. The first 7 d were an adaptation to the diets and the next 90 d for sampling. The body weight was measured at 0 d and 90 d, respectivley. The dry matter intake was recorded daily throughout the whole trial period. The serum and rumen fluid samples from five calves in each group were sampled on day 90 to determine rumen fermentation parameters and microbial communities. 【Result】(1) Compared with PC group, the growth performance of PCMet group was not changed (P>0.05). The Met in serum of PCMet group had trend to be significantly decreased when compared with PC group (0.05<P<0.1); (2) The molar proportion of acetate and microprotein concentration in PCMet group was significantly decreased by Met deduction (P<0.05). There were no significant differences on concentrations of total volatile fatty acid and ammonia nitrogen between two groups (P>0.05). (3) The Shannon index of microbiota in PCMet group was lower than that in PC group (P<0.05). The PCoA and PREANOVA analysis showed the significant distinction between microbiota in two groups (P<0.05). Furthermore, the relative abundance of Firmicutes in PCMet group was decreased and the relative abundance of Bacteroidetes was increased when compared with PC group (P<0.05). At genus level, the relative abundance of Olsenella, [Ruminococcus] gauvreauii group, Acetitomaculum, [Eubacterium] nodatum group, and Coprococcus 1 were decreased in PCMet group (P<0.05). The correlation analysis showed that [Eubacterium] nodatum group and Acetitomaculum were significantly correlated with acetate and [Ruminococcus] gauvreauii group was significantly correlated with MCP (P<0.05, r>0.7). 【Conclusion】 The ruminal microbiota was inhibited by HMBi deduction, which led to the decrease of MCP and Shannon index. Among them, the acetogen was sensitive with HMBi. In conclusion, although HMBi was a rumen protected product, the part of HMBi degraded in rumen still had the ability to regulate rumen fermentation.

Key words: HMBi, female calves, microbiota, rumen fermentation parameters

Table 1

Composition and nutrient levels of basal diet (dry matter basis, %)"

日粮组成 Ingredient 含量Content (%) 营养成分Nutrient 2) 营养水平Nutrient level
玉米 Corn 45.67 干物质 DM
(风干物质基础 Air-dry basis)
90.53
苜蓿 Alfalfa 25.00
小麦麸 Wheat bran 15.00 总能 GE(Mcal·kg-1 16.76
大豆粕 Soybean meal 11.97 代谢能 ME(Mcal·kg-1 12.71
细石粉 CaCO3 1.06 有机物 OM 93.32
预混料1% Premix1) 1.00 粗蛋白质 CP 19.22
食盐 NaCl 0.30 粗脂肪 EE 4.56
合计 Total 100.00 中性洗涤纤维 NDF 20.08
酸性洗涤纤维 ADF 11.43
钙 Ca 1.07
磷 P 0.49
赖氨酸 Lys 0.73
蛋氨酸 Met 0.11
苏氨酸 Thr 0.41

Table 2

Dietary rumen protected amino acid and amino acid levels (dry matter basis, %)"

项目
Item
组别 Group
PC PCMet
基础日粮蛋氨酸 Met in basal diet 0.11 0.11
基础日粮赖氨酸 Lys in basal diet 0.73 0.73
过瘤胃蛋氨酸添加量 Addition of HMBi1) 1.32 0.77
过瘤胃赖氨酸添加量 Addition of rumen protected Lys2) 1.68 1.68
日粮蛋氨酸水平 Met level in test diet 0.40 0.28
日粮赖氨酸水平 Lys level in test diet 1.21 1.21

Table 3

Effects of partial deduction of methionine on growth performance and serum methionine level of female calves"

项目
Item
组别 Group SEM P
P value
PC PCMet
初始体重 Initial BW (kg) 101.75 101.25 1.790 0.89
结束体重 Final BW (kg) 180.62 176.92 2.207 0.41
日增重 ADG (g·d-1) 876.31 840.78 18.109 0.34
干物质采食量 DMI (kg·d-1) 3.20 3.25 0.029 0.42
饲料转化比 Feed effeiciency, gain/feed 0.28 0.26 0.007 0.21
血清蛋氨酸 Serum Met (μg·mL-1) 4.19 3.44 0.212 0.07

Fig. 1

Effects of partial deduction of methionine on rumen fermentation parameters of female calves"

Fig. 2

Comparison of alpha diversity indices between groups"

Fig. 3

Cluster analysis by principal coordinate analysis"

Fig. 4

Composition and comparison of abundances at the phylum and genus level in the PC and PCMet group Significant differences in relative abundance between different treatments were marked with star. * indicates P<0.05, ** indicates P<0.01"

Table 4

Effects of partial deduction of methionine on KEGG pathway of bacterial gene function in rumen"

KEGG 通路
KEGG Pathway
组别 Group SEM P
P value
PC PCMet
前5通路 Top 5 pathway
转运蛋白 Transporters 7.01 5.96 0.277 0.06
一般功能基因 General function prediction only 3.63 3.60 0.035 0.76
ABC转运蛋白 ABC transporters 3.42 2.94 0.136 0.08
DNA修复和重组蛋白DNA repair and recombination proteins 2.89 2.99 0.043 0.28
核糖体 Ribosome 2.50 2.56 0.040 0.46
蛋氨酸代谢相关通路 Methionine metabolism pathway
氨酰-tRNA生物合成 Aminoacyl-tRNA biosynthesis 1.27 1.26 0.013 0.63
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism 0.97 0.99 0.011 0.37
甘氨酸、丝氨酸和苏氨酸代谢Glycine, serine and threonine metabolism 0.82 0.87 0.015 0.08
氮代谢 Nitrogen metabolism 0.66 0.69 0.008 0.13
谷胱甘肽代谢 Glutathione metabolism 0.18 0.20 0.008 0.28
牛磺酸和亚牛磺酸代谢 Taurine and hypotaurine metabolism 0.10 0.11 0.004 0.78

Fig. 5

Spearman’s correlation between the rumen bacterial communities and phenotypic variables * indicates that correlations were statistically significant with strong correlations (P<0.05, |r|>0.7). The strength of the correlation between variables is indicated by the color intensity of the squares. The colors denote whether the correlation is positive (Blue squares) or negative (Red squares)"

[1] WANG J H, DIAO Q Y, TU Y, ZHANG N F, XU X C. The limiting sequence and proper ratio of lysine, methionine and threonine for calves fed milk replacers containing soy protein. Asian-Australasian Journal of Animal Sciences, 2012, 25(2):224-233. doi: 10.5713/ajas.2011.11190.
doi: 10.5713/ajas.2011.11190
[2] 孔凡林, 李媛, 唐梦琪, 马满鹏, 付彤, 刁其玉, 成思源, 屠焰. 氨基酸缺乏对母犊牛生长和日粮养分消化代谢的影响. 中国农业科学, 2020, 53(2):418-430. doi: 10.3864/j.issn.0578-1752.2020.02.016.
doi: 10.3864/j.issn.0578-1752.2020.02.016
KONG F L, LI Y, TANG M Q, MA M P, FU T, DIAO Q Y, CHENG S Y, TU Y. Effects of amino acid deficiency on growth development, dietary nutrients digestion and metabolism in heifers. Scientia Agricultura Sinica, 2020, 53(2):418-430. doi: 10.3864/j.issn.0578-1752.2020.02.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.016
[3] SOBERON F, RAFFRENATO E, EVERETT R W, VAN AMBURGH M E. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. Journal of Dairy Science, 2012, 95(2):783-793. doi: 10.3168/jds.2011-4391.
doi: 10.3168/jds.2011-4391
[4] 任春燕, 毕研亮, 郭艳丽, 杜汉昌, 于博, 屠焰, 刁其玉. 开食料中性洗涤纤维水平对犊牛生长性能、血清生化指标和抗氧化功能的影响. 中国农业科学, 2020, 53(2):440-450. doi: 10.3864/j.issn.0578-1752.2020.02.018.
doi: 10.3864/j.issn.0578-1752.2020.02.018
REN C Y, BI Y L, GUO Y L, DU H C, YU B, TU Y, DIAO Q Y. Effects of NDF level of starter on growth performance, serum biochemical parameters and antioxidant indices in calves. Scientia Agricultura Sinica, 2020, 53(2):440-450. doi: 10.3864/j.issn.0578-1752.2020.02.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.018
[5] KERTZ A F, HILL T M, QUIGLEY J D 3rd, HEINRICHS A J, LINN J G, DRACKLEY J K. A 100-Year Review: calf nutrition and management. Journal of Dairy Science, 2017, 100(12):10151-10172. doi: 10.3168/jds.2017-13062.
doi: 10.3168/jds.2017-13062
[6] WHELAN S J, MULLIGAN F J, FLYNN B, MCCARNEY C, PIERCE K M. Effect of forage source and a supplementary methionine hydroxy analog on nitrogen balance in lactating dairy cows offered a low crude protein diet. Journal of Dairy Science, 2011, 94(10):5080-5089. doi: 10.3168/jds.2011-4174.
doi: 10.3168/jds.2011-4174
[7] ORDWAY R S, BOUCHER S E, WHITEHOUSE N L, SCHWAB C G, SLOAN B K. Effects of providing two forms of supplemental methionine to periparturient Holstein dairy cows on feed intake and lactational performance. Journal of Dairy Science, 2009, 92(10):5154-5166. doi: 10.3168/jds.2009-2259.
doi: 10.3168/jds.2009-2259
[8] GRAULET B, RICHARD C, ROBERT J C. Methionine availability in plasma of dairy cows supplemented with methionine hydroxy analog isopropyl ester. Journal of Dairy Science, 2005, 88(10):3640-3649. doi: 10.3168/jds.S0022-0302(05)73049-6.
doi: 10.3168/jds.S0022-0302(05)73049-6
[9] KOENIG K M, RODE L M, KNIGHT C D, MCCULLOUGH P R. Ruminal escape, gastrointestinal absorption, and response of serum methionine to supplementation of liquid methionine hydroxy analog in dairy cows. Journal of Dairy Science, 1999, 82(2):355-361. doi: 10.3168/jds.S0022-0302(99)75242-2.
doi: 10.3168/jds.S0022-0302(99)75242-2
[10] NOFTSGER S, ST-PIERRE N R, SYLVESTER J T. Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows. Journal of Dairy Science, 2005, 88(1):223-237. doi: 10.3168/jds.S0022-0302(05)72680-1.
doi: 10.3168/jds.S0022-0302(05)72680-1
[11] MARTIN C, MIRANDE C, MORGAVI D P, FORANO E, DEVILLARD E, MOSONI P. Methionine analogues HMB and HMBi increase the abundance of cellulolytic bacterial representatives in the rumen of cattle with no direct effects on fibre degradation. Animal Feed Science and Technology, 2013, 182(1/2/3/4):16-24. doi: 10.1016/j.anifeedsci.2013.03.008.
doi: 10.1016/j.anifeedsci.2013.03.008
[12] 周帅, 韩兆玉, 刘军彪, 王群, 唐波. 蛋氨酸羟基类似物异丙酯对瘤胃体外发酵参数的影响. 动物营养学报, 2012, 24(6):1105-1109. doi: 10.3969/j.issn.1006-267x.2012.06.016.
doi: 10.3969/j.issn.1006-267x.2012.06.016
ZHOU S, HAN Z Y, LIU J B, WANG Q, TANG B. Influence of 2-hydroxy-4-(methylthio)butanoic acid isopropyl ester on rumen fermentation parameters in vitro. Acta Zoonutrimenta Sinica, 2012, 24(6):1105-1109. doi: 10.3969/j.issn.1006-267x.2012.06.016. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2012.06.016
[13] FOWLER C M, PLANK J E, DEVILLARD E, BEQUETTE B J, FIRKINS J L. Assessing the ruminal action of the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid in continuous and batch cultures of mixed ruminal microbes. Journal of Dairy Science, 2015, 98(2):1167-1177. doi: 10.3168/jds.2014-8692.
doi: 10.3168/jds.2014-8692
[14] ZINN R A, SHEN Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. Journal of Animal Science, 1998, 76(5):1280-1289. doi: 10.2527/1998.7651280x.
doi: 10.2527/1998.7651280x
[15] 云强. 蛋白水平及Lys/Met对断奶犊牛生长、消化代谢及瘤胃发育的影响[D]. 北京: 中国农业科学院, 2010.
YUN Q. Effects of protein level and Lys/met on performance, nutrient digestibility and rumen development for weaned calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[16] NATION RESEARCH COUNCIL. Requirements of Dairy Cattle. 7th revised. W. Washington, D.C.: National Academies Press, 2021. doi: 10.17226/25806.
doi: 10.17226/25806
[17] VERDOUW H, VAN ECHTELD C J A, DEKKERS E M J. Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 1978, 12(6):399-402. doi: 10.1016/0043-1354(78)90107-0.
doi: 10.1016/0043-1354(78)90107-0
[18] 王洪荣, 陈旭伟, 王梦芝. 茶皂素和丝兰皂苷对山羊人工瘤胃发酵和瘤胃微生物的影响. 中国农业科学, 2011, 44(8):1710-1719.
WANG H R, CHEN X W, WANG M Z. Effect of Yucca schidigera saponin and tea saponin mixture on the rumen fermentation and its fibrolytic bacterial activity in the rusitec substrates with different concentrate to forage ratio. Scientia Agricultura Sinica, 2011, 44(8):1710-1719. (in Chinese)
[19] SCHLOSS P D, WESTCOTT S L, RYABIN T, HALL J R, HARTMANN M, HOLLISTER E B, LESNIEWSKI R A, OAKLEY B B, PARKS D H, ROBINSON C J, SAHL J W, STRES B, THALLINGER G G, VAN HORN D J, WEBER C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23):7537-7541. doi: 10.1128/AEM.01541-09.
doi: 10.1128/AEM.01541-09
[20] CHEN J, BITTINGER K, CHARLSON E S, HOFFMANN C, LEWIS J, WU G D, COLLMAN R G, BUSHMAN F D, LI H Z. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics, 2012, 28(16):2106-2113. doi: 10.1093/bioinformatics/bts342.
doi: 10.1093/bioinformatics/bts342
[21] LANGILLE M G I, ZANEVELD J, CAPORASO J G, MCDONALD D, KNIGHTS D, REYES J A, CLEMENTE J C, BURKEPILE D E, VEGA THURBER R L, KNIGHT R, BEIKO R G, HUTTENHOWER C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9):814-821. doi: 10.1038/nbt.2676.
doi: 10.1038/nbt.2676
[22] LI Y, BI Y L, DIAO Q Y, PIAO M Y, WANG B, KONG F L, HU F M, TANG M Q, SUN Y, TU Y. The limiting sequence and appropriate amino acid ratio of lysine, methionine, and threonine for seven-to nine-month-old Holstein heifers fed corn-soybean M-based diet. Animals: an Open Access Journal from MDPI, 2019, 9(10):750. doi: 10.3390/ani9100750.
doi: 10.3390/ani9100750
[23] WANG C, LIU H Y, WANG Y M, YANG Z Q, LIU J X, WU Y M, YAN T, YE H W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. Journal of Dairy Science, 2010, 93(8):3661-3670. doi: 10.3168/jds.2009-2750.
doi: 10.3168/jds.2009-2750
[24] 王建红, 刁其玉, 许先查, 屠焰, 张乃锋, 云强. 日粮Lys、Met和Thr添加模式对0-2月龄犊牛生长性能、消化代谢与血清学生化指标的影响. 中国农业科学, 2011, 44(9):1898-1907. doi: 10.3864/j.issn.0578-1752.2011.09.017.
doi: 10.3864/j.issn.0578-1752.2011.09.017
WANG J H, DIAO Q Y, XU X C, TU Y, ZHANG N F, YUN Q. Effects of dietary addition pattern of lysine, methionine and threonine in the diet on growth performance, nutrient digestion and metabolism, and serum biochemical parameters in calves at the ages of 0-2 months. Scientia Agricultura Sinica, 2011, 44(9):1898-1907. doi: 10.3864/j.issn.0578-1752.2011.09.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.09.017
[25] SOK M, OUELLET D R, FIRKINS J L, PELLERIN D, LAPIERRE H. Amino acid composition of rumen bacteria and protozoa in cattle. Journal of Dairy Science, 2017, 100(7):5241-5249. doi: 10.3168/jds.2016-12447.
doi: 10.3168/jds.2016-12447
[26] BERGEN W G. Measuring in vivo intracellular protein degradation rates in animal systems. Journal of Animal Science, 2008, 86(Suppl_ 14):E3-E12. doi: 10.2527/jas.2007-0430.
doi: 10.2527/jas.2007-0430
[27] KOENIG K M, RODE L M. Ruminal degradability, intestinal disappearance, and plasma methionine response of rumen-protected methionine in dairy cows. Journal of Dairy Science, 2001, 84(6):1480-1487. doi: 10.3168/jds.S0022-0302(01)70181-6.
doi: 10.3168/jds.S0022-0302(01)70181-6
[28] BREVES G, SCHRÖDER B, HEIMBECK W, PATTON R A. Short communication: transport of 2-hydroxy-4-methyl-thio-butanoic isopropyl ester by rumen epithelium in vitro. Journal of Dairy Science, 2010, 93(1):260-264. doi: 10.3168/jds.2009-2200.
doi: 10.3168/jds.2009-2200
[29] OR-RASHID M M, ONODERA R, WADUD S. Biosynthesis of methionine from homocysteine, cystathionine and homoserine plus cysteine by mixed rumen microorganisms in vitro. Applied Microbiology and Biotechnology, 2001, 55(6):758-764. doi: 10.1007/s002530100548.
doi: 10.1007/s002530100548
[30] BAGHBANZADEH-NOBARI B, TAGHIZADEH A, KHORVASH M, PARNIAN-KHAJEHDIZAJ F, MALONEY S K, HASHEMZADEH- CIGARI F, GHAFFARI A H. Digestibility, ruminal fermentation, blood metabolites and antioxidant status in ewes supplemented with DL-methionine or hydroxy-4 (methylthio) butanoic acid isopropyl ester. Journal of Animal Physiology and Animal Nutrition, 2017, 101(5):e266-e277. doi: 10.1111/jpn.12600.
doi: 10.1111/jpn.12600
[31] ABDELMEGEID M K, ELOLIMY A A, ZHOU Z, LOPREIATO V, MCCANN J C, LOOR J J. Rumen-protected methionine during the peripartal period in dairy cows and its effects on abundance of major species of ruminal bacteria. Journal of Animal Science and Biotechnology, 2018, 9:17. doi: 10.1186/s40104-018-0230-8.
doi: 10.1186/s40104-018-0230-8
[32] 林奕, 王之盛, 周安国. 2-羟基-4-甲硫基丁酸异丙酯(HMBi)以及2-羟基-4-甲硫基丁酸(HMB)在反刍动物中的应用. 中国奶牛, 2008(11):11-15.
LIN Y, WANG Z S, ZHOU A G. Application of 2-Hydroxy-4-(Methylthio) butanoic acid isopropyl ester and Methionine hydroxyl analogue in ruminants. China Dairy Cattle, 2008(11):11-15. (in Chinese)
[33] KRAATZ M, WALLACE R J, SVENSSON L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 4):795-803. doi: 10.1099/ijs.0.022954-0.
doi: 10.1099/ijs.0.022954-0
[34] KHAFIPOUR E, LI S C, PLAIZIER J C, KRAUSE D O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75(22):7115-7124. doi: 10.1128/AEM.00739-09.
doi: 10.1128/AEM.00739-09
[35] LEE C, OH J, HRISTOV A N, HARVATINE K, VAZQUEZ-ANON M, ZANTON G I. Effect of 2-hydroxy-4-methylthio-butanoic acid on ruminal fermentation, bacterial distribution, digestibility, and performance of lactating dairy cows. Journal of Dairy Science, 2015, 98(2):1234-1247. doi: 10.3168/jds.2014-8904.
doi: 10.3168/jds.2014-8904
[36] KONG F L, GAO Y X, TANG M Q, FU T, DIAO Q Y, BI Y L, TU Y. Effects of dietary rumen-protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Applied Microbiology and Biotechnology, 2020, 104(15):6623-6634. doi: 10.1007/s00253-020-10684-y.
doi: 10.1007/s00253-020-10684-y
[37] DENMAN S E, MORGAVI D P, MCSWEENEY C S. Review: The application of omics to rumen microbiota function. Animal, 2018, 12:s233-s245. doi: 10.1017/S175173111800229X.
doi: 10.1017/S175173111800229X
[1] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[2] YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period [J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434.
[3] FENG Ze-meng, BAO Xian-ying, YIN Yu-long. The Interaction of Colonization of Akkermansia muciniphila in Gastrointestinal Tract and Its Host [J]. Scientia Agricultura Sinica, 2016, 49(8): 1577-1584.
[4] PENG Qian-qian, WANG Xue-min, ZHANG Min-hong, FENG Jing-hai, ZHEN Long, ZHANG Shao-shuai . Effects of Constant Moderate Temperatures on the Diversity of the Intestinal Microbial Flora of Broilers [J]. Scientia Agricultura Sinica, 2016, 49(1): 186-194.
[5] XU Long-Long, WU Jie, GUO Jun, LI Ji-Lian. Dynamic Variation of Symbionts in Bumblebees During Hosts Growth and Development [J]. Scientia Agricultura Sinica, 2014, 47(10): 2030-2037.
[6] ZHAO Sheng-guo,WANG Jia-qi,BU Deng-pan,LIU Kai-lang,ZHU Ya-xin,ZHOU Ling-yun
. Screening and Bioinformatics Analysis of ACCase from a BAC Library of Dairy Cow Rumen Microbiota
[J]. Scientia Agricultura Sinica, 2011, 44(5): 1015-1021 .
[7] NI Xue-qin,Joshua Gong,Hai Yu,Shayan Sharif,ZENG Dong. Influence of MHC Genotype on the Bacterial Community in the Layer Gastrointestinal Tract Analyzed by PCR-DGGE#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2564-2571 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!