Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 816-824.doi: 10.3864/j.issn.0578-1752.2022.04.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses

YANG ShiMan1(),XU ChengZhi1(),XU BangFeng1,WU YunPu2,JIA YunHui1,QIAO ChuanLing1(),CHEN HuaLan1   

  1. 1Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Veterinary Biotechnology, Harbin 150069
    2Laboratory Animal Center, Liaoning University of Traditional Chinese Medicine, Shenyang 110847
  • Received:2020-12-31 Accepted:2021-03-30 Online:2022-02-16 Published:2022-02-23
  • Contact: ChuanLing QIAO E-mail:ysm196033@163.com;xucz1994@163.com;qiaochuanling@caas.cn

Abstract:

【Objective】 The pathogenicities of influenza viruses are determined by multiple viral genes. The results of our previous study indicated that hemagglutinin (HA) gene substitutions of the two genetically similar H1N1 swine influenza viruses altered their pathogenicities in mice. This study aimed to further identify the key amino acids affecting viral pathogenicity. 【Method】 After analyzing the amino acid differences of HA protein between the two H1N1 viruses, the reassortant viruses bearing the single amino acid mutations were constructed using the site-directed mutagenesis primers, and their EID50 values were determined. To determine the growth of the parental, reassortant and mutant viruses in vitro, MDCK cells and A549 cells were infected with the indicated viruses at a multiplicity of infection (MOI) of 0.001 and 0.1, respectively. The BALB/c mice was further intranasally (i.n.) inoculated with 106 EID50 of each virus, and three mice were euthanized at 3 days post-infection (dpi).The organs, including brain, nasal turbinate, lung, kidney and spleen, were collected from the mice and titrated in eggs to evaluate the viral replication abilities in vivo. The MLD50 values of the indicated viruses were determined by inoculating i.n. groups of five mice with 101-106 EID50 of viruses. The body weight was measured daily for 14 dpi, and the mice that lost more than 25% of their original weight were euthanized for humane reasons. 【Result】 The HA proteins of the ZD71 and SY130 viruses differed at four amino acids at positions 4, 138, 144, and 225 (H3 numbering). Four reassortants were rescued, followed by whole-genome sequencing to ensure the absence of unwanted mutations. The viral replication abilities of the reassortant viruses (rZD71-HA/G225E and rSY130-HA/E225G) were significantly affected in MDCK, as well as in A549 cells, when G225E and E225G substitutions were introduced into the rZD71 and rSY130 virus, respectively. In contrast, the mutations of the other three amino acids had little effect on viral replication in vitro. Further mouse infection experiments also demonstrated that amino acid substitutions at site 225 of HA protein significantly affected the viral pathogenicities in mice. In particular, the substitution G225E increased the pathogenicity of rZD71-HA/G225E virus, with the MLD50 value of rZD71-HA/G225E virus decreasing from 4.32 log10EID50 to 3.0 log10EID50, compared with that of rZD71 virus. And the virus replicated well not only in the nasal turbinate and lung, but also in the spleen and kidney. 【Conclusion】 A single amino acid at position 225 in the HA protein significantly affects the viral replication capacity and virulence of these two H1N1 swine influenza viruses. It is suggested that close monitoring for this residue should be paid in the future virological surveillance, so as to provide a scientific basis for better prevention and control of animal influenza, and even human influenza pandemic.

Key words: swine influenza virus, HA protein, amino acid, pathogenicity

Table 1

The different amino acids between the ZD71 and SY130 viruses"

病毒
Viruses
氨基酸差异位点 Amino acid difference sites
4 138 144 225
ZD71 V A T G
SY130 A S A E

Table 2

Determination of EID50 of the site-directed mutant viruses"

拯救病毒
Rescued viruses
氨基酸差异位点
Amino acid difference sites
log10EID50
(mL)
4 138 144 225
rZD71 V A T G 8.38
rZD71-HA A S A E 8.68
rZD71-HA/V4A A A T G 8.83
rZD71-HA/A138S V S T G 9.17
rZD71-HA/T144A V A A G 8.83
rZD71-HA/G225E V A T E 8.63
rSY130 A S A E 8.68
rSY130-HA V A T G 8.17
rSY130-HA/A4V V S A E 8.50
rSY130-HA/S138A A A A E 7.83
rSY130-HA/A144T A S T E 8.50
rSY130-HA/E225G A S A G 8.38

Fig. 1

Growth kinetics of the viruses in MDCK cells (A, C) and A549 cells (B, D)"

Fig. 2

Viral replication titers in the organs of mice infected with viruses"

Fig. 3

Determination of MLD50 of the parental viruses, single-gene reassortants, and single-site mutants"

Fig. 4

Analysis of amino acids at position 225 in the HA protein of H1N1 subtype SIV “X”denotes amino acid D, K, or N"

[1] GAMBLIN S J, SKEHEL J J. Influenza hemagglutinin and neuraminidase membrane glycoproteins. The Journal of Biological Chemistry, 2010, 285(37):28403-28409. doi: 10.1074/jbc.R110.129809.
doi: 10.1074/jbc.R110.129809
[2] WILLE M, HOLMES E C. The ecology and evolution of influenza viruses. Cold Spring Harbor Perspectives in Medicine, 2020, 10(7):a038489. doi: 10.1101/cshperspect.a038489.
doi: 10.1101/cshperspect.a038489
[3] MA W J. Swine influenza virus: current status and challenge. Virus Research, 2020, 288:198118. doi: 10.1016/j.virusres.2020.198118.
doi: 10.1016/j.virusres.2020.198118
[4] CHEN Y, ZHANG J, QIAO C L, YANG H L, ZHANG Y, XIN X G, CHEN H L. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China. Infection, Genetics and Evolution, 2013, 13:331-338. doi: 10.1016/j.meegid.2012.09.021.
doi: 10.1016/j.meegid.2012.09.021
[5] YANG H L, CHEN Y, QIAO C L, HE X J, ZHOU H, SUN Y, YIN H, MENG S S, LIU L P, ZHANG Q Y, KONG H H, GU C Y, LI C J, BU Z G, KAWAOKA Y, CHEN H L. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2):392-397. doi: 10.1073/pnas.1522643113.
doi: 10.1073/pnas.1522643113
[6] SUN H L, XIAO Y H, LIU J Y, WANG D Y, LI F T, WANG C X, LI C, ZHU J D, SONG J W, SUN H R, JIANG Z M, LIU L T, ZHANG X, WEI K, HOU D J, PU J, SUN Y P, TONG Q, BI Y H, CHANG K C, LIU S D, GAO G F, LIU J H. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. PNAS, 2020, 117(29):17204-17210. doi: 10.1073/pnas.1921186117.
doi: 10.1073/pnas.1921186117
[7] CHEN Y, TROVÃO N S, WANG G J, ZHAO W F, HE P, ZHOU H B, MO Y N, WEI Z Z, OUYANG K, HUANG W J, GARCÍA-SASTRE A, NELSON M I. Emergence and evolution of novel reassortant influenza A viruses in canines in Southern China. mBio, 2018, 9(3):e00909-18. doi: 10.1128/mBio.00909-18.
doi: 10.1128/mBio.00909-18
[8] LIU J H, LI Z H, CUI Y L, YANG H Y, SHAN H, ZHANG C M. Emergence of an Eurasian avian-like swine influenza A (H1N1) virus from mink in China. Veterinary Microbiology, 2020, 240:108509. doi: 10.1016/j.vetmic.2019.108509.
doi: 10.1016/j.vetmic.2019.108509
[9] ZHU W F, ZHANG H, XIANG X Y, ZHONG L L, YANG L, GUO J F, XIE Y R, LI F C, DENG Z H, FENG H, HUANG Y W, HU S X, XU X, ZOU X H, LI X D, BAI T, CHEN Y K, LI Z, LI J H, SHU Y L. Reassortant Eurasian avian-like influenza A(H1N1) virus from a severely ill child, Hunan Province, China, 2015. Emerging Infectious Diseases, 2016, 22(11):1930-1936. doi: 10.3201/eid2211.160181.
doi: 10.3201/eid2211.160181
[10] YANG H L, QIAO C L, TANG X, CHEN Y, XIN X G, CHEN H L. Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerging Infectious Diseases, 2012, 18(7):1144-1146. doi: 10.3201/eid1807.120009.
doi: 10.3201/eid1807.120009
[11] RUSSELL C J. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Current Topics in Microbiology and Immunology, 2014, 385:93-116. doi: 10.1007/82_2014_393.
doi: 10.1007/82_2014_393
[12] STEINHAUER D A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 1999, 258(1):1-20. doi: 10.1006/viro.1999.9716.
doi: 10.1006/viro.1999.9716
[13] MATROSOVICH M, STECH J, KLENK H D. Influenza receptors, polymerase and host range. Revue Scientifique et Technique (International Office of Epizootics), 2009, 28(1):203-217. doi: 10.20506/rst.28.1.1870.
doi: 10.20506/rst.28.1.1870
[14] MATROSOVICH M, TUZIKOV A, BOVIN N, GAMBARYAN A, KLIMOV A, CASTRUCCI M R, DONATELLI I, KAWAOKA Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology, 2000, 74(18):8502-8512. doi: 10.1128/jvi.74.18.8502-8512.2000.
doi: 10.1128/jvi.74.18.8502-8512.2000
[15] KANNAN S, KOLANDAIVEL P. Computational studies of pandemic 1918 and 2009 H1N1 hemagglutinins bound to avian and human receptor analogs. Journal of Biomolecular Structure and Dynamics, 2016, 34(2):272-289. doi: 10.1080/07391102.2015.1027737.
doi: 10.1080/07391102.2015.1027737
[16] DAS P, LI J Y, ROYYURU A K, ZHOU R H. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. Journal of Computational Chemistry, 2009, 30(11):1654-1663. doi: 10.1002/jcc.21274.
doi: 10.1002/jcc.21274
[17] STEVENS J, BLIXT O, GLASER L, TAUBENBERGER J K, PALESE P, PAULSON J C, WILSON I A. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Journal of Molecular Biology, 2006, 355(5):1143-1155. doi: 10.1016/j.jmb.2005.11.002.
doi: 10.1016/j.jmb.2005.11.002
[18] TUMPEY T M, MAINES T R, VAN HOEVEN N, GLASER L, SOLÓRZANO A, PAPPAS C, COX N J, SWAYNE D E, PALESE P, KATZ J M, GARCÍA-SASTRE A. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science, 2007, 315(5812):655-659. doi: 10.1126/science.1136212.
doi: 10.1126/science.1136212
[19] WANG Z, YANG H L, CHEN Y, TAO S Y, LIU L L, KONG H H, MA S J, MENG F, SUZUKI Y, QIAO C L, CHEN H L. A single-amino-acid substitution at position 225 in hemagglutinin alters the transmissibility of Eurasian avian-like H1N1 swine influenza virus in Guinea pigs. Journal of Virology, 2017, 91(21):e00800-17. doi: 10.1128/JVI.00800-17.
doi: 10.1128/JVI.00800-17
[20] XU C Z, XU B F, WU Y P, YANG S M, JIA Y H, LIANG W H, YANG D W, HE L K, ZHU W F, CHEN Y, YANG H L, YU B L, WANG D Y, QIAO C L. A single amino acid at position 431 of the PB2 protein determines the virulence of H1N1 swine influenza viruses in mice. Journal of Virology, 2020, 94(8):e01930-19. doi: 10.1128/JVI.01930-19.
doi: 10.1128/JVI.01930-19
[21] ZHANG Y, ZHANG Q Y, GAO Y W, HE X J, KONG H H, JIANG Y P, GUAN Y T, XIA X Z, SHU Y L, KAWAOKA Y, BU Z G, CHEN H L. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. Journal of Virology, 2012, 86(18):9666-9674. doi: 10.1128/JVI.00958-12.
doi: 10.1128/JVI.00958-12
[22] STEEL J, LOWEN A C, MUBAREKA S, PALESE P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathogens, 2009, 5(1):e1000252. doi: 10.1371/journal.ppat.1000252.
doi: 10.1371/journal.ppat.1000252
[23] LEE J, HENNINGSON J, MA J J, DUFF M, LANG Y K, LI Y H, LI Y H, NAGY A, SUNWOO S, BAWA B, YANG J M, BAI D P, RICHT J A, MA W J. Effects of PB1-F2 on the pathogenicity of H1N1 swine influenza virus in mice and pigs. The Journal of General Virology, 2017, 98(1):31-42. doi: 10.1099/jgv.0.000695.
doi: 10.1099/jgv.0.000695
[24] SUN Y P, HU Z, ZHANG X X, CHEN M Y, WANG Z, XU G L, BI Y H, TONG Q, WANG M Y, SUN H L, PU J, IQBAL M, LIU J H. An R195K mutation in the PA-X protein increases the virulence and transmission of influenza A virus in mammalian hosts. Journal of Virology, 2020, 94(11):e01817-e01819. doi: 10.1128/JVI.01817-19.
doi: 10.1128/JVI.01817-19
[25] ABED Y, PIZZORNO A, HAMELIN M E, LEUNG A, JOUBERT P, COUTURE C, KOBASA D, BOIVIN G. The 2009 pandemic H1N1 D222G hemagglutinin mutation alters receptor specificity and increases virulence in mice but not in ferrets. The Journal of Infectious Diseases, 2011, 204(7):1008-1016. doi: 10.1093/infdis/jir483.
doi: 10.1093/infdis/jir483
[26] OTTE A, SAUTER M, DAXER M A, MCHARDY A C, KLINGEL K, GABRIEL G. Adaptive mutations that occurred during circulation in humans of H1N1 influenza virus in the 2009 pandemic enhance virulence in mice. Journal of Virology, 2015, 89(14):7329-7337. doi: 10.1128/JVI.00665-15.
doi: 10.1128/JVI.00665-15
[27] JACKSON D, HOSSAIN M J, HICKMAN D, PEREZ D R, LAMB R A. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11):4381-4386. doi: 10.1073/pnas.0800482105.
doi: 10.1073/pnas.0800482105
[28] RAMOS I, FERNANDEZ-SESMA A. Cell receptors for influenza a viruses and the innate immune response. Frontiers in Microbiology, 2012, 3:117. doi: 10.3389/fmicb.2012.00117.
doi: 10.3389/fmicb.2012.00117
[29] LIU Q F, QIAO C L, MARJUKI H, BAWA B, MA J Q, GUILLOSSOU S, WEBBY R J, RICHT J A, MA W J. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo. Journal of Virology, 2012, 86(2):1233-1237. doi: 10.1128/JVI.05699-11.
doi: 10.1128/JVI.05699-11
[30] SUPHAPHIPHAT P, FRANTI M, HEKELE A, LILJA A, SPENCER T, SETTEMBRE E, PALMER G, CROTTA S, TUCCINO A B, KEINER B, TRUSHEIM H, BALABANIS K, SACKAL M, ROTHFEDER M, MANDL C W, DORMITZER P R, MASON P W. Mutations at positions 186 and 194 in the HA gene of the 2009 H1N1 pandemic influenza virus improve replication in cell culture and eggs. Virology Journal, 2010, 7:157. doi: 10.1186/1743-422X-7-157.
doi: 10.1186/1743-422X-7-157
[1] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] YAN TongJing,ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi. Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb [J]. Scientia Agricultura Sinica, 2022, 55(15): 3029-3041.
[5] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[6] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[7] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[8] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[9] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[10] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[11] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[12] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[15] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!