Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 329-338.doi: 10.3864/j.issn.0578-1752.2022.02.008

• PLANT PROTECTION • Previous Articles     Next Articles

Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria

ZHANG Rui1,2(),ZHANG XueYao1,ZHAO XiaoMing1,MA EnBo1,ZHANG JianZhen1()   

  1. 1Institute of Applied Biology, Shanxi University, Taiyuan 030006
    2College of Life Sciences, Shanxi Datong University, Datong 037009, Shanxi
  • Received:2021-07-01 Accepted:2021-08-02 Online:2022-01-16 Published:2022-01-26
  • Contact: JianZhen ZHANG E-mail:ruiz0106@163.com;zjz@sxu.edu.cn

Abstract:

【Objective】LmKnickkopf3-5′ (LmKnk3-5′) is an important cuticular protein involved in the development of Locusta migratoria. The purpose of this paper is to get the anti-LmKnk3-5′ polyclonal antibody and confirm the localization of LmKnk3-5′ in L. migratoria. The results will be beneficial to the biological function analysis of LmKnk3-5′ from protein level, meanwhile, it can lay the foundation for further study of the interaction of cuticular proteins in cuticle formation of L. migratoria. 【Method】Three specific antigen sequences (R1, R2 and R3) of LmKnk3-5′ were chosen after amino acid sequences alignment of Knickkopf (Knk) family genes in L. migratoria, including LmKnk, LmKnk2, LmKnk3-FL and LmKnk3-5′. The target antigen sequences were amplified by PCR using primers with BamH I, Hind III restriction sites and full-length cDNA sequences of LmKnk3-5′ as template. The antigen sequences and pET-32a vector were all digested by BamH I, Hind III and ligated to each other by T4 ligase enzyme to make recombinant plasmids, then the recombinant plasmids were transformed into BL21 (DE3) competent cells. The cells were incubated with 0.5 mmol·L-1 IPTG at 16℃ for 20 h to produce the recombinant fusion protein, SDS-PAGE was used to analysis the expression of target proteins. After that, E. coli cells that can express target proteins in dissolved state were expanded cultured for protein extraction. Ni-NTA agarose was used for target proteins purification and BCA method was used to determine the protein concentration. The LmKnk3-5′ polyclonal antibodies were obtained after immunizing BALB/c mouse four times. ELISA and Western blot were used to analyze the antibody titer and specificity, respectively. Finally, the paraffin sections were prepared using the integument of 8-day-old 5th-instar nymphs after dsLmKnk3-5′ and dsGFP injection, immunofluorescence was conducted to confirm the subcellular localization of LmKnk3-5′ in L. migratoria. 【Result】 R1, R2 and R3 were selected as specific antigen regions through amino acid sequences alignment. R1, R2 and R3 contain 208, 147 and 131 aa, respectively, with the predicted molecular weights of 24.0, 17.0 and 14.8 kD, respectively. Three recombinant plasmids (pET-32a-R1, pET-32a-R2, pET-32a-R3) were obtained successfully after enzyme digestion and ligation. SDS-PAGE analysis showed that only the cells consist of pET-32a-R2 plasmids could express target proteins in dissolved state after induced by IPTG. R2 recombinant fusion protein was purified and used to obtain anti-LmKnk3-5′ polyclonal antibody successfully after immunizing mice. ELISA analysis indicated that the titer of LmKnk3-5′ antibody was up to 1﹕512 000. The results of Western blot demonstrated that after dsLmKnk3-5′ injection, the expression of LmKnk3-5′ was significantly decreased in comparison of the dsGFP injection group. The results of immunofluorescence showed that LmKnk3-5′ was located in the epidermal cells and new cuticle, especially the apical site of newly synthesized exocuticle in L. migratoria. 【Conclusion】Anti-LmKnk3-5′ polyclonal antibody was obtained successfully, it has high titer and specificity. LmKnk3-5′ is mainly located in the apical site of newly synthesized exocuticle in L. migratoria. The results will provide protein level evidence for the functional research of LmKnk3-5′ in the cuticle formation of L. migratoria.

Key words: Locusta migratoria, cuticular protein, LmKnk3-5′, antibody preparation, subcellular localization

Table 1

Primers for specific antigen sequences of LmKnk3-5′"

特异抗原序列 Specific antigen sequence 引物序列Primer sequence (5′-3′) 产物大小 Product size (bp)
R1 F1: CGCGGATCCATGAAAAGACCGAGATCTCCC
R1: CCCAAGCTTCTGCTTCTGCTGCTGGTAGTTT
645
R2 F2: CGCGGATCCATGCACGTTCCCTCGGGCCCC
R2: CCCAAGCTTCTGCTTCTGCTGCTGGTAGTTT
462
R3 F3: CGCGGATCCATGAAAAGACCGAGATCT
R3: CCCAAGCTTCTGCTCGTGTTGCTCGCGC
414

Fig. 1

LmKnk3-5′ specific antigen sequences obtained from GeneDoc alignment"

Fig. 2

Expression of three recombinant plasmids in BL21 (DE3) detected by SDS-PAGE"

Fig. 3

SDS-PAGE detection after pET-32a-R2 purification"

Table 2

Titer determination of LmKnk3-5′ polyclonal antibody"

稀释倍数
Dilution ratio
阴性
Negative
空白
Blank
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
Anti-LmKnk3-5′
OD值OD value
0.042 0.032 1.554 1.283 1.141 0.941 0.812 0.727 0.646 0.537 0.469 0.321
P/N - - + + + + + + + + + +

Fig. 4

The detection of anti-LmKnk3-5′ polyclonal antibody specificity"

Fig. 5

Localization of LmKnk3-5′ in the integument of abdomen in L. migratoria"

[1] 尤其儆, 郭郛, 陈永林, 张福海, 尤端淑. 东亚飞蝗的生活习性. 昆虫学报, 1958, 8(2):119-135.
YOU Q J, GUO F, CHEN Y L, ZHANG F H, YOU D S. Living habits of Locusta migratoria. Acta Entomologica Sinica, 1958, 8(2):119-135. (in Chinese)
[2] CHANG E S. Comparative endocrinology of molting and reproduction: Insects and crustaceans. Annual Review of Entomology, 1993, 38:161-180.
doi: 10.1146/ento.1993.38.issue-1
[3] LOCKE M. The Wigglesworth Lecture: Insects for studying fundamental problems in biology. Journal of Insect Physiology, 2001, 47:495-507.
doi: 10.1016/S0022-1910(00)00123-2
[4] MERZENDORFER H, ZIMOCH L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 2003, 206:4393-4412.
doi: 10.1242/jeb.00709
[5] SCHWARZ H, MOUSSIAN B. Electron-microscopic and genetic dissection of arthropod cuticle differentiation//MÉNDEZ-VILAS A, DÍAZ[J]. Modern Research and Educational Topics in Microscopy, 2007: 316-325.
[6] CHAUDHARI S S, MOUSSIAN B, SPECHT C A, ARAKANE Y, KRAMER K J, BEEMAN R W, MUTHUKRISHNAN S. Functional specialization among members of Knickkopf family of proteins in insect cuticle organization. PLoS Genetics, 2014, 10(8):e1004537.
doi: 10.1371/journal.pgen.1004537
[7] WALKER D L, WANG D, JIN Y, RATH U, WANG Y M, JOHANSEN J, JOHANSEN K M. Skeletor, a novel chromosomal protein that redistributes during mitosis provides evidence for the formation of a spindle matrix. The Journal of Cell Biology, 2000, 151(7):1401-1411.
doi: 10.1083/jcb.151.7.1401
[8] OSTROWSKI S, DIERICK H A, BEJSOVEC A. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics, 2002, 161(1):171-182.
doi: 10.1093/genetics/161.1.171
[9] MOUSSIAN B, TANG E, TONNING A, HELMS S, SCHWARZ H, NUSSLEIN-VOLHARD C, UV A E. Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development, 2006, 133(1):163-171.
doi: 10.1242/dev.02177
[10] LI K X, ZHANG X B, ZUO Y, LIU W M, ZHANG J Z, MOUSSIAN B. Timed Knickkopf function is essential for wing cuticle formation in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2017, 89:1-10.
doi: 10.1016/j.ibmb.2017.08.003
[11] CHAUDHARI S S, ARAKANE Y, SPECHT C A, MOUSSIAN B, BOYLE D L, PARK Y, KRAMER K J, BEEMAN R W, MUTHUKRISHNAN S. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(41):17028-17033.
[12] ZHANG R, ZHAO X M, LIU X J, ZHANG X Y, YU R R, MA E B, MOUSSIAN B, ZHU K Y, ZHANG J Z. Effect of RNAi-mediated silencing of two Knickkopf family genes (LmKnk2 and LmKnk3) on cuticle formation and insecticide susceptibility in Locusta migratoria. Pest Management Science, 2020, 76(9):2907-2917.
doi: 10.1002/ps.v76.9
[13] 于荣荣. 飞蝗表皮几丁质有序排列关键基因的功能研究[D]. 太原: 山西大学, 2017.
YU R R. Functional analysis of key genes involved in chitin organization of cuticle in Locusta migratoria[D]. Taiyuan: Shanxi University, 2017. (in Chinese)
[14] 赵静, 孙洋, 谭永安, 肖留斌, 姜义平, 柏立新. 甜菜夜蛾卵黄原蛋白多克隆抗体制备及其在不同发育时期蛋白表达. 中国农业科学, 2017, 50(22):4316-4324.
ZHAO J, SUN Y, TAN Y A, XIAO L B, JIANG Y P, BAI L X. Polyclonal antibody preparation of Spodoptera exigua vitellogenin and its protein expression at different developmental stages. Scientia Agricultura Sinica, 2017, 50(22):4316-4324. (in Chinese)
[15] 魏原杰, 王亚美, 黄丽娜, 刘宁, 赵洁, 艾新宇, 刘小宁. 棉蚜P450 CYP6CY3的克隆、原核表达及多克隆抗体的制备. 中国农业科学, 2017, 50(7):1351-1360.
WEI Y J, WANG Y M, HUANG L N, LIU N, ZHAO J, AI X Y, LIU X N. Cloning, prokaryotic expression and preparation of the polyclonal antibody against CYP6CY3 from Aphis gossypii. Scientia Agricultura Sinica, 2017, 50(7):1351-1360. (in Chinese)
[16] 李大琪, 杜建中, 张建琴, 郝耀山, 刘晓健, 王亦学, 马恩波, 张建珍, 孙毅. 东亚飞蝗几丁质酶家族基因的表达特性与功能研究. 中国农业科学, 2011, 44(3):485-492.
LI D Q, DU J Z, ZHANG J Q, HAO Y S, LIU X J, WANG Y X, MA E B, ZHANG J Z, SUN Y. Study on expression characteristics and functions of chitinase family genes from Locusta migratoria manilensis (Meyen). Scientia Agricultura Sinica, 2011, 44(3):485-492. (in Chinese)
[17] 刘晓健, 崔淼, 李大琪, 张欢欢, 杨美玲, 张建珍. 飞蝗几丁质合成酶2基因的表达特性、功能及调控. 中国农业科学, 2014, 47(7):1330-1340.
LIU X J, CUI M, LI D Q, ZHANG H H, YANG M L, ZHANG J Z. Expression, function and regulation of chitin synthase 2 gene in Locusta migratoria. Scientia Agricultura Sinica, 2014, 47(7):1330-1340. (in Chinese)
[18] 刘晓健, 郭俊, 张学尧, 马恩波, 张建珍. 飞蝗核受体基因 LmE75 的分子特性和功能分析. 中国农业科学, 2020, 53(11):2219-2231.
LIU X J, GUO J, ZHANG X Y, MA E B, ZHANG J Z. Molecular characteristics and function analysis of nuclear receptor gene LmE75 in Locusta migratoria. Scientia Agricultura Sinica, 2020, 53(11):2219-2231. (in Chinese)
[19] YANG Q P, LI Z, CAO J J, ZHANG S D, ZHANG H J, WU X Y, ZHANG Q W, LIU X X. Selection and assessment of reference genes for quantitative PCR normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS ONE, 2014, 9(6):e98164.
doi: 10.1371/journal.pone.0098164
[20] LIU X J, LI F, LI D Q, MA E B, ZHANG W Q, ZHU K Y, ZHANG J Z. Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust, Locusta migratoria. PLoS ONE, 2013, 8(8):e71970.
doi: 10.1371/journal.pone.0071970
[21] 于荣荣, 丁国伟, 杨美玲, 马恩波, 张建珍. 注射dsRNA对飞蝗Knickkopf基因在mRNA和蛋白水平的沉默效率. 昆虫学报, 2016, 59(12):1395-1400.
YU R R, DING G W, YANG M L, MA E B, ZHANG J Z. Silence efficiency of mRNA and protein expression of Knickkopf in Locusta migratoria (Orthoptera: Acrididae) by dsRNA injection. Acta Entomologica Sinica, 2016, 59(12):1395-1400. (in Chinese)
[22] 宋慧芳, 李应龙, 马恩波, 张建珍. 飞蝗β-N-乙酰氨基葡萄糖苷酶基因的表达及酶学特性分析. 中国农业科学, 2016, 49(21):4140-4148.
SONG H F, LI Y L, MA E B, ZHANG J Z. The heterogenous expression and enzymatic characteristics of β-N-acetylglucosaminidase from Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(21):4140-4148. (in Chinese)
[23] LIU W M, XIE Y P, XUE J L, GAO Y, ZHANG Y F, ZHANG X M, TAN J S. Histopathological changes of Ceroplastes japonicus infected by Lecanicillium lecanii. Journal of Invertebrate Pathology, 2009, 101:96-105.
doi: 10.1016/j.jip.2009.03.002
[24] 刘晓健, 刘卫敏, 赵小明, 张建珍, 马恩波. 昆虫表皮发育研究进展及展望. 应用昆虫学报, 2019, 56(4):625-638.
LIU X J, LIU W M, ZHAO X M, ZHANG J Z, MA E B. Progress in the study of insect cuticle development and prospects for future research. Chinese Journal of Applied Entomology, 2019, 56(4):625-638. (in Chinese)
[25] CHAUDHARI S S, ARAKANE Y, SPECHT C A, MOUSSIAN B, KRAMER K J, MUTHUKRISHNAN S, BEEMAN R W. Retroactive maintains cuticle integrity by promoting the trafficking of knickkopf into the procuticle of Tribolium castaneum. PLoS Genetics, 2013, 9(1):e1003268.
[26] PETKAU G, WINGEN C, JUSSEN L C A, RADTKE T, BEHR M. Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. The Journal of Biological Chemistry, 2012, 287(25):21396-21405.
doi: 10.1074/jbc.M112.359984
[27] ZHANG X Y, KANG X L, WU H H, SILVER K, ZHANG J Z, MA E B, ZHU K Y. Transcriptome-wide survey, gene expression profiling and exogenous chemical-induced transcriptional responses of cytochrome P450 superfamily genes in migratory locust (Locusta migratoria). Insect Biochemistry and Molecular Biology, 2018, 100:66-77.
doi: 10.1016/j.ibmb.2018.06.006
[28] ZHAO X M, GOU X, QIN Z Y, LI D Q, WANG Y, MA E B, LI S, ZHANG J Z. Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Scientific Reports, 2017, 7:45462.
doi: 10.1038/srep45462
[29] YU R R, LIU W M, LI D Q, ZHAO X M, DING G W, ZHANG M, MA E B, ZHU K Y, LI S, MOUSSIAN B, ZHANG J Z. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). The Journal of Biological Chemistry, 2016, 291(47):24352-24363.
doi: 10.1074/jbc.M116.720581
[30] YU R R, LIU W M, ZHAO X M, ZHANG M, LI D Q, ZUBER R, MA E B, ZHU K Y, MOUSSIAN B, ZHANG J Z. LmCDA1 organizes the cuticle by chitin deacetylation in Locusta migratoria. Insect Molecular Biology, 2019, 28(3):301-312.
doi: 10.1111/imb.12554 pmid: 30471154
[31] ZHANG Z, KUIPERS G, NIEMIEC L, BAUMGARTEN T, SLOTBOOM D J, GIER J W, HJELM A. High-level production of membrane proteins in E. coli BL21 (DE3) by omitting the inducer IPTG. Microbial Cell Factories, 2015, 14:142.
doi: 10.1186/s12934-015-0328-z
[32] SAFFARIAN P, PEERAYEH S N, AMANI J, EBRAHIMI F, SEDIGHIANRAD H, HALABIAN R, FOOLADI A A L. Expression and purification of recombinant TAT-BoNT/A (1-448) under denaturing and native conditions. Bioengineered, 2016, 7(6):478-483.
doi: 10.1080/21655979.2016.1201252
[1] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[2] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[3] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[4] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[5] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[6] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[7] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[8] JIA Pan,ZHANG Jing,YANG Yang,LIU WeiMin,ZHANG JianZhen,ZHAO XiaoMing. Expression and Function Analysis of Endocuticle Structural Glycoprotein Gene LmAbd-2 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(4): 651-660.
[9] GE Ting,HUANG Xue,XIE RangJin. Cloning, Subcellular Localization and Expression Analysis of CitPG34 in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(19): 3404-3416.
[10] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[11] ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411.
[12] ZHANG TingTing, LIU WeiWei, GAO Lu, LI RenJian, FU SuiYe, LIU XiaoJian, LI DaQi, LIU WeiMin, DONG Qing, ZHANG JianZhen. The antibody preparation and expression analysis of Chitinase 5-1 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(12): 2418-2428.
[13] ZHANG WeiWei, DONG ZhaoMing, ZHANG Yan, ZHANG XiaoLu, ZHANG ShouYa, ZHAO Ping. Expression Pattern and Chitin-Binding Mode Analyses of Cuticle Protein BmCPAP3-G in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1723-1733.
[14] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[15] LIU Wei, LIU Hao, DONG ShuangYu, GU FengWei, CHEN ZhiQiang, WANG JiaFeng, WANG Hui. Construction of Rice Leaf Sheath Protoplast Transformation System and Transient Expression of Pik-H4 and AvrPik-H4 Proteins [J]. Scientia Agricultura Sinica, 2017, 50(23): 4575-4584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!