Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (15): 3161-3171.doi: 10.3864/j.issn.0578-1752.2013.15.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Development and Contribution of Nitrogenous Fertilizer in China and Challenges Faced by the Country

 ZHANG  Wei-Feng, MA  Lin, HUANG  Gao-Qiang, WU  Liang, CHEN  Xin-Ping, ZHANG  Fu-Suo   

  1. Key Laboratory of Plant-Soil Interactions, Ministry of Education/Center for Resources, Environment, and Food Security, China Agricultural University, Beijing 100193
  • Received:2013-04-01 Online:2013-08-01 Published:2013-05-27

Abstract: 【Objective】Nitrogen is essential to human life, environment quality and ecosystem sustainability; Chemical fertilizer is becoming a dominant source of human’s nitrogen supply, therefore, its role and development strategy are core issues for China’s sustainability. 【Method】This study analyzed the sources of nitrogen in ecosystem, its contribution to crop production and protein production, and nitrogen balance through food chain model. Finally, This study drafted a strategy for nitrogen fertilizer development from fertilizer production to field consumption. 【Result】After half a century development, China’s nitrogen fertilizer production and consumption have both ranked the first in the world since 1991, and in the past two decades (1990-2009) 61% of the world’s increase of nitrogen production and 52% of the world’s increase of nitrogen consumption occurred in China. Results of this study show that 72% of nitrogen in terrestrial ecosystem, and about 56% of human protein consumption come from nitrogen fertilizer. According to its role in crop yield improvement, a kilogram of nitrogen fertilizer is equivalent to 0.016 hm2 cultivated land, and per capita cultivated land area increased by 6.5-fold through technologies innovation including N fertilizer between 1960 and 2009. This is why China survived 20% of world’s population by using 10% of world’s land and 21% of world’s irrigated area. Currently, China’s nitrogen fertilizer production exceeds its consumption, and nitrogen fertilizer application rate exceeds crop demand for maximum yield. The nitrogen surplus in agro-ecosystem is more than 175 kg•hm-2, which has been a main factor of environmental pollution. 【Conclusion】Therefore, nitrogen fertilizer management has to be transformed from solely high yield to both high yield and high resources use efficiency. The strategy is to balance nitrogen input and output in crop land, to update fertilizer products, to improve energy use efficiency in fertilizer production.

Key words: nitrogen , contribution , challenge

[1]Smil V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. Cambridge: MIT Press, 2004: 1-338.

[2]EFMA. Understanding Nitrogen and Its use in Agriculture. European Fertilizer Manufacturers Association: Brussels, Belgium, 2004. http://www.efma.org/documents/file/publications/EFMANitrogenbooklet.pdf.

[3]IFA. IFADATA Statistics, February, 2012.

[4]Schlesinger W H. On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the USA, 2009, 106(1): 203-208.

[5]Erisman J W, Mark A S, James G, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, l (1): 363-639.

[6]Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A, Howarth R, Schindler D, H. Schlesinger W, Simberloff D, Swackhamer D. Forecasting agriculturally driven global environmental change. Science, 2001, 292(5515): 281-284.

[7]Galloway J N, Aber J D, Erisman J W, Seitzinger S P, Howarth R W, Cowling E B, Cosby B J. The nitrogen cascade. BioScience, 2003, 53(4): 341-356.

[8]Sutton M A, Oenema O, Erisman J W, Leip A, Grinsven H V, Winiwarter W. Too much of a good thing. Nature, 2011, 472: 159-161.

[9]Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. Nutrient imbalances in agricultural development. Science, 2009, 324(5934): 1519-1520.

[10]Guo J H, Liu X J, Zhang Y, Shen J L, Han W X , Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

[11]中华人民共和国环境保护部, 中华人民共和国国家统计局, 中华人民共和国农业部. 第一次全国污染源普查公报, 2010.

The Ministry of Environmental Protection, State Statistics Bureau, Ministry of Agriculture. 1st National Census on Pollution Sources, 2010. (in Chinese)

[12]Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494:459-462.

[13]Ma L, Ma W Q , Velthof G L, Wang F H, Qin W, Zhang F S, Oenema O. Modeling nutrient flows in the food chain of China. Journal of Environmental Quality, 2010, 39(4): 1279-1289.

[14]李永恒. 我国氮肥工业历史回顾与发展趋势. 化肥工业, 2003, 31(1): 21-23.

Li Y H. History of domestic nitrogenous fertilizer industry in retrospect and development trend of China. Chemical Fertilizer Industry, 2003, 31(1): 21-23. (in Chinese)

[15]高力, 张卫峰, 王利, 曹仑, 马文奇, 高祥照, 张福锁. 优惠政策调整对我国氮肥企业的影响分析. 化肥工业, 2007, 34(4): 1-6.

Gao L, Zhang W F, Wang L, Cao L, Ma W Q, Gao X Z, Zhang F S. Analysis of effect of readjustment of preferential policy on nitrogenous fertilizer plants in China. Chemical Fertilizer Industry, 2007, 34(4): 1-6. (in Chinese)

[16]FAO. FAOSTAT, February, 2012.

[17]Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change. Ambio, 2002, 31(2): 64-71.

[18]张卫峰, 季玥秀, 马骥, 王雁峰, 马文奇, 张福锁. 中国化肥消费需求影响因素及走势分析: Ⅱ种植结构. 资源科学, 2008, 30(1): 31-36.

Zhang W F , Ji Y X , Ma J, Wang Y F , Ma W Q , Zhang F S. Driving forces of fertilizer consumption in China: Ⅱ Planting structure). Resources Science, 2008, 30(1): 31-36. (in Chinese)

[19]李红莉, 张卫峰, 张福锁, 杜芬, 李亮科. 中国主要粮食作物化肥施用量与效率变化分析. 植物营养与肥料学报, 2010, 16(5): 1136-1143.

Li H L, Zhang W F, Zhang F S, Du F, Li L K. Chemical fertilizer use and efficiency change of main grain crops in China. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1136-1143. (in Chinese)

[20]林葆, 李家康. 中国化肥的肥效及其提高的途径——全国化肥试验网的主要结果.土壤学报. 1989, 26(3): 273-279.

Lin B, Li J K. Fertilizer efficiency and measures to raise fertilizer efficiency in china main achievements of china national network on chemical fertilizer experiments (CNNCFE). Acta Pedologica Sinica, 1989, 26(3): 273-279. (in Chinese)

[21]戴景瑞. 发展玉米育种科学迎接21世纪的挑战. 作物杂志, 1998(6): 1-4.

Dai J R. Maize breeding development to face the challenge in 21 century. Crops, 1998(6): 1-4. (in Chinese)

[22]朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施. 科技导报, 2005, 23(4): 47-51.

Zhu Z L, Sun B, Yang L Z, Zhang L X. Policies and technologies for non point pollution control in agriculture. Science & Technology Review, 2005, 23(4):47-51. (in Chinese)

[23]Good A G, Beatty P H. Fertilizing nature: a tragedy of excess in the commons. Plos Biology, 2011, 9(8): 1-9.

[24]Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christiea P, Zhu Z L, Fu-Suo Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the USA, 2009, 106(9): 3041-3046.

[25]Chen X P, Cui Z L, Peter M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C, Römheld V, Zhang F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the USA, 2011, 108(16): 6399-6404.

[26]International Fertilizer Association, Food and Agriculture Organization of the United Nations. Global Estimates of Gaseous Emission of NH3, NO and N2O from Agriculture Land. Rome, FAO, 2001.

[27]李亮科, 张卫峰, 王雁峰, 陈新平, 马骥, 高利伟, 张福锁. 中国农户复合(混)肥施用效果分析. 植物营养与肥料学报, 2011, 17(3): 623-629.

Li L K, Zhang W F, Wang Y F, Chen X P, Ma J, Gao L W, Zhang F S. Effectiveness of compound fertilizer on grain yields in China. Plant Nutrition and Fertilizer Science, 2011, 17(3): 623- 629. (in Chinese)

[28]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.

Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiency of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)

[29]Pretty J, Sutherland W J, Ashby J, Auburn J, Baulcombe D, Bell M, Bentley J, Bickersteth S, Brown K, Burke J, Campbell H, Chen K, Crowley E, Crute I, Dobbelaere D, Edwards-Jones G, Funes-Monzote F, Godfray H C J, Griffon M, Gypmantisiri P, Haddad L, Halavatau S, Herren H, Holderness M, Izac A-M, Jones M, Koohafkan P, Lal R, Lang T, McNeely J, Mueller A, Nisbett N, Noble A, Pingali P, Pinto Y, Rabbinge R, Ravindranath N H, Rola A, Roling N, Sage C, Settle W, Sha J M, Luo S M, Simons T, Smith P, Strzepeck K, Swaine H, Terry E, Tomich T P, Toulmin C, Trigo E, Twomlow S, Vis J K, Wilson J, Pilgrim S. The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 2010, 8(4): 219-236.

[30]Prud’homme M. Global Fertilizers and Raw Materials Supply and Supply/Demand Balances: 2010-2014. International Fertilizer Industry, Paris, France, 2010: 7-15.

[31]张荣. 中国氮肥工业现状及“十二五”发展思路. 2010年中国化肥市场研讨会论文集. 郑州, 中国化工信息中心, 2010: 1-2

Zhang R. The status of Chinese nitrogen fertilizer industry and its development train of thought of China’s 12th Five-Year Plan//CNCIC, China Fertilizer Market Workshop Essay in China. Zhengzhou, 2010: 1-2. (in Chinese)

[32]IEA. IEA Statistics, February, 2012.

[33]International Fertilizer Association. Fertilizer Subsidy Situation in Selected Countries: 2008/09. IFA Annual Conference, 2010.
[1] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[2] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[3] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[11] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[12] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[13] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[14] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[15] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!