Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 287-299.doi: 10.3864/j.issn.0578-1752.2023.02.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer

YAN YanGe(),ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2021-11-28 Accepted:2022-01-18 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】Saccharides could regulate nitrogen transformation and promote crop growth. However, the effect and mechanism of carbohydrate reaction with urea with different degrees of polymerization on urea nitrogen utilization and crop growth are still unclear. In this paper, the dextran modified urea were prepared by incorporated of glucose (dextran) with different polymerization degrees into 15N labelled urea. The relationship between structure of dextran modified urea and wheat yield and nitrogen utilization was analyzed, in order to provide scientific basis for the application of dextran in improving nitrogen utilization efficiency. 【Method】In the current study, the dextran modified 15N labelled-urea (glucose, maltose, oligomeric maltose, and polydextrose modified urea are represented by GU, MU, OU, and PU, respectively) and ordinary 15N labelled-urea (U) was prepared, and the effects of dextran modified urea on winter wheat (Jimai 22) growth and the fate of fertilizer nitrogen were studied by using soil column cultivation experiments. The relationship between the dextran polymerization degree and the winter wheat yield or fertilizer nitrogen fate was explored by structure investigation of the dextran modified urea using Fourier Transform Infrared (FTIR) and 13C nuclear magnetic resonance (13C NMR) spectroscopy. 【Result】 (1) Compared with U, the dextran modified urea showed a weaker vibration intensity of primary amide at 3 343 cm-1 and 1 601 cm-1 in FTIR spectra, and a new chemical shift peak was detected at 158-171 ppm in 13C NMR spectra, which was a sign that the aldehyde group of dextran and the amine group of urea reacted and that a C=N structure attributed to Schiff base was formed. (2) The wheat yield treated with GU, MU, OU and PU was higher than that of U by 1.9%, 9.2%, 10.3% and 12.3%, respectively. The yield increase was mainly attributed to the improvement of the ears number and grains per ear. (3) The total nitrogen uptake and fertilizer nitrogen uptake of grain of the dextran modified urea treatments were also higher than that under the U treatment by 8.7%-20.0% and 6.1%-13.9%, respectively. MU, OU and PU treatments had a higher nitrogen uptake than GU. (4) Compared with U, the 15N utilization rate and the fertilizer residue rate of dextran modified urea was enhanced by 2.0-6.1 and 1.3-4.9 percentage points, respectively, while the nitrogen loss rate of dextran modified urea was reduced by 6.9-7.4 percentage points. The 15N utilization rate of MU, OU and PU treatments was significantly higher than that of U. (5) Correlation analysis showed that the yield of wheat was significantly positively correlated with the polymerization degree of dextran, while the content of Schiff base was significantly negatively correlated. Among them, the relationship between Schiff base content and wheat yield and 15N utilization rate could be significantly fitted by using one quadratic equation. When the polymerization degree of dextran was 5-8, wheat yield and fertilizer nitrogen utilization rate were the highest. 【Conclusion】 Compared with common urea, the dextran modified urea could increase wheat yield, promote nitrogen absorption and utilization, increase fertilizer nitrogen residue and reduce urea loss. Within a certain range, the wheat yield and nitrogen absorption gradually increased, while the residual fertilizer nitrogen in soil decreased along with the increase of the polymerization degree of dextran. When the polymerization degree of dextran was 5-8, the corresponding modified urea would have the best performance.

Key words: polymerization degree of dextran, dextran modified urea, Schiff base, wheat yield, fate of fertilizer nitrogen

Table 1

Basic physicochemical of the experimental soil"

土壤深度
Soil depth (cm)
pH 有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
0-30 8.82 12.12 0.67 5.94 150
30-90 9.11 4.92 0.38 3.04 96

Table 2

Basic properties of the tested fertilizers"

处理
Treatment
葡聚糖类型
Dextran type
葡聚糖聚合度
Polymerization degree of dextran
全氮含量
Total N content (%)
15N丰度
15N abundance (%)
U 44.92 10.19
GU 葡萄糖 Glucose 1 44.77 10.20
MU 麦芽糖 Maltose 2 44.63 10.19
OU 低聚麦芽糖 Oligomeric maltose ≈5 44.46 10.19
PU 聚葡萄糖 Polydextrose ≈20 44.45 10.18

Fig. 1

FTIR spectra and second derivative spectra of dextran modified urea"

Fig. 2

13C NMR spectra (A) and relative integral area of Schiff base (B) in dextran modified urea"

Fig. 3

Aboveground dry biomass and harvest index under different treatments"

Table 3

Yield components of wheat grain yield under different treatments"

处理 Treatment 有效穗数 Effective spike number (No./pot) 千粒重 1000-grain weight (g) 穗粒数 Grains per ear (No./spike)
CK 18.75±3.77c 45.87±1.43a 30.41±3.74c
U 42.75±1.89b 47.78±1.73a 40.56±3.51b
GU 44.00±3.74ab 46.48±2.44a 41.38±3.39ab
MU 47.50±1.00ab 47.77±0.52a 39.76±0.46b
OU 48.25±1.71a 48.30±1.04a 39.14±1.91b
PU 42.75±4.19b 48.02±1.62a 45.43±3.91a

Fig. 4

Total nitrogen and fertilizer nitrogen uptake of aboveground parts of wheat under different treatments Lowercase letters indicate significant differences between treatments. P<0.05"

Table 4

Residual amounts of fertilizer N in different soil layers under different treatments"

处理
Treatment
土层深度Soil depth 总计
Total
0-30 cm 30-60 cm 60-90 cm
U 0.210±0.034b 0.107±0.016b 0.042±0.008a 0.360±0.038c
GU 0.254±0.026a 0.148±0.017a 0.067±0.013a 0.470±0.032a
MU 0.227±0.018ab 0.124±0.011ab 0.057±0.015a 0.407±0.020b
OU 0.250±0.010a 0.109±0.014b 0.045±0.012a 0.404±0.031bc
PU 0.205±0.029b 0.134±0.029ab 0.050±0.024a 0.389±0.014bc

Table 5

Fate of fertilizer N under different treatments (%)"

处理 Treatment 利用率 Utilization rate 残留率 Residue rate 损失率 Lost rate
U 55.38±1.16c 15.98±1.70c 28.64±2.16a
GU 57.38±1.20bc 20.87±1.42a 21.75±1.44b
MU 60.69±2.24a 18.10±0.89b 21.21±2.57b
OU 60.11±2.76ab 17.94±1.39bc 21.95±3.60b
PU 61.49±1.25a 17.29±0.63bc 21.22±1.24b

Fig. 5

Correlation analysis of each indicator R1: Degree of polymerization; R2: Relative area of Schiff base in 13C NMR spectra; R3: Wheat yield; R4:15N utilization rate; R5: Residue rate. Different colors indicate the intensity of the significant, and the closer to red (plus) or blue (minus), the larger the diameter of the circle, the greater the correlation coefficient. * Indicates significant"

Fig. 6

Correlation analysis of the relative area of Schiff base in 13C NMR spectra with wheat yield and 15N utilization rate"

Fig. 7

Nonlinear fitting of polymerization degree with relative area of Schiff base"

[1] 王彬, 袁亮, 张水勤, 林治安, 赵秉强, 李燕婷. 尿素融合葡萄糖对潮土中尿素的水解及相关酶活性的影响. 植物营养与肥料学报, 2020, 26(10): 1827-1837. doi:10.11674/zwyf.19513.
doi: 10.11674/zwyf.19513
WANG B, YUAN L, ZHANG S Q, LIN Z A, ZHAO B Q, LI Y T. Fusion of glucose into urea affects the urea hydrolyzation and enzyme activities in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1827-1837. doi:10.11674/zwyf.19513. (in Chinese)
doi: 10.11674/zwyf.19513
[2] 刘廷国, 杨凌霄, 周彬, 黄劲松, 陆志敏, 李斌. 壳聚糖与尿素的相互作用及其应用研究进展. 离子交换与吸附, 2012, 28(2): 183-192. doi:10.16026/j.cnki.iea.2012.02.008.
doi: 10.16026/j.cnki.iea.2012.02.008
LIU T G, YANG L X, ZHOU B, HUANG J S, LU Z M, LI B. Recent advances in the applications of the interaction between chitosan and urea. Ion Exchange and Adsorption, 2012, 28(2): 183-192. doi:10.16026/j.cnki.iea.2012.02.008. (in Chinese)
doi: 10.16026/j.cnki.iea.2012.02.008
[3] 程苑, 周玉迪, 梁冰. 球形印迹交联壳聚糖聚合物的制备及其对尿素的吸附性能研究. 现代化工, 2014, 34(4): 78-80, 82. doi:10.16606/j.cnki.issn0253-4320.2014.04.004.
doi: 10.16606/j.cnki.issn0253-4320.2014.04.004
CHENG Y, ZHOU Y D, LIANG B. Preparation of molecular imprinted croslinked polymers and their adsorption characteristics of urea. Modern Chemical Industry, 2014, 34(4): 78-80, 82. doi:10.16606/j.cnki.issn0253-4320.2014.04.004. (in Chinese)
doi: 10.16606/j.cnki.issn0253-4320.2014.04.004
[4] 黄暄暄, 马海红, 孙畅, 徐卫兵, 周正发. 改性酰化壳聚糖缓释肥包膜材料的制备与表征. 高分子材料科学与工程, 2016, 32(6): 133-137. doi:10.16865/j.cnki.1000-7555.2016.06.026.
doi: 10.16865/j.cnki.1000-7555.2016.06.026
HUANG X X, MA H H, SUN C, XU W B, ZHOU Z F. Preparation and characterization of modified acylated chitosan coating materials of fertilizers. Polymer Materials Science & Engineering, 2016, 32(6): 133-137. doi:10.16865/j.cnki.1000-7555.2016.06.026. (in Chinese)
doi: 10.16865/j.cnki.1000-7555.2016.06.026
[5] 周文杰, 张鹏, 秦嗣军, 吕德国. 添加葡萄糖和淀粉对盆栽甜樱桃根区土壤碳代谢及根功能的影响. 应用生态学报, 2015, 26(11): 3300-3308. doi:10.13287/j.1001-9332.20150921.047.
doi: 10.13287/j.1001-9332.20150921.047
ZHOU W J, ZHANG P, QIN S J, LÜ D G. Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry. Chinese Journal of Applied Ecology, 2015, 26(11): 3300-3308. doi:10.13287/j.1001-9332.20150921.047. (in Chinese)
doi: 10.13287/j.1001-9332.20150921.047
[6] 齐边斌, 张阔, 秦嗣军, 吕德国. 添加葡萄糖和土壤灭菌对‘寒富’苹果根系氮代谢活性和生物量的影响. 土壤通报, 2020, 51(6): 1445-1453. doi:10.19336/j.cnki.trtb.2020.06.25.
doi: 10.19336/j.cnki.trtb.2020.06.25
QI B B, ZHANG K, QIN S J, LÜ D G. Effects of glucose addition and soil sterilization on biomass and nitrogen metabolic activities of Malus domestica hanfu root. Chinese Journal of Soil Science, 2020, 51(6): 1445-1453. doi:10.19336/j.cnki.trtb.2020.06.25. (in Chinese)
doi: 10.19336/j.cnki.trtb.2020.06.25
[7] 齐红岩, 李天来, 陈元宏, 张洁. 叶面喷施磷酸二氢钾与葡萄糖对番茄光合速率和蔗糖代谢的影响. 农业工程学报, 2005, 21(S2): 137-142.
QI H Y, LI T L, CHEN Y H, ZHANG J. Effects of foliage applications of KH2PO4 and glucose on photosynthesis and sucrose metabolism of tomato. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 137-142. (in Chinese)
[8] 胡梦芸, 李辉, 张颖君, 刘茜. 水分胁迫下葡萄糖对小麦幼苗光合作用和相关生理特性的影响. 作物学报, 2009, 35(4): 724-732. doi:10.3724/SP.J.1006.2009.00724.
doi: 10.3724/SP.J.1006.2009.00724
HU M Y, LI H, ZHANG Y J, LIU Q. Photosynthesis and related physiological characteristics affected by exogenous glucose in wheat seedlings under water stress. Acta Agronomica Sinica, 2009, 35(4): 724-732. doi:10.3724/SP.J.1006.2009.00724. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00724
[9] 赵莹, 杨克军, 赵长江, 李佐同, 王玉凤, 付健, 郭亮, 李文胜. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47(20): 3962-3972. doi:10.3864/j.issn.0578-1752.2014.20.004.
doi: 10.3864/j.issn.0578-1752.2014.20.004
ZHAO Y, YANG K J, ZHAO C J, LI Z T, WANG Y F, FU J, GUO L, LI W S. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings. Scientia Agricultura Sinica, 2014, 47(20): 3962-3972. doi:10.3864/j.issn.0578-1752.2014.20.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.20.004
[10] 郎冬梅, 秦嗣军, 朱紫檀, 吕德国. 外源葡萄糖对山定子生长及根系氮素代谢的影响. 应用生态学报, 2018, 29(3): 797-804. doi:10.13287/j.1001-9332.201803.007.
doi: 10.13287/j.1001-9332.201803.007
LANG D M, QIN S J, ZHU Z T, LÜ D G. Effects of exogenous glucose on growth and root nitrogen metabolism in Malus baccata. Chinese Journal of Applied Ecology, 2018, 29(3): 797-804. doi:10.13287/j.1001-9332.201803.007. (in Chinese)
doi: 10.13287/j.1001-9332.201803.007
[11] 李九玉, 邓开英, 章威, 桑存星, 赵悦彤, 徐仁扣. 添加葡萄糖对红壤农田肥料氮转化及其酸化的影响. 土壤学报, 2021, 58(1): 162-168. doi:10.11766/trxb201907190315.
doi: 10.11766/trxb201907190315
LI J Y, DENG K Y, ZHANG W, SANG C X, ZHAO Y T, XU R K. Effects of amendment of glucose on fertilizer nitrogen transformation and acidification in ultisol cropland. Acta Pedologica Sinica, 2021, 58(1): 162-168. doi:10.11766/trxb201907190315. (in Chinese)
doi: 10.11766/trxb201907190315
[12] 张威, 何红波, 解宏图, 白震, 张旭东. 葡萄糖对东北黑土有机氮矿化的调控作用. 生态与农村环境学报, 2009, 25(4): 52-54, 82.
ZHANG W, HE H B, XIE H T, BAI Z, ZHANG X D. Effect of glucose on mineralization of organic nitrogen in black soil, northeast of China. Journal of Ecology and Rural Environment, 2009, 25(4): 52-54, 82. (in Chinese)
[13] 吕殿青, 张树兰, 杨学云. 外加碳、氮对土壤氮矿化、固定与激发效应的影响. 植物营养与肥料学报, 2007, 13(2): 223-229. doi:10.3321/j.issn:1008-505X.2007.02.007.
doi: 10.3321/j.issn:1008-505X.2007.02.007
LÜ D Q, ZHANG S L, YANG X Y. Effect of supplying C and N on the mineralization, immobilization and priming effect of soil nitrogen. Plant Nutrition and Fertilizer Science, 2007, 13(2): 223-229. doi:10.3321/j.issn:1008-505X.2007.02.007. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.02.007
[14] 王彬. 含葡萄糖氮、磷肥在石灰性潮土中的转化特征及其肥效研究[D]. 北京: 中国农业科学院, 2020.
WANG B. Transformation and efficiency of nitrogen/phosphorus fertilizer containing glucose in calcareous fluvo-aquic soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[15] LI W C, ZHANG J, YU C W, LI Q, DONG F, WANG G, GU G D, GUO Z Y. Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 2015, 121: 315-319. doi:10.1016/j.carbpol.2014.12.055.
doi: 10.1016/j.carbpol.2014.12.055 pmid: 25659704
[16] IWASAKI K I, MATSUBARA Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Bioscience, Biotechnology, and Biochemistry, 2000, 64(5): 1067-1070. doi:10.1271/bbb.64.1067.
doi: 10.1271/bbb.64.1067 pmid: 10879484
[17] LUAN L Q, NAGASAWA N, HA V T T, HIEN N Q, NAKANISHI T M. Enhancement of plant growth stimulation activity of irradiated alginate by fractionation. Radiation Physics and Chemistry, 2009, 78(9): 796-799. doi:10.1016/j.radphyschem.2009.05.001.
doi: 10.1016/j.radphyschem.2009.05.001
[18] 扈学文, 许秋瑾, 金相灿, 刘景辉, 李立军, 郭俊秀, 欧阳坤. 不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究. 中国农学通报, 2007, 23(2): 221-225. doi:10.3969/j.issn.1000-6850.2007.02.053.
doi: 10.3969/j.issn.1000-6850.2007.02.053
HU X W, XU Q J, JIN X C, LIU J H, LI L J, GUO J X, OUYANG K. Influence of the different concentration of chitosan oligosaccharide on ryegrass seeds germination and the disease-resistant enzyme activity of the seedling. Chinese Agricultural Science Bulletin, 2007, 23(2): 221-225. doi:10.3969/j.issn.1000-6850.2007.02.053. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2007.02.053
[19] SHEN Y W, LIN H T, GAO W S, LI M L. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea. Journal of the Science of Food and Agriculture, 2020, 100(12): 4425-4432. doi:10.1002/jsfa.10482.
doi: 10.1002/jsfa.10482 pmid: 32388863
[20] 张英强, 袁亮, 张水勤, 李燕婷, 王立艳, 赵秉强. 葡萄糖降低尿素转化率的机理及适宜添加量研究. 植物营养与肥料学报, 2022, 28(2): 325-333.
ZHANG Y Q, YUAN L, ZHANG S Q, LI Y T, WANG L Y, ZHAO B Q. Study on the mechanism of glucose decreasing urea conversion rate and suitable addition. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 325-333. (in Chinese)
[21] 代快. 华北平原冬小麦/夏玉米水氮优化利用研究[D]. 北京: 中国农业科学院, 2012.
DAI K. Optimization of water and nitrogen use efficiencies in winter wheat and summer maize cropping system in North China plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[22] 袁亮, 赵秉强, 林治安, 温延臣, 李燕婷. 增值尿素对小麦产量、氮肥利用率及肥料氮在土壤剖面中分布的影响. 植物营养与肥料学报, 2014, 20(3): 620-628. doi:10.11674/zwyf.2014.0313.
doi: 10.11674/zwyf.2014.0313
YUAN L, ZHAO B Q, LIN Z A, WEN Y C, LI Y T. Effects of value-added urea on wheat yield and N use efficiency and the distribution of residual N in soil profiles. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 620-628. doi:10.11674/zwyf.2014.0313. (in Chinese)
doi: 10.11674/zwyf.2014.0313
[23] 周微, 曹晨忠. 间位羟基激发态取代基效应常数的提取. 湖南科技大学学报(自然科学版), 2016, 31(2): 108-111. doi:10.13582/j.cnki.1672-9102.2016.02.018.
doi: 10.13582/j.cnki.1672-9102.2016.02.018
ZHOU W, CAO C Z. Extraction of the excited-state substituent constant of meta-hydroxyl group. Journal of Hunan University of Science & Technology (Natural Science Edition), 2016, 31(2): 108-111. doi:10.13582/j.cnki.1672-9102.2016.02.018. (in Chinese)
doi: 10.13582/j.cnki.1672-9102.2016.02.018
[24] ROZWADOWSKI Z, AMBROZIAK K, DZIEMBOWSKA T, KOTFICA M. Interaction between the hydrogen bonds in unsymmetrical di-Schiff bases studied by means of deuterium isotope effect on 13C NMR chemical shifts. Journal of Molecular Structure, 2002, 643(1/2/3): 93-100. doi:10.1016/S0022-2860(02)00408-8.
doi: 10.1016/S0022-2860(02)00408-8
[25] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料. 化学进展, 2018, 30(4): 365-382. doi:10.7536/PC170815.
doi: 10.7536/PC170815
ZHANG C J, YUAN X Y, YUAN Z L, ZHONG Y K, ZHANG Z M, LI G K. Covalent organic framework materials based on schiff-base reaction. Progress in Chemistry, 2018, 30(4): 365-382. doi:10.7536/PC170815. (in Chinese)
doi: 10.7536/PC170815
[26] 张佳蕾, 郭峰, 万书波, 孟静静, 杨莎, 黄超, 耿耘, 李新国. 壳寡糖对旱薄地花生叶片衰老及产量和品质的影响. 西北植物学报, 2015, 35(3): 516-522. doi:10.7606/j.issn.1000-4025.2015.03.0516.
doi: 10.7606/j.issn.1000-4025.2015.03.0516
ZHANG J L, GUO F, WAN S B, MENG J J, YANG S, HUANG C, GENG Y, LI X G. Effect of spraying oligochitosan on leaf senescence, yield and quality of Arachis hypogaea on barren dryland. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3): 516-522. doi:10.7606/j.issn.1000-4025.2015.03.0516. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2015.03.0516
[27] 白文波, 吕国华, 张元成, 宋吉青, 刘星海, 李际会. 植物多糖类复合制剂对冬小麦产量及物质转运的影响. 应用生态学报, 2014, 25(4): 1006-1012. doi:10.13287/j.1001-9332.2014.0072.
doi: 10.13287/j.1001-9332.2014.0072
BAI W B, LÜ G H, ZHANG Y C, SONG J Q, LIU X H, LI J H. Effects of plant polysaccharides-containing compound agents on yield and matter accumulation and transportation of winter wheat. Chinese Journal of Applied Ecology, 2014, 25(4): 1006-1012. doi:10.13287/j.1001-9332.2014.0072. (in Chinese)
doi: 10.13287/j.1001-9332.2014.0072
[28] REN J Q, JIAO Q Z, WANG Y N, XU F Y, CHENG X S, YOU Z L. Synthesis, structures and Helicobacter pylori urease inhibition of schiff base vanadium complexes containing acetohydroxamate ligands. Chinese Journal of Inorganic Chemistry, 2014, 30(3): 640-648. (in Chinese)
[29] 廖俊健, 倪铁林, 廖浩然, 黄焯轩, 钱永盛, 陈敏, 卢其明. 4-取代基苯胺棉酚席夫碱的合成及脲酶抑制作用研究. 安徽农业大学学报, 2015, 42(4): 627-631. doi:10.13610/j.cnki.1672-352x.20150625.013.
doi: 10.13610/j.cnki.1672-352x.20150625.013
LIAO J J, NI T L, LIAO H R, HUANG Z X, QIAN Y S, CHEN M, LU Q M. Synthesis of 4-substituted-anilinegossypol Schiffbases and its inhibition on urease activity. Journal of Anhui Agricultural University, 2015, 42(4): 627-631. doi:10.13610/j.cnki.1672-352x.20150625.013. (in Chinese)
doi: 10.13610/j.cnki.1672-352x.20150625.013
[30] OLECH Z, ZABORSKA W, KOT M. Jack bean urease inhibition by crude juices of Allium and Brassica plants. Determination of thiosulfinates. Food Chemistry, 2014, 145: 154-160. doi:10.1016/j.foodchem.2013.08.044.
doi: 10.1016/j.foodchem.2013.08.044
[31] 刘兆辉, 吴小宾, 谭德水, 李彦, 江丽华. 一次性施肥在我国主要粮食作物中的应用与环境效应. 中国农业科学, 2018, 51(20): 3827-3839. doi:10.3864/j.issn.0578-1752.2018.20.002.
doi: 10.3864/j.issn.0578-1752.2018.20.002
LIU Z H, WU X B, TAN D S, LI Y, JIANG L H. Application and environmental effects of one-off fertilization technique in major cereal crops in China. Scientia Agricultura Sinica, 2018, 51(20): 3827-3839. doi:10.3864/j.issn.0578-1752.2018.20.002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.20.002
[32] 张强, 常瑞雪, 胡兆平, 陈清. 生物刺激素及其在功能水溶性肥料中应用前景分析. 农业资源与环境学报, 2018, 35(2): 111-118. doi:10.13254/j.jare.2017.0233.
doi: 10.13254/j.jare.2017.0233
ZHANG Q, CHANG R X, HU Z P, CHEN Q. Biostimulants and its potential utilization in functional water-soluble fertilizers. Journal of Agricultural Resources and Environment, 2018, 35(2): 111-118. doi:10.13254/j.jare.2017.0233. (in Chinese)
doi: 10.13254/j.jare.2017.0233
[33] 张运红, 和爱玲, 杨占平, 郑春风, 杜君, 宝德俊, 姚健, 杨焕焕. 海藻酸钠寡糖灌根处理对小麦光合特性、干物质积累和产量的影响. 江西农业学报, 2018, 30(11): 1-5. doi:10.19386/j.cnki.jxnyxb.2018.11.01.
doi: 10.19386/j.cnki.jxnyxb.2018.11.01
ZHANG Y H, HE A L, YANG Z P, ZHENG C F, DU J, BAO D J, YAO J, YANG H H. Effects of root-irrigation with alginate oligosaccharide solution on photosynthetic characteristics, dry matter accumulation and yield of wheat. Acta Agriculturae Jiangxi, 2018, 30(11): 1-5. doi:10.19386/j.cnki.jxnyxb.2018.11.01. (in Chinese)
doi: 10.19386/j.cnki.jxnyxb.2018.11.01
[34] 邱驰, 李宝聚, 范海延, 石延霞, 宁君. 几种葡聚寡糖激发子及其衍生物生物活性的比较. 植物病理学报, 2004, 34(4): 336-339. doi:10.13926/j.cnki.apps.2004.04.008.
doi: 10.13926/j.cnki.apps.2004.04.008
QIU C, LI B J, FAN H Y, SHI Y X, NING J. Compare of biological activity of kinds of gluco-oligosaccharides and their derivants. Acta Phytopathologica Sinica, 2004, 34(4): 336-339. doi:10.13926/j.cnki.apps.2004.04.008. (in Chinese)
doi: 10.13926/j.cnki.apps.2004.04.008
[35] NATSUME M, KAMO Y, HIRAYAMA M, ADACHI T. Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydrate Research, 1994, 258: 187-197. doi:10.1016/0008-6215(94)84085-7.
doi: 10.1016/0008-6215(94)84085-7 pmid: 8039175
[36] YAMAGUCHI T, YAMADA A, HONG N, OGAWA T, ISHII T, SHIBUYA N. Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. The Plant Cell, 2000, 12(5): 817-826. doi:10.1105/tpc.12.5.817.
doi: 10.1105/tpc.12.5.817
[37] REYMOND P, GRÜNBERGER S, PAUL K, MÜLLER M, FARMER E E. Oligogalacturonide defense signals in plants: large fragments interact with the plasma membrane in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4145-4149. doi:10.1073/pnas.92.10.4145.
doi: 10.1073/pnas.92.10.4145
[38] 张运红, 吴礼树, 刘一贤, 张赓, 赵凯, 耿明建, 张善学. 几种寡糖类物质对菜薹矿质养分吸收的影响. 中国蔬菜, 2009(20): 17-22.
ZHANG Y H, WU L S, LIU Y X, ZHANG G, ZHAO K, GENG M J, ZHANG S X. Effects of different oligosaccharides on mineral element absorption of Brassica campestris l.var.utilis tsen et lee. China Vegetables, 2009(20): 17-22. (in Chinese)
[39] 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 游光霞, 闫长生, 肖世和. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42(2): 398-407. doi:10.3864/j.issn.0578-1752.2009.02.003.
doi: 10.3864/j.issn.0578-1752.2009.02.003
WANG R X, ZHANG X Y, WU L, WANG R, HAI L, YOU G X, YAN C S, XIAO S H. QTL analysis of grain size and related traits in winter wheat under different ecological environments. Scientia Agricultura Sinica, 2009, 42(2): 398-407. doi:10.3864/j.issn.0578-1752.2009.02.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2009.02.003
[40] 张运红, 孙克刚, 杜君, 和爱玲, 张起义. 海藻寡糖增效尿素对水稻产量和品质的影响. 河南农业科学, 2016, 45(1): 53-56. doi:10.15933/j.cnki.1004-3268.2016.01.011.
doi: 10.15933/j.cnki.1004-3268.2016.01.011
ZHANG Y H, SUN K G, DU J, HE A L, ZHANG Q Y. Effects of alginate-derived oligosaccharides synergistic urea on yield and quality of rice. Journal of Henan Agricultural Sciences, 2016, 45(1): 53-56. doi:10.15933/j.cnki.1004-3268.2016.01.011. (in Chinese)
doi: 10.15933/j.cnki.1004-3268.2016.01.011
[41] 阳金龙, 赵岩, 陆文静, 王洪涛. 玉米秸秆超临界预处理与水解. 清华大学学报(自然科学版), 2010, 50(9): 1408-1411. doi:10.16511/j.cnki.qhdxxb.2010.09.007.
doi: 10.16511/j.cnki.qhdxxb.2010.09.007
YANG J L, ZHAO Y, LU W J, WANG H T. Supercritical pretreatment and hydrolyzation of corn stalks. Journal of Tsinghua University (Science and Technology), 2010, 50(9): 1408-1411. doi:10.16511/j.cnki.qhdxxb.2010.09.007. (in Chinese)
doi: 10.16511/j.cnki.qhdxxb.2010.09.007
[42] 邓永智, 李文权, 袁东星. 海水小球藻中多糖的提取及其单糖组成的气相色谱-质谱分析. 分析化学, 2006, 34(12): 1697-1701. doi:10.3321/j.issn:0253-3820.2006.12.007.
doi: 10.3321/j.issn:0253-3820.2006.12.007
DENG Y Z, LI W Q, YUAN D X. Microwave-assisted extraction and ultrasonic hydrolyzation of polysaccharides from the marine Chlorella and gas chromatography-mass spectrometric analysis of monosaccharide compositions. Chinese Journal of Analytical Chemistry, 2006, 34(12): 1697-1701. doi:10.3321/j.issn:0253-3820.2006.12.007. (in Chinese)
doi: 10.3321/j.issn:0253-3820.2006.12.007
[43] 刘刚, 张恒, 孙恒, 朱洪霞, 张煜函, 朱庆增, 苑世领. 碱/脲水溶液体系中纤维素包合物构型及纤维素与溶剂分子间相互作用力的分子动力学模拟. 高等学校化学学报, 2018, 39(4): 714-720. doi:10.7503/cjcu20170683.
doi: 10.7503/cjcu20170683
LIU G, ZHANG H, SUN H, ZHU H X, ZHANG Y H, ZHU Q Z, YUAN S L. Molecular dynamics simulation on the structure of cellulose inclusion complexes and interactions between cellulose chains and solvent molecules in alkali/urea aqueous solution. Chemical Journal of Chinese Universities, 2018, 39(4): 714-720. doi:10.7503/cjcu20170683. (in Chinese)
doi: 10.7503/cjcu20170683
[44] VISWANATHAN T, RICHARDSON T. Thermosetting adhesives resins from whey and whey by-products. Industrial & Engineering Chemistry Product Research and Development, 1984, 23(4): 644-647. doi:10.1021/i300016a027.
doi: 10.1021/i300016a027
[45] 陈栓虎, 张蕾, 胥学旺. 葡萄糖缩二脲树脂胶黏剂的合成. 化学与黏合, 2007, 29(1): 10-12. doi:10.3969/j.issn.1001-0017.2007.01.004.
doi: 10.3969/j.issn.1001-0017.2007.01.004
CHEN S H, ZHANG L, XU X W. Synthesis of biuret - glucose resin adhesive. Chemistry and Adhesion, 2007, 29(1): 10-12. doi:10.3969/j.issn.1001-0017.2007.01.004. (in Chinese)
doi: 10.3969/j.issn.1001-0017.2007.01.004
[46] NGAN L T M, MOON J K, SHIBAMOTO T, AHN Y J. Growth- inhibiting, bactericidal, and urease inhibitory effects of Paeonia lactiflora root constituents and related compounds on antibiotic- susceptible and-resistant strains of Helicobacter pylori. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9062-9073. doi:10.1021/jf3035034.
doi: 10.1021/jf3035034
[47] 张运红, 吴礼树, 耿明建, 胡红青, 张善学. 几种寡糖类物质对菜心产量和品质的影响. 华中农业大学学报, 2009, 28(2): 164-168. doi:10.13300/j.cnki.hnlkxb.2009.02.014.
doi: 10.13300/j.cnki.hnlkxb.2009.02.014
ZHANG Y H, WU L S, GENG M J, HU H Q, ZHANG S X. Effects of several oligosaccharides on the yield and quality of Brassica chinensis. Journal of Huazhong Agricultural University, 2009, 28(2): 164-168. doi:10.13300/j.cnki.hnlkxb.2009.02.014. (in Chinese)
doi: 10.13300/j.cnki.hnlkxb.2009.02.014
[48] LEJAY L, GANSEL X, CEREZO M, TILLARD P, MÜLLER C, KRAPP A, VON WIRÉN N, DANIEL-VEDELE F, GOJON A. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. The Plant Cell, 2003, 15(9): 2218-2232. doi:10.1105/tpc.013516.
doi: 10.1105/tpc.013516
[49] PRICE J, LAXMI A, ST MARTIN S K, JANG J C. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. The Plant Cell, 2004, 16(8): 2128-2150. doi:10.1105/tpc.104.022616.
doi: 10.1105/tpc.104.022616
[50] 赵秉强. 增值肥料概论. 北京: 中国农业科学技术出版社, 2020.
ZHAO B Q. Overview of Value-added Fertilizer. Beijing: China Agricultural Science and Technology Press, 2020. (in Chinese)
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[3] XU JiuKai,YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang. Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839.
[4] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[5] JIN XiuKuan, MA MaoTing, ZHAO TongKe, AN ZhiZhuang, JIANG LingLing. Effects of Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Winter Wheat Under Supplemental Irrigation Based on Measured Soil Moisture Content [J]. Scientia Agricultura Sinica, 2018, 51(7): 1334-1344.
[6] GAO MeiLing, ZAHNG XuBo, SUN ZhiGang, SUN Nan, LI ShiJi, GAO YongHua, ZHANG ChongYu. Wheat Yield and Growing Period in Response to Field Warming in Different Climatic Zones in China [J]. Scientia Agricultura Sinica, 2018, 51(2): 386-400.
[7] LI Chao, LIU WenZhao, LIN Wen, HAN XiaoYang, ZHOU Ling, WANG YaPing. Grain Yield and WUE Responses to Different Soil Water Storage Before Sowing and Water Supplies During Growing Period for Winter Wheat in the Loess Tableland [J]. Scientia Agricultura Sinica, 2017, 50(18): 3549-3560.
[8] AN TingTing, HOU XiaoPan, ZHOU YaNan, LIU WeiLing, WANG Qun, LI ChaoHai, ZHANG XueLin. Effects of Nitrogen Fertilizer Rates on Rhizosphere Soil Characteristics and Yield After Anthesis of Wheat [J]. Scientia Agricultura Sinica, 2017, 50(17): 3352-3364.
[9] YANG Lin-sheng, ZHANG Yu-ting, HUANG Xing-cheng, ZHANG Yue-qiang, ZHAO Ya-nan, SHI Xiao-jun. Effects of Long-Term Application of Chloride Containing Fertilizers on the Biological Fertility of Purple Soil Under a Rice-Wheat Rotation System [J]. Scientia Agricultura Sinica, 2016, 49(4): 686-694.
[10] YANG Xuan-1, TANG Xu-2, CHEN Bao-De-3, TIAN Zhan-4, ZHAO Si-Jian-5. Impacts of Climate Change on Wheat Yield in China Simulated by CMIP5 Multi-Model Ensemble Projections [J]. Scientia Agricultura Sinica, 2014, 47(15): 3009-3024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!