Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1579-1588.doi: 10.3864/j.issn.0578-1752.2022.08.009


Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China

GAO JiaRui(),FANG ShengZhi,ZHANG YuLing(),AN Jing,YU Na,ZOU HongTao   

  1. College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Northeast Arable Land Conservation, Ministry of Agriculture and Rural Affairs, Shenyang 110866
  • Received:2021-03-12 Accepted:2021-11-11 Online:2022-04-16 Published:2022-05-11
  • Contact: YuLing ZHANG;


【Objective】 The aim of this study was to analyze the mineralized nitrogen (N) content, net N mineralized rate and net N mineralized ratio (the ratio of mineralized N to total N) in paddy soil with different reclamation years in black soil, and to explore the soil N supply capacity and its characteristics, and to reveal the soil N evolution law, so as to provide the theoretical basis for rational utilization and fertilization of black soil in Northeast China.【Method】 The natural wasteland (0 years, as the control soil, original natural meadow vegetation) and paddy soils with different reclamation years (12, 35, 62 and 85 a) (topography and cropping system, fertilization, and water management, roughly the same) in black soil region were selected as the research object, and the characteristics of soil organic N mineralization after cultivated rice form natural wasteland in black soil were studied by the water-logged incubation method.【Result】 During the early stages of incubation (about 1 month), the cumulative mineralized N increased rapidly in each year, then showed a slow increase trend. At the end of incubation (297 d), the cumulative mineralized N ranged from 212.43 to 388.11 mg·kg-1, and the order of cumulative mineralized N was 0, 12, 35, 85 and 62 a. The mineralization process of soil organic N could be well described by a hybrid model (Special model), and the soil organic N pools could be divided into the increment N pool (the N pool made available after a drying and rewetting event) and the resistant N pool. Compared with the control soil (0 a), the potentially mineralisable N (NF) of the increment N pool in all paddy soils showed a decreasing trend in each year. There was no significant difference between paddy soils of 12 and 35 years, as well as 62 and 85 years, but the NF in paddy soils of 12 and 35 years were significantly higher than that of 62 and 85 years (P<0.05). The rate constant (kF) of mineralization of the increment N pool in paddy soils all showed an upward trend, but there was no significant difference between kF of all paddy soils in each year (P>0.05). Compared with the control soil (0 a), the rate constant (k0) of mineralization of the resistant N pool in paddy soils of 12 and 35 years did not change significantly (P>0.05), but k0 in 62 and 85 years decreased significantly (P<0.05). The net N mineralization rate of the soils in each year were the largest at 4 days of incubation, and then decreased gradually. At the end of water-logged incubation (297 d), the order of the soil net N mineralization rate was consistent with that of the cumulative mineralization N. The net N mineralized ratio was relatively high at the beginning of incubation, and then increased slowly. At the end of incubation (297 d), the net N mineralized ratio ranged from 78.60 to 101.82 mg·g-1, and the order was 0, 35, 12, 85 and 62 a. Soil total N and C/N were important factors affecting the amount of mineralization N and the net N mineralization rate in paddy soils with different reclamation years (P<0.05). The sum of initial mineral N and NF could be used to characterize the N supply capacity of paddy soil in rice growing season; compared with the control soil (0 a), the N supply capacity of paddy soil in each year decreased significantly (P<0.05), and the soils of 12 and 35 years were significantly higher than that of 62 and 85 years (P<0.05).【Conclusion】 During 85 years of rice cultivation from natural wasteland in black soil, the N supply capacity in paddy soil have declined, and the decline was significant after 35 years rice cultivation. Therefore, the improvement of soil organic matter content should be paid attention in the soil fertility cultivation in paddy fields.

Key words: black soil region, paddy soil, rice cultivation year, mineralizated nitrogen, soil nitrogen suppying capacity

Table 1

The basic properties of tested soils"

Organic carbon
Total nitrogen
Total phosphorus
Total potassium
pH C/N 初始矿质氮
Initial minera nitrogen
0 127.466° E,47.031° N 38.84±1.46b 3.81±0.10a 1.02±0.06a 10.88±0.04a 5.02±0.08c 10.20±0.14b 137.92±40.08a
12 127.470° E,47.026° N 44.16±2.24a 3.67±0.14a 0.94±0.06a 10.17±0.67b 5.61±0.14a 12.03±0.25a 98.20±4.58ab
35 127.476° E,47.028° N 39.32±2.51b 3.32±0.44a 0.81±0.06b 10.57±0.33a 5.42±0.05a 11.92±0.97a 125.58±10.06a
62 127.479° E,47.027° N 35.82±1.14bc 2.74±0.29b 1.00±0.02a 0.56±0.36a 5.52±0.12a 13.15±1.02a 60.47±30.62bc
85 127.476° E,47.033° N 32.54±1.60c 2.52±0.17b 0.83±0.04b 10.70±0.37a 5.38±0.09b 12.95±0.15a 42.82±1.53c

Fig. 1

Curves of cumulative mineralized N of water-logged incubation The curve in the figure for the Special model fitted curve; Different lowercase letters indicate difference between different years the same in sampling time at 0.05 significant level"

Table 2

Fitting parameters of the Special model"

Year (a)
模型参数 Model parameter
NF (mg·kg-1) kF (d-1) k0 (mg·kg-1·d-1) R2 Se
0 254.50±12.84a 0.042±0.005b 0.460±0.063a 0.993** 1.729
12 208.79±8.73bc 0.104±0.014a 0.478±0.055a 0.982** 0.902
35 217.34±8.98ab 0.115±0.016a 0.414±0.058a 0.979** 0.791
62 146.78±3.37d 0.119±0.010a 0.231±0.022b 0.993** 0.219
85 174.17±3.99cd 0.116±0.009a 0.208±0.026b 0.992** 0.106

Fig. 2

Net N mineralized rate and net N mineralized ratio"

Fig. 3

Soil N suppying capacity Different lowercase letters indicate the significantly difference at 0.05 level; NF is the potentially mineralizable N of the increment N pool; Nmin is initial minera N"

[1] 国家统计局.2018 中国统计年鉴. 北京: 中国统计出版社, 2018
National Bureau of Statistics. China statistical yearbook. Beijing: China Statistics Press, 2018. (in Chinese)
[2] 康日峰, 任意, 吴会军, 张淑香.26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016, 49(11): 2113-2125. doi: 10.3864/j.issn.0578-1752.2016.11.008.
doi: 10.3864/j.issn.0578-1752.2016.11.008
KANG R F, REN Y, WU H J, ZHANG S X.Changes in the nutrients and fertility of black soil over 26 years in northeast China. Scientia Agricultura Sinica, 2016, 49(11): 2113-2125. doi: 10.3864/j.issn.0578-1752.2016.11.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.008
[3] HUANG Y, SUN W J, ZHANG W, YU Y Q. Changes in soil organic carbon of terrestrial ecosystems in China: a mini-review. Science China Life Sciences, 2010, 53(7): 766-775. doi: 10.1007/s11427-010-4022-4.
doi: 10.1007/s11427-010-4022-4
[4] MASEK J G, HAYES D J, JOSEPH HUGHES M, HEALEY S P, TURNER D P. The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management, 2015, 355: 109-123. doi: 10.1016/j.foreco.2015.05.032.
doi: 10.1016/j.foreco.2015.05.032
[5] DENG L, WANG G L, LIU G B, SHANGGUAN Z P. Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China. Ecological Engineering, 2016, 90: 105-112. doi: 10.1016/j.ecoleng.2016.01.086.
doi: 10.1016/j.ecoleng.2016.01.086
[6] FAN H Z, ZHANG H, FENG W Q, ZHANG J, WANG C T.Effect of transplanting density on rice yield, nitrogen uptake and 15N-fertilizer fate. Agricultural Science & Technology, 2012, 13(5): 1037-1039, 1054. doi: 10.16175/j.cnki.1009-4229.2012.05.036.
doi: 10.16175/j.cnki.1009-4229.2012.05.036
[7] LI D J, LIU J, CHEN H, ZHENG L, WANG K L. Soil gross nitrogen transformations in responses to land use conversion in a subtropical Karst region. Journal of Environmental Management, 2018, 212: 1-7. doi: 10.1016/j.jenvman.2018.01.084.
doi: 10.1016/j.jenvman.2018.01.084
[8] LUCE M S, WHALEN J K, ZIADI N, ZEBARTH B J. Nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils. Advances in Agronomy. Amsterdam: Elsevier, 2011: 55-102. doi: 10.1016/b978-0-12-385538-1.00002-0.
doi: 10.1016/b978-0-12-385538-1.00002-0
[9] SHARIFI M, ZEBARTH B J, BURTON D L, GRANT C A, PORTER G A. Organic amendment history and crop rotation effects on soil nitrogen mineralization potential and soil nitrogen supply in a potato cropping system. Agronomy Journal, 2008, 100(6): 1562-1572. doi: 10.2134/agronj2008.0053.
doi: 10.2134/agronj2008.0053
[10] KAUR J, CIHACEK L J, CHATTERJEE A. Estimation of nitrogen and sulfur mineralization in soils amended with crop residues contributing to nitrogen and sulfur nutrition of crops in the North Central US. Communications in Soil Science and Plant Analysis, 2018, 49(18): 2256-2266. doi: 10.1080/00103624.2018.1499761.
doi: 10.1080/00103624.2018.1499761
[11] 唐海龙, 王景燕, 黄帅, 龚伟, 周于波. 华西雨屏区常绿阔叶林土壤氮矿化对温度和湿度变化的响应. 甘肃农业大学学报, 2019, 54(2): 124-131. doi: 10.13432/j.cnki.jgsau.2019.02.017.
doi: 10.13432/j.cnki.jgsau.2019.02.017
TANG H L, WANG J Y, HUANG S, GONG W, ZHOU Y B. Responses of soil nitrogen mineralization of evergreen broad-leaved forest in rainy area of Western China to moisture and temperature. Journal of Gansu Agricultural University, 2019, 54(2): 124-131. doi: 10.13432/j.cnki.jgsau.2019.02.017. (in Chinese)
doi: 10.13432/j.cnki.jgsau.2019.02.017
[12] SIERRA J. Nitrogen mineralization and nitrification in a tropical soil: effects of fluctuating temperature conditions. Soil Biology and Biochemistry, 2002, 34(9): 1219-1226. doi: 10.1016/s0038-0717(02)00058-5.
doi: 10.1016/s0038-0717(02)00058-5
[13] HANAN E J, SCHIMEL J P, DOWDY K, D'ANTONIO C M. Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biology and Biochemistry, 2016, 95: 87-99. doi: 10.1016/j.soilbio.2015.12.017.
doi: 10.1016/j.soilbio.2015.12.017
[14] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9.
doi: 10.1038/nrmicro.2018.9
[15] 于君宝, 刘景双, 王金达, 刘淑霞, 齐小宁, 王洋, 王国平. 不同开垦年限黑土有机碳变化规律. 水土保持学报, 2004, 18(1): 27-30. doi: 10.13870/j.cnki.stbcxb.2004.01.007.
doi: 10.13870/j.cnki.stbcxb.2004.01.007
YU J B, LIU J S, WANG J D, LIU S X, QI X N, WANG Y, WANG G P. Organic carbon variation law of black soil during different tillage period. Journal of Soil Water Conservation, 2004, 18(1): 27-30. doi: 10.13870/j.cnki.stbcxb.2004.01.007. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2004.01.007
[16] 贾树海, 张佳楠, 张玉玲, 党秀丽, 范庆锋, 王展, 虞娜, 邹洪涛, 张玉龙. 东北黑土区旱田改稻田后土壤有机碳、全氮的变化特征. 中国农业科学, 2017, 50(7): 1252-1262. doi: 10.3864/j.issn.0578-1752.2017.07.008.
doi: 10.3864/j.issn.0578-1752.2017.07.008
JIA S H, ZHANG J N, ZHANG Y L, DANG X L, FAN Q F, WANG Z, YU N, ZOU H T, ZHANG Y L. Changes of the characteristics of soil organic carbon and total nitrogen after conversation from upland to paddy field in black soil region of northeast China. Scientia Agricultura Sinica, 2017, 50(7): 1252-1262. doi: 10.3864/j.issn.0578-1752.2017.07.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.07.008
[17] 马原, 迟美静, 张玉玲, 范庆峰, 虞娜, 邹洪涛. 黑土旱地改稻田土壤水稳性团聚体有机碳和全氮的变化特征. 中国农业科学, 2020, 53(8): 1594-1605. doi: 10.3864/j.issn.0578-1752.2020.08.009.
doi: 10.3864/j.issn.0578-1752.2020.08.009
MA Y, CHI M J, ZHANG Y L, FAN Q F, YU N, ZOU H T. Change characteristics of organic carbon and total nitrogen in water-stable aggregate after conversion from upland to paddy field in black soil. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605. doi: 10.3864/j.issn.0578-1752.2020.08.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.08.009
[18] 谷思玉, 胡洋, 聂艳龙, 蔡海森, 宋秀丽, 何鑫, 崔凯歌. 农垦九三管理局不同开垦年限农田黑土团聚体变化. 东北农业大学学报, 2015, 46(11): 56-62. doi: 10.19720/j.cnki.issn.1005-9369.2015.11.009.
doi: 10.19720/j.cnki.issn.1005-9369.2015.11.009
GU S Y, HU Y, NIE Y L, CAI H S, SONG X L, HE X, CUI K G. Change of aggregate in Agricultural Reclamation Jiusan Administration Bureau black soil with different reclamation years. Journal of Northeast Agricultural University, 2015, 46(11): 56-62. doi: 10.19720/j.cnki.issn.1005-9369.2015.11.009. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2015.11.009
[19] 迟美静, 侯玮, 孙莹, 范庆锋, 虞娜, 邹洪涛, 安晶, 张玉玲. 东北黑土区荒地开垦种稻后土壤养分及pH值的变化特征. 土壤通报, 2018, 49(3): 546-551. doi: 10.19336/j.cnki.trtb.2018.03.07.
doi: 10.19336/j.cnki.trtb.2018.03.07
CHI M J, HOU W, SUN Y, FAN Q F, YU N, ZOU H T, AN J, ZHANG Y L. Characteristics of soil nutrients and pH value of paddy fields with different planted years in black soil region of northeast China. Chinese Journal of Soil Science, 2018, 49(3): 546-551. doi: 10.19336/j.cnki.trtb.2018.03.07. (in Chinese)
doi: 10.19336/j.cnki.trtb.2018.03.07
[20] 丛耀辉, 张玉玲, 张玉龙, 虞娜, 邹洪涛, 范庆锋, 王展. 黑土区水稻土有机氮组分及其对可矿化氮的贡献. 土壤学报, 2016, 53(2): 457-467. doi: 10.11766/trxb201508220362.
doi: 10.11766/trxb201508220362
CONG Y H, ZHANG Y L, ZHANG Y L, YU N, ZOU H T, FAN Q F, WANG Z. Soil organic nitrogen components and their contributions to mineralizable nitrogen in paddy soil of the black soil region. Acta Pedologica Sinica, 2016, 53(2): 457-467. doi: 10.11766/trxb201508220362. (in Chinese)
doi: 10.11766/trxb201508220362
[21] ZHANG Y L, XU W J, DUAN P P, CONG Y H, AN T T, YU N, ZOU H T, DANG X L, AN J, FAN Q F, ZHANG Y L. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation. PLoS One, 2017, 12(2): e0171022. doi: 10.1371/journal.pone.0171022.
doi: 10.1371/journal.pone.0171022
[22] 张玉玲, 陈温福, 虞娜, 付时丰, 张玉龙, 邹洪涛. 不同利用方式下土壤有机氮素矿化特征的研究. 土壤通报, 2013, 44(1): 52-56. doi: 10.19336/j.cnki.trtb.2013.01.008.
doi: 10.19336/j.cnki.trtb.2013.01.008
ZHANG Y L, CHEN W F, YU N, FU S F, ZHANG Y L, ZOU H T. Long-term effects of different land use patterns on mineralizing characteristic of soil organic nitrogen. Chinese Journal of Soil Science, 2013, 44(1): 52-56. doi: 10.19336/j.cnki.trtb.2013.01.008. (in Chinese)
doi: 10.19336/j.cnki.trtb.2013.01.008
[23] DAEBELER A, BODELIER P L E, HEFTING M M, RÜTTING T, JIA Z J, LAANBROEK H J. Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing Archaea in sub-Arctic grassland soil. Soil Biology and Biochemistry, 2017, 107: 114-124. doi: 10.1016/j.soilbio.2016.12.013.
doi: 10.1016/j.soilbio.2016.12.013
[24] LANG M, LI P, TI C P, ZHU S X, YAN X Y, CHANG S X. Soil gross nitrogen transformations are related to land-uses in two agroforestry systems. Ecological Engineering, 2019, 127: 431-439. doi: 10.1016/j.ecoleng.2018.12.022.
doi: 10.1016/j.ecoleng.2018.12.022
[25] 李平, 郎漫. 开垦年限对黑土氮初级转化速率和净转化速率的影响. 土壤学报, 2020, 57(1): 165-173. doi: 10.11766/trxb201902180022.
doi: 10.11766/trxb201902180022
LI P, LANG M. Effect of cultivation on gross and net N transformation rates in black soil relative to duration. Acta Pedologica Sinica, 2020, 57(1): 165-173. doi: 10.11766/trxb201902180022. (in Chinese)
doi: 10.11766/trxb201902180022
[26] 顾春朝. 施肥类型和种植年限对稻田土壤氮矿化及可溶性有机碳、氮的影响[D]. 延吉: 延边大学, 2016.
GU C C. Effects of different fertilization types and cultivation years on nitrogen mineralization and DOC, SON in paddy soil[D]. Yanji: Yanbian University, 2016. (in Chinese)
[27] KEENEY D R, BREMNER J M. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability 1. Agronomy Journal, 1966, 58(5): 498-503. doi: 10.2134/agronj1966.00021962005800050013x.
doi: 10.2134/agronj1966.00021962005800050013x
[28] RICHTER J, NUSKE A, BOEHMER M, WEHRMANN J. Simulation of nitrogen mineralization and transport in loess-parabrownearthes: plot experiments. Plant and Soil, 1980, 54(3): 329-337. doi: 10.1007/bf02181829.
doi: 10.1007/bf02181829
[29] CABRERA M L. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils. Soil Science Society of America Journal, 1993, 57(1): 63-66. doi: 10.2136/sssaj1993.03615995005700010012x.
doi: 10.2136/sssaj1993.03615995005700010012x
[30] 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006.
YAO H Y, HUANG C Y. Soil Microbial Ecology and Its Experimental Techniques. Beijing: Science Press, 2006. (in Chinese)
[31] BOOTH M S, STARK J M, RASTETTER E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 2005, 75(2): 139-157. doi: 10.1890/04-0988.
doi: 10.1890/04-0988
[32] UEDA M U, KACHINA P, MAROD D, NAKASHIZUKA T, KUROKAWA H. Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand. Forest Ecology and Management, 2017, 398: 130-139. doi: 10.1016/j.foreco.2017.05.010.
doi: 10.1016/j.foreco.2017.05.010
[33] BARRETT J E, BURKE I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biology and Biochemistry, 2000, 32(11/12): 1707-1716. doi: 10.1016/s0038-0717(00)00089-4.
doi: 10.1016/s0038-0717(00)00089-4
[34] ACCOE F, BOECKX P, BUSSCHAERT J, HOFMAN G, VAN CLEEMPUT O. Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biology and Biochemistry, 2004, 36(12): 2075-2087. doi: 10.1016/j.soilbio.2004.06.006.
doi: 10.1016/j.soilbio.2004.06.006
[35] CONRAD K A, DALAL R C, DALZELL S A, ALLEN D E, MENZIES N W. The sequestration and turnover of soil organic carbon in subtropical Leucaena-grass pastures. Agriculture, Ecosystems & Environment, 2017, 248: 38-47. doi: 10.1016/j.agee.2017.07.020.
doi: 10.1016/j.agee.2017.07.020
[36] 周碧青, 陈成榕, 杨文浩, 张黎明, 邢世和. 茶树对可溶性有机和无机态氮的吸收与运转特性. 植物营养与肥料学报, 2017, 23(1): 189-195. doi: 10.11674/zwyf.16067.
doi: 10.11674/zwyf.16067
ZHOU B Q, CHEN C R, YANG W H, ZHANG L M, XING S H. Uptake and transport characteristics of soluble organic and inorganic nitrogen by tea plant. Plant Nutrition and Fertilizer Science, 2017, 23(1): 189-195. doi: 10.11674/zwyf.16067. (in Chinese)
doi: 10.11674/zwyf.16067
[37] MORRIS K A. Nitrogen cycling in the rhizosphere of cheatgrass and crested wheatgrass: contributions of root exudates and senescence. Longan: MS Thesis of Utah State University, 2014.
[38] WANG F M, LI J, WANG X L, ZHANG W, ZOU B, NEHER D A, LI Z A. Nitrogen and phosphorus addition impact soil N₂O emission in a secondary tropical forest of South China. Scientific Reports, 2014, 4: 5615. doi: 10.1038/srep05615.
doi: 10.1038/srep05615
[39] 张玉玲. 东北地区水稻土供氮能力研究. 北京: 中国农业出版社, 2020.
ZHANG Y L. Study of Nitrogen Supplying Capacity of Paddy Soil in Northeast China. Beijing: Chinese Agriculture Press, 2020. (in Chinese)
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[3] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[4] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[5] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[6] ZHENG ChunYu, SHA ShanYi, ZHU Lin, WANG ShaoJie, FENG GuoZhong, GAO Qiang, WANG Yin. Optimizing Nitrogen Fertilizer Rate for High-Yield Maize in Black Soil Region Based on Ecological and Social Benefits [J]. Scientia Agricultura Sinica, 2023, 56(11): 2129-2140.
[7] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[8] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[9] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
[10] Lü ZhenZhen,LIU XiuMei,ZHONG JinFeng,LAN XianJin,HOU HongQian,JI JianHua,FENG ZhaoBin,LIU YiRen. Effects of Long-Term Fertilization on Mineralization of Soil Organic Carbon in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645.
[11] QIU CunPu, CHEN XiaoFen, LIU Ming, LI WeiTao, WU Meng, JIANG ChunYu, FENG YouZhi, LI ZhongPei. Microbial Transformation Process of Straw-Derived C in Two Typical Paddy Soils [J]. Scientia Agricultura Sinica, 2019, 52(13): 2268-2279.
[12] WeiFu PENG, WeiSheng LÜ, Shan HUANG, YongJun ZENG, XiaoHua PAN, QingHua SHI. Effects of Soil Fertility on Rice Yield and Nitrogen Use Efficiency in a Red Paddy Soil [J]. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624.
[13] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[14] WANG XiaoLi, GUO Zhen, DUAN JianJun, ZHOU ZhiGang, LIU YanLing, ZHANG YaRong. The Changes of Organic Carbon and Its Fractions in Yellow Paddy Soils Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2017, 50(23): 4593-4601.
[15] WANG YingYan, LU ShengE, LI YueFei, TU ShiHua, ZHANG XiaoPing, GU YunFu. Response of Anammox Bacteria Community Structure and Vertical Distribution to Different Long-Term Fertilizations in Calcareous Purple Paddy Soil [J]. Scientia Agricultura Sinica, 2017, 50(16): 3155-3163.
Full text



No Suggested Reading articles found!