Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1735-1748.doi: 10.3864/j.issn.0578-1752.2022.09.004


Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province

XIONG WeiYi(),XU KaiWei(),LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue*()   

  1. College of Resource Sciences, Sichuan Agricultural University, Chengdu 611130
  • Received:2021-08-12 Revised:2021-12-16 Online:2022-05-01 Published:2022-05-19
  • Contact: YuanXue CHEN;;


【Objective】 In order to clarify the photosynthetic mechanism affecting the yield formation of spring maize under different nitrogen application levels, the effects of different nitrogen application levels on nitrogen use efficiency and soil nitrogen surplus were analyzed, so as to provide the theoretical reference for rational application of nitrogen fertilizer and promoting high yield and high efficiency of spring maize.【Method】Using the maize of variety Zhongyu 3 as experimental material, the field experiments were carried out in 2019 and 2020 at the long-term fertilizer effect experimental site of Ya’an Experimental Farm of Sichuan Agricultural University. Nitrogen supply included five levels, such as 0 (no nitrogen application), 90 (low nitrogen), 180 (appropriate amount of nitrogen), 270 (farmers’ habitual nitrogen application), and 360 kg·hm-2 (high nitrogen), which were marked as N0, N1, N2, N3, and N4, respectively. The leaf area was measured at jointing period, silking period and grain-filling period, and the leaf area index and leaf area duration were calculated, respectively. The photosynthetic parameters, such as net photosynthetic rate of ear leaves were measured at grain-filling period, and chlorophyll content was measured at silking period and grain-filling period. The dry matter accumulation of aboveground population was measured at silking period, grain-filling period, and harvest period, the yield was measured at harvest, the nitrogen content of each part was analyzed, and the soil nitrogen surplus, nitrogen use efficiency of spring maize and economic benefit of nitrogen application were calculated.【Result】(1) The spring maize yield increased first and then remained flat with the increase of nitrogen application levels. In 2019 and 2020, the yield under N2 treatment was the highest, with an average of 9 746 kg·hm-2, which was 179% and 28.7% higher than that of N0 and N1 treatments (P<0.05), respectively, but there was no significant difference among N2, N3, and N4 treatments. 2-year yield was fitted by linear + platform fitting, the platform nitrogen application level was 134.8 kg·hm-2, the platform yield was 9 604 kg·hm-2, and the output-input ratio of platform nitrogen fertilizer (134.8 kg·hm-2) was the highest (12.6). (2) Compared with no nitrogen application, the appropriate amount of nitrogen application (N2) significantly increased chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate of ear leaves, leaf area index and leaf area duration. However, with the increase of nitrogen fertilizer application, there was no significant difference or even decreased significantly in the above indexes. (3) Combined with the correlation analysis and partial least square analysis of photosynthetic characteristics and harvest yield, the yield was significant positively correlated with leaf area duration, net photosynthetic rate, stomatal conductance, transpiration rate, leaf area index, chlorophyll a+b of spring maize (P<0.01), and the main factor affecting spring maize yield was chlorophyll a+b. (4) During the harvest period, the grain nitrogen accumulation and total aboveground nitrogen accumulation increased significantly with the increase of nitrogen application level, and increased slightly or basically flat after N2 treatment (more than 180 kg·hm-2) in the two years. The fitting results showed that the nitrogen application level was 139 kg·hm-2 when the soil nitrogen surplus was 0 kg·hm-2; The nitrogen apparent recovery efficiency of spring maize under N2 treatment was the highest in the two years, with an average of 73.7%, which was 10.8% higher than that under N1 treatment (P<0.05), the nitrogen apparent recovery efficiency decreased significantly with the continuous application of nitrogen fertilizer. Compared with N2 treatment, the nitrogen apparent recovery efficiency of N3 and N4 treatments decreased by 32.9% and 48.1%, respectively (P<0.05).【Conclusion】The proper amount of nitrogen application could obviously improve the photosynthetic performance of spring maize leaves, delay the degradation of total chlorophyll in ear leaves, prolong the duration of photosynthesis, and optimize the role among total chlorophyll, leaf area index and leaf area duration in the yield formation of spring maize. At the same time, the proper amount of nitrogen application could significantly increase the dry matter accumulation of aboveground population and grain yield, promote the absorption and accumulation of nitrogen to maize, reduce nitrogen residue in soil, and improve the nitrogen apparent recovery efficiency. Considering the factors such as yield, economic benefit of fertilization, apparent nitrogen use efficiency and nitrogen surplus, the nitrogen input of 139-180 kg·hm-2 could maintain the goal of high yield and high efficiency of spring maize in the experimental area (Ya’an, Sichuan).

Key words: spring maize, amount of nitrogen, photosynthetic characteristics, yield, nitrogen apparent recovery efficiency, nitrogen surplus

Table 1

The basic fertility of soil before cultivate in 2019"

pH 有机质
Organic matter (g·kg-1)
Available N (mg·kg-1)
Available P (mg·kg-1)
Available K (mg·kg-1)
N0 6.35 27.7 118 67.8 76.1
N1 6.38 28.4 139 55.3 72.6
N2 6.08 31.9 169 49.0 71.7
N3 6.05 32.8 175 53.1 74.2
N4 5.66 33.1 179 51.2 72.8

Table 2

The amount of N input in each treatment (kg·hm-2)"

Base fertilizer
Top dressing at jointing period
Top dressing at Twelve-leaf period
The total fertilization
N0 0 0 0 0
N1 27 27 36 90
N2 54 54 72 180
N3 81 81 108 270
N4 108 108 144 360

Fig. 1

Effects of different N application levels on dry matter accumulation of aboveground population of spring maize Error bars are standard error, and the different small letters above the bars mean significant difference (P<0.05) among different treatments at the same year and growth period. The same as below"

Table 3

Differences of leaf area index and chlorophyll content in ear leaves of spring maize under different N application levels"

Leaf area index
Chlorophyll a (mg·g-1 FW)
Chlorophyll b (mg·g-1 FW)
Chlorophyll a+b (mg·g-1 FW)
Silking period
Grain-filling period
Grain-filling period
Grain-filling period
Silking period
Grain-filling period
N0 1.53±0.08c 1.44±0.32c 1.59±0.02c 1.70±0.25c 0.431±0.07c 0.621±0.19c 2.02±0.07c 2.32±0.33c
N1 2.57±0.22b 2.22±0.28b 2.38±0.09b 2.48±0.04b 0.701±0.05b 1.23±0.17b 3.08±0.15b 3.72±0.15b
N2 3.99±0.02a 3.05±0.42a 2.73±0.06a 2.66±0.05ab 1.25±0.08a 1.87±0.13a 3.98±0.07a 4.53±0.05a
N3 4.15±0.32a 3.01±0.12a 2.73±0.07a 2.69±0.04a 1.24±0.08a 1.86±0.11a 3.97±0.12a 4.56±0.07a
N4 4.08±0.40a 3.12±0.52a 2.74±0.07a 2.71±0.03a 1.27±0.03a 1.82±0.07a 4.01±0.09a 4.53±0.09a
2020 N0 2.12±0.03d 1.19±0.03c 1.85±0.023c 1.38±0.02c 0.482±0.09c 0.373±0.01d 2.34±0.02c 1.75±0.03c
N1 4.07±0.04c 2.81±0.11b 2.51±0.07b 2.53±0.04b 0.998±0.09b 1.05±0.05c 3.51±0.16b 3.57±0.11b
N2 4.46±0.02a 3.16±0.13a 2.62±0.02a 2.61±0.04a 1.17±0.08a 1.54±0.04a 3.79±0.03a 4.15±0.01a
N3 4.47±0.05a 3.10±0.18ab 2.62±0.03a 2.64±0.02a 1.20±0.01a 1.51±0.01ab 3.81±0.02a 4.15±0.03a
N4 4.16±0.03b 3.04±0.30ab 2.65±0.13a 2.60±0.01a 1.22±0.13a 1.48±0.02b 3.88±0.14a 4.08±0.02a
年份 Year ** ns ns ** ns ** ns **
施氮量 N application level ** ** ** ** ** ** ** **
Year×N application level
** ns ** * ** ns ** ns

Fig. 2

Effects of different N application levels on leaf area duration of spring maize"

Table 4

Comparison of photosynthetic characteristics of ear leaves of spring maize under different N application levels"

Net photosynthetic rate (Pn) (μmol·m-2·s-1)
Stomatal conductance (Gs) (mol·m-2·s-1)
Intercellular CO2 concentration (Ci) (μmol·mol-1)
Transpiration rate (Tr) (mmol·m-2·s-1)
2019 N0 13.3±0.64b 0.07±0.02b 226±17.1a 0.714±0.09b
N1 14.9±1.62b 0.11±0.03b 221±20.7a 0.936±0.15b
N2 17.2±1.03a 0.16±0.04a 181±13.9b 1.35±0.24a
N3 15.8±1.16ab 0.13±0.02ab 192±26.9ab 1.23±0.12a
N4 17.2±0.84a 0.11±0.01b 182±10.5b 0.912±0.14b
2020 N0 10.2±2.92c 0.05±0.02d 213±6.36a 0.366±0.05c
N1 9.65±0.30c 0.07±0.03c 198±9.10b 0.391±0.05c
N2 19.7±0.59a 0.12±0.01a 160±4.53c 0.878±0.02a
N3 19.4±1.22a 0.11±0.03b 153±4.16c 0.795±0.04b
N4 15.4±1.23b 0.10±0.01b 155±3.77c 0.849±0.05ab
年份 Year ns ** ** **
施氮量 N application level ** ** ** **
Year×N application level
** ns ns *

Table 5

Correlation analysis and partial least square analysis between photosynthetic characteristics and harvest yield of spring maize"

Photosynthetic indicators
Pearson correlation coefficient
Variable importance in projection
Variable importance in projection order
LAD 0.976** 1.070 2
Pn 0.809** 0.938 5
Tr 0.830** 0.942 4
Ci -0.895** 0.963 3
Gs 0.805** 0.908 6
LAI 0.981** 1.070 2
Chl a+b 0.987** 1.090 1

Fig. 3

Effects of different N application levels on yield of spring maize in 2019 and 2020 The yield is the average values of 2019 and 2020; Error bars are standard error, and different small letters above the bars mean significant difference (P<0.05) among different treatments"

Table 6

Economic benefits of different N application levels"

N application levels (kg·hm-2)
Output value
Fertilizer input (yuan/hm2)
Output-input ratio
Increase rate of the output (%)
0 7674±588c 909 6765±588d 8.44±0.65d
90 16657±396b 1417 15240±396c 11.8±0.28b 117
134.8 21129±0a 1671 19458±0a 12.6±0a 175
139 21129±0a 1694 19435±0a 12.5±0a 175
180 21441±462a 1926 19515±462a 11.1±0.24c 179
270 20778±985a 2435 18343±985b 8.53±0.41d 171
360 21169±681a 2944 18225±681b 7.19±0.23e 176

Fig. 4

Effects of different N application levels on soil nitrogen surplus"

Table 7

Effects of different N application levels on nitrogen absorption and utilization and nitrogen balance of spring maize"

GNA (kg·hm-2)
ANA (kg·hm-2)
NARE (%)
NAE (kg·kg-1)
NPE (kg·kg-1)
N surplus (kg·hm-2)
2019 N0 20.6±1.15c 33.1±1.09c -33.1±1.09e
N1 59.6±5.75b 93.1±5.22b 66.7±5.80a 43.5±3.65a 65.6±8.35a 69.7±3.65a -3.14±5.22d
N2 116±8.41a 164±10.68a 72.9±5.94a 38.1±0.66b 52.5±4.98b 51.2±0.66b 15.7±10.68c
N3 119±4.67a 172±4.42a 51.3±1.64b 24.9±1.22c 48.5±2.88b 33.6±1.22c 98.3±4.42b
N4 116±4.63a 171±2.73a 38.2±0.76c 18.8±0.10d 49.2±1.23b 25.4±0.10d 189±2.73a
2020 N0 30.2±4.28c 48.5±4.87c -48.5±4.87e
N1 78.9±7.68b 122±8.29b 66.2±0.63b 47.3±1.62a 58.6±0.48a 98.5±1.62a -34.5±4.24d
N2 114±10.01a 181±15.33a 74.4±2.82a 31.5±2.91b 53.3±1.63b 57.1±2.91b 18.8±2.01c
N3 112±1.22a 182±5.12a 47.6±1.89c 19.2±2.45c 40.4±4.17c 36.3±2.45c 88.4±5.12b
N4 119±5.31a 191±10.8a 38.3±3.01d 15.3±1.62c 39.8±1.28c 28.1±1.62d 169±10.83a
年份 Year * ** ns ** ** ** **
施氮量 N application level ** ** ** ** ** ** **
Year×N application level
** ns * ** ns ** **
[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.
National Bureau of Statistics. China Statistics Yearbook. Beijing: China Statistics Press, 2020. (in Chinese)
[2] 李少昆. 玉米单产有望较快增长. 农产品市场, 2021, 9: 25.
LI S K. The per unit yield of maize is expected to increase rapidly. Agricultural Products Market, 2021, 9: 25. (in Chinese)
[3] 王齐齐, 徐虎, 马常宝, 薛彦东, 王传杰, 徐明岗, 张文菊. 西部地区紫色土近30年来土壤肥力与生产力演变趋势分析. 植物营养与肥料学报, 2018, 24(6): 1492-1499.
WANG Q Q, XU H, MA C B, XUE Y D, WANG C J, XU M G, ZHANG W J. Change of soil fertility and productivity of purple soil in Western China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1492-1499. (in Chinese)
[4] 刘明鹏, 徐开未, 肖华, 陈晓辉, 彭丹丹, 卢俊宇, 陈远学. 氮肥施用对四川紫色土矿质态氮淋失特征及春玉米产量的影响. 农业资源与环境学报, 2022, 39(1): 88-98.
LIU M P, XU K W, XIAO H, CHEN X H, PENG D D, LU J Y, CHEN Y X. Effects of nitrogen application on the characteristics of mineral nitrogen leaching in purplish soil and spring maize yield in Sichuan. Journal of Agricultural Resources and Environment, 2022, 39(1): 88-98. (in Chinese)
[5] 陈尚洪, 陈红琳, 郑盛华, 吴铭, 梁圣, 曲热朗磋, 沈学善, 张鸿, 梅旭荣, 刘定辉. 西南地区玉米养分管理现状分析与评价. 中国土壤与肥料, 2019, 1: 159-165.
CHEN S H, CHEN H L, ZHENG S H, WU M, LIANG S, QURE L C, SHEN X S, ZHANG H, MEI X R, LIU D H. Current status and evaluation of nutrient management for maize in southwest China. Soil and Fertilizer Sciences in China, 2019, 1: 159-165. (in Chinese)
[6] 徐春丽, 谢军, 王珂, 李丹萍, 陈轩敬, 张跃强, 陈新平, 石孝均. 中国西南地区玉米产量对基础地力和施肥的响应. 中国农业科学, 2018, 51(1): 129-138.
XU C L, XIE J, WANG K, LI D P, CHEN X J, ZHANG Y Q, CHEN X P, SHI X J. The response of maize yield to inherent soil productivity and fertilizer in the Southwest China. Scientia Agricultura Sinica, 2018, 51(1): 129-138. (in Chinese)
[7] 王丹丹, 李岚涛, 韩本高, 张倩, 盛开, 王宜伦. 养分专家系统推荐施肥对夏玉米生理特性及产量的影响. 农业资源与环境学报, 2022, 39(1): 107-117.
WANG D D, LI L T, HAN B G, ZHANG Q, SHENG K, WANG Y L. Effects of nutrient expert recommended fertilization on the physiological characteristics and yield of summer maize. Journal of Agricultural Resources and Environment, 2022, 39(1): 107-117. (in Chinese)
[8] 党红凯. 小麦/玉米不同复合群体对光合器官生态生理特性和产量形成的影响[D]. 保定: 河北农业大学, 2010.
DANG H K. Effects of different wheat/maize compound community on the eco-physiological characteristics of photosynthetic organs and grain yield formation[D]. Baoding: Agricultural University of HeBei, 2010. (in Chinese)
[9] ALI M M, AI-ANI A, EAMUS D, TAN D K. Leaf nitrogen determination using non-destructive techniques-A review. Journal of Plant Nutrition, 2017, 40(7): 928-953.
doi: 10.1080/01904167.2016.1143954
[10] 王彬, 王玉波, 佟桐, 刘笑鸣, 赵猛, 李彩凤. 不同施氮模式对玉米光合特性和氮代谢关键酶的影响. 玉米科学, 2020, 28(2): 135-142.
WANG B, WANG Y B, TONG T, LIU X M, ZHAO M, LI C F. Effects of different nitrogen application patterns on photosynthetic characteristics and key enzymes of nitrogen metabolism in maize. Journal of Maize Sciences, 2020, 28(2): 135-142. (in Chinese)
[11] 李强, 马晓君, 程秋博, 豆攀, 余东海, 罗延宏, 袁继超, 孔凡磊. 氮肥对不同耐低氮性玉米品种花后物质生产及叶片功能特性的影响. 中国生态农业学报, 2016, 24(1): 17-26.
LI Q, MA X J, CHENG Q B, DOU P, YU D H, LUO Y H, YUAN J C, KONG F L. Effects of nitrogen fertilizer on post-silking dry matter production and leaves function characteristics of low-nitrogen tolerance maize. Chinese Journal of Eco-Agriculture, 2016, 24(1): 17-26. (in Chinese)
[12] SU W, AHMAD S, AHMAD I, HAN Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ, 2020, 8(2): e10291.
doi: 10.7717/peerj.10291
[13] LIU Z, GAO J, GAO F, LIU P, ZHAO B, ZHANG J. Photosynthetic characteristics and chloroplast ultrastructure of summer maize response to different nitrogen supplies. Frontiers in Plant Science, 2018, 9: 576.
doi: 10.3389/fpls.2018.00576
[14] 王帅, 长期不同施肥对玉米叶片光合作用及光系统功能的影响[D]. 沈阳: 沈阳农业大学, 2014.
WANG S. Effects of long-term different fertilization on photosynthesis and photosystem function in maize leaves[D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese)
[15] 曹彩云, 郑春莲, 李科江, 马俊永, 崔彦宏. 长期定位施肥对夏玉米光合特性及产量的影响研究. 中国生态农业学报, 2009, 17(6): 1074-1079.
doi: 10.3724/SP.J.1011.2009.01074
CAO C Y, ZHENG C L, LI K J, MA J Y, CUI Y H. Effect of long-term fertilization on photosynthetic property and yield of summer maize (Zea mays L.). Chinese Journal of Eco-Agriculture, 2009, 17(6): 1074-1079. (in Chinese)
doi: 10.3724/SP.J.1011.2009.01074
[16] WASAYA A, TAHIR M, ALI H, HUSSAIN M, YASIR T A, SHER A, IJAZ M, SATTAR A. Influence of varying tillage systems andnitrogen application on crop allometry, chlorophyll contents, biomass production and net returns of maize (Zea mays L.). Soil & Tillage Research, 2017, 170: 18-26.
[17] CHEN Y, WU D, MU X, XIAO C, CHEN F, YUAN L, MI G. Vertical distribution of photosynthetic nitrogen use efficiency and its response to nitrogen in field-grown maize. Crop Science, 2016, 56(1): 397-407.
doi: 10.2135/cropsci2015.03.0170
[18] 楚光红, 章健新. 施氮量对滴灌超高产春玉米光合特性、产量及氮肥利用效率的影响. 玉米科学, 2016, 24(1): 130-136.
CHU G H, ZHANG J X. Effects of nitrogen application on photosynthetic characteristics, yield and nitrogen use efficiency in drip irrigation of super high-yield spring maize. Journal of Maize Sciences, 2016, 24(1): 130-136. (in Chinese)
[19] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S.The Experiment Principle and Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. (in Chinese)
[20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical Methods of Soil Agricultural Chemistry. Beijing: Chinese Agricultural Science and Technology Press, 2000. (in Chinese)
[21] 李录久, 王家嘉, 吴萍萍, 黄厚宽, 蒋荫锡. 秸秆还田下氮肥运筹对白土田水稻产量和氮吸收利用的影响. 植物营养与肥料学报, 2016, 22(1): 254-262.
LI L J, WANG J J, WU P P, HUANG H K, JIANG Y X. Effect of different nitrogen application on rice yield and N uptake of white soil under wheat straw turnover. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 254-262. (in Chinese)
[22] 宁运旺, 张辉, 王磊, 许仙菊, 汪吉东, 马洪波, 朱德进, 黄卉, 王少华, 马朝红, 张永春. 基肥结合抽穗期追肥稳定稻麦产量并提高氮肥利用率及经济效益. 植物营养与肥料学报, 2020, 26(8): 1407-1419.
NING Y W, ZHANG H, WANG L, XU X J, WANG J D, MA H B, ZHU D J, HUANG H, WANG S H, MA C H, ZHANG Y C. Maintaining yields and improving nitrogen use efficiencies and economic benefits of rice and wheat by double fertilization of combining basal dressing with top dressing at heading stage. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1407-1419. (in Chinese)
[23] 陈晓辉. 小麦/玉米/大豆周年套作体系的氮肥效应研究[D]. 成都: 四川农业大学, 2014.
CHEN X H. Research on nitrogen fertilizer effect on annual relay intercropping system of wheat/maize/soybean[D]. Chengdu: Sichuan Agricultural University, 2014. (in Chinese)
[24] 杨昱. 不同氮水平下小麦-大豆和小麦/玉米/大豆周年体系的产量及植株碳氮磷变化[D]. 成都: 四川农业大学, 2015.
YANG Y. Research on nitrogen fertilizer effect on annual relay intercropping system of wheat/maize/soybean[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese)
[25] 赵营, 同延安, 赵护兵. 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006, 12(5): 622-627.
ZHAO Y, TONG Y A, ZHAO H B. Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Journal of Plant Nutrition and Fertilizers, 2006, 12(5): 622-627. (in Chinese)
[26] 巨晓棠, 刘学军, 邹国元, 王朝辉, 张福锁. 冬小麦/夏玉米轮作体系中氮素的损失途径分析. 中国农业科学, 2002, 35(12): 1493-1499.
JU X T, LIU X J, ZOU G Y, WANG C H, ZHANG F S. Evaluation of nitrogen loss way in winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2002, 35(12): 1493-1499. (in Chinese)
[27] 景立权, 赵福成, 刘萍, 袁建华, 陆大雷, 陆卫平. 施氮对超高产夏玉米干物质及光合特性的影响. 核农学报, 2014, 28(2): 317-326.
JING L Q, ZHAO F C, LIU P, YUAN J H, LU D L, LU W P. Effects of nitrogen treatments on dry matter production and photosynthetic characteristics of summer maize (Zea mays L.) under super-high yield conditions. Journal of Nuclear Agricultural Sciences, 2014, 28(2): 317-326. (in Chinese)
[28] 王斐, 王克雄, 关耀兵, 吴利晓, 张倩男, 邵千顺, 吴莹莹. 不同品种春玉米光合特性及产量效应分析. 山西农业科学, 2019, 47(10): 1691-1694.
WANG F, WANG K X, GUAN Y B, WU L X, ZHANG Q N, SHAO Q S, WU Y Y. Analysis on photosynthetic characteristics and yield effect of different spring maize varieties. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1691-1694. (in Chinese)
[29] 朱晓军, 杨劲松, 梁永超, 娄运生, 杨晓英. 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响. 中国农业科学, 2004, 37(10): 1497-1503.
ZHU X J, YANG J S, LIANG Y C, LOU Y S, YANG X Y. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Scientia Agricultura Sinica, 2004, 37(10): 1497-1503. (in Chinese)
[30] ZHU X G, DE STURLER E, LONG S P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiology, 2007, 145(2): 513-526.
doi: 10.1104/pp.107.103713
[31] DUNCAN W G. Leaf angles, leaf area, and canopy photosynthesis. Crop Science, 1971, 11(4): 482-485.
doi: 10.2135/cropsci1971.0011183X001100040006x
[32] 蔡晓, 王东, 吴祥运, 吴雨倩, 林祥, 张俊鹏. 氮肥减施对夏玉米生长及水氮利用效率的影响. 玉米科学, 2022, 30(1): 158-165.
CAI X, WANG D, WU X Y, WU Y Q, LIN X, ZHANG J P. Effects of nitrogen reduction on growth and water-nitrogen use efficiency of summer maize. Journal of Maize Sciences, 2022, 30(1): 158-165. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[8] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[9] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[10] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[11] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[12] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[13] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[14] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[15] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
Full text



No Suggested Reading articles found!