Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1529-1545.doi: 10.3864/j.issn.0578-1752.2022.08.005


Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice

GUI RunFei1(),WANG ZaiMan2,PAN ShengGang1,ZHANG MingHua2,TANG XiangRu1,MO ZhaoWen1()   

  1. 1College of Agriculture, South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources/Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture/Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642
    2College of Engineering, South China Agricultural University/Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, Guangzhou 510642
  • Received:2021-06-28 Accepted:2021-11-04 Online:2022-04-16 Published:2022-05-11
  • Contact: ZhaoWen MO;


【Objective】 The effects of nitrogen-reduced side depth application of liquid fertilizer at tillering stage and conventional total application of solid fertilizer on nitrogen uptake and utilization, dry matter accumulation and physiological nitrogen metabolism in key growth stages of fragrant rice and its relationship with yield formation of fragrant rice were investigated, so as to provide the theoretical basis and guidance for mechanized side deep application of liquid fertilizer at tillering stage in south China fragrant rice growing region in the future.【Method】 Field experiments were conducted for two consecutive years from 2019 to 2020, two popular fragrant rice cultivars with large planting area in South China, including Yuxiangyouzhan and Xiangyaxiangzhan, were used as the test materials, and a randomized complete block design was adopted. Four treatments were set up, including no fertilization during rice growth season (T1), total fertilization of solid fertilizer (T2, total nitrogen application rate of 150 kg N·hm-2), side depth application of liquid fertilizer with 10% nitrogen reduction at tillering stage (T3), and side depth application of liquid fertilizer with 20% nitrogen reduction at tillering stage (T4). The effects of different fertilization treatments on yield and its components, nitrogen absorption and utilization, dry matter accumulation and physiological nitrogen metabolism of fragrant rice were analyzed.【Result】 (1) In the two-year field experiments, the yield of both fragrant rice cultivars under T3 treatment was the highest, which was significantly higher than that under T1 treatment. Compared with T2 treatment, the grain yield of Yuxiangyouzhan in 2019 and 2020 under T3 treatment was increased by 1.84% and 15.20%, respectively; the grain yield of Xiangyaxiangzhan in 2019 and 2020 under T3 treatment was increased by 0.65% and 3.71%, respectively. The grain yield increment observed under T3 treatment was mainly related to the highest effective panicle. (2) In the two-year field experiments, the total dry matter accumulation, leaf area index, and total nitrogen accumulation of the two fragrant cultivars at panicle initiation stage and heading stage were generally the highest under T2 treatment, while no significant difference was observed between T3 treatment and T2 treatment. However, the total dry matter accumulation, leaf area index, and total nitrogen accumulation under T3 treatment were the highest for the two fragrant rice cultivars. Compared with T2 treatment, T3 treatment increased total dry matter accumulation, leaf area index, and total nitrogen accumulation of Yuxiangyouzhan by 25.14%, 26.57%, and 21.31% in 2019, respectively, and in 2020 the corresponding increases were 5.83%, 21.80%, and 46.47%, respectively. Compared with T2 treatment, the total dry matter accumulation, leaf area index, and total nitrogen accumulation under T3 treatment for Xiangyaxiangzhan were increased by 19.95%, 3.73%, and 13.41% in 2019, respectively, and in 2020 the corresponding increases were 21.17%, 1.78%, and 14.37%, respectively. In addition, the nitrogen recovery efficiency and nitrogen agronomic efficiency of the two fragrant rice cultivars were also the highest under T3 treatment. (3) At the panicle initiation stage and heading stage, T2 treatment showed higher in the activities of nitrogen metabolism-related enzymes in leaf of the two fragrant rice cultivars as compared with other fertilization treatments, and T3 treatment was observed with the highest activities of nitrogen metabolism-related enzymes in leaf of the two fragrant rice cultivars at maturity stage. 【Conclusion】 The two-year of field experiments showed that, compared with the total fertilization of solid fertilizer treatment, the side depth application of liquid fertilizer with 10% nitrogen reduction at tillering stage treatment could increase the yield of fragrant rice by ensuring the early growth, increasing total dry matter accumulation, leaf area index, nitrogen utilization and nitrogen metabolism-related enzymes activities during the late growth stage while reducing the application rate of nitrogen fertilizer.

Key words: fragrant rice, side deep fertilization, grain yield, liquid fertilizer, nitrogen absorption and utilization

Table 1

Mean monthly air temperature, maximum temperature, minimum temperature, precipitation, sunshine hours, and relative humidity in rice growth seasons of 2019-2020"

Average air
temperature (℃)
temperature (℃)
temperature (℃)
Sunshine hours
Relative humidity (%)
2019 7月 July 28.7 38.0 23.8 479.9 136.1 84.3
8月 August 28.3 37.2 23.5 104.6 186.4 85.9
9月 September 26.7 36.4 17.8 39.5 258.3 79.1
10月 October 24.1 35.2 15.3 0 222.1 78.0
11月 November 19.5 31.0 11.4 5.6 269.5 71.8
2020 7月 July 30.3 37.9 25.1 67.5 207.1 74.1
8月 August 28.4 36.8 23.9 226.5 187.8 82.5
9月 September 27.0 36.8 22.0 345.0 119.5 88.0
10月 October 23.4 33.4 17.3 12.2 160.3 74.6
11月 November 21.2 30.7 11.9 4.4 195.8 72.6

Fig. 1

Schematic diagram of side deep fertilizer method (2019-2020)"

Table 2

Experimental treatment design of 2019-2020"

Fertilization treatment
Total N
Basal N
Base fertilizer
application method
Tillering N
Tiller fertilizer
application method
T2 固体肥 Solid fertilizer 150 90 撒施 Broadcasting 60 撒施 Broadcasting
T3 液体肥 Liquid fertilizer 135 90 撒施 Broadcasting 45 侧深施 Side deep application
T4 液体肥 Liquid fertilizer 120 90 撒施 Broadcasting 30 侧深施 Side deep application

Table 3

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on yield and yield components in fragrant rice of 2019-2020"

Effective panicle
per panicle
Grain filling percentage (%)
weight (g)
2019 玉香油占
T1 254.15±16.28b 169.77±2.23c 72.88±1.07b 20.37±0.24a 6.36±0.59c
T2 305.39±15.35a 181.72±5.71b 79.86±1.32a 19.79±0.49a 8.42±0.41b
T3 336.47±17.89a 177.13±1.84b 80.69±2.20a 20.27±0.20a 9.70±0.70a
T4 300.76±26.55a 194.16±4.91a 79.98±2.01a 20.33±0.16a 9.31±0.87ab
T1 247.89±10.42b 169.71±4.33a 81.40±1.49a 19.00±0.26ab 6.48±0.50b
T2 309.00±8.50a 169.73±3.16a 82.93±1.10a 19.16±0.06ab 8.09±0.30a
T3 323.42±6.57a 163.01±7.73a 84.90±1.83a 18.82±0.26b 8.39±0.14a
T4 298.01±12.56a 170.50±2.51a 82.77±1.45a 19.35±0.05a 8.11±0.24a
2020 玉香油占
T1 199.85±25.91b 196.04±9.25a 74.47±0.89b 21.65±0.45a 6.22±0.18b
T2 234.80±9.17ab 217.84±7.20a 79.20±1.57a 20.74±0.31a 8.15±0.38a
T3 272.22±21.81a 189.87±19.21a 78.93±1.30a 21.08±0.98a 8.30±0.10a
T4 256.08±25.85a 187.09±13.22a 75.63±1.42b 21.13±0.52a 7.39±0.74ab
T1 200.18±5.43b 160.27±2.96b 72.46±0.23c 19.27±0.27a 4.87±0.24c
T2 258.28±6.23a 181.87±8.26a 80.66±1.08a 20.19±0.64a 7.73±0.42a
T3 261.22±10.85a 195.77±7.41a 78.50±1.21ab 20.01±0.25a 7.78±0.31a
T4 220.13±16.13b 177.87±4.59ab 76.83±1.36b 20.47±0.27a 6.04±0.59b
F value
Y * ns * ns ns
F ** ns ** ns **
C ns ** ns ** **
Y×F ns ** ns ns ns
Y×C ns ns ns ns ns
C×F ns * ns ns ns
Y×C×F ns ns * ns ns

Table 4

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on total dry matter accumulation in fragrant rice at different stages of 2019-2020"

年份 Year 品种 Cultivar 施肥处理 Fertilization treatment 幼穗分化期 PI (t·hm-2) 抽穗期 HS (t·hm-2) 成熟期 MS (t·hm-2)
2019 玉香油占
T1 2.05±0.30b 8.40±0.38b 8.47±1.01b
T2 5.54±1.63ab 8.55±1.46b 12.61±0.91ab
T3 6.97±1.62a 12.99±0.60a 15.78±1.99a
T4 5.37±0.69ab 9.42±0.97b 14.01±2.48a
T1 2.42±0.46b 6.68±0.50a 7.01±0.72b
T2 5.84±0.44a 8.24±1.53a 11.28±0.72a
T3 5.40±0.97a 8.18±1.26a 13.53±1.61a
T4 3.74±0.10b 7.30±1.19a 11.45±0.85a
2020 玉香油占
T1 4.25±0.22b 5.85±0.63c 9.04±0.79b
T2 7.02±0.82a 9.71±0.71a 12.01±0.82a
T3 5.87±0.45ab 8.51±0.26ab 12.71±0.95a
T4 6.67±1.13ab 7.91±0.18b 11.62±0.73ab
T1 4.65±0.16b 6.64±0.55b 8.63±0.57c
T2 6.33±0.53a 8.91±0.27a 11.29±0.78ab
T3 6.29±0.57a 7.96±0.30ab 13.68±0.86a
T4 5.95±0.15ab 6.95±0.92ab 10.74±0.65b
F value
Y * ns ns
F ** ** **
C ns ns ns
Y×F ns * ns
Y×C ns ns ns
C×F ns ns ns
Y×C×F ns ns ns

Table 5

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on leaf area index in fragrant rice at different stages of 2019-2020"

年份 Year 品种 Cultivar 施肥处理 Fertilization treatment 幼穗分化期 PI 抽穗期 HS 成熟期 MS
2019 玉香油占
T1 1.85±0.14b 3.87±0.26c 1.81±0.26c
T2 4.96±0.32a 5.26±0.44b 4.29±0.26b
T3 4.35±0.21a 6.35±0.37a 5.43±0.23a
T4 4.23±0.35a 5.32±0.33b 4.43±0.34b
T1 1.50±0.35c 4.22±0.34c 1.53±0.23b
T2 4.80±0.27a 5.57±0.31a 4.02±0.35a
T3 3.52±0.30b 5.33±0.27ab 4.17±0.26a
T4 3.37±0.27b 4.59±0.32bc 4.11±0.21a
T1 2.24±0.21c 3.26±0.25c 1.99±0.06c
T2 5.32±0.22a 6.17±0.24a 4.45±0.24b
T3 4.40±0.24b 5.72±0.24ab 5.42±0.19a
T4 4.78±0.22ab 5.31±0.19b 4.51±0.24b
T1 1.77±0.13c 3.58±0.21c 1.85±0.25c
T2 5.34±0.14a 6.24±0.14a 4.49±0.19a
T3 4.25±0.17b 5.65±0.18a 4.57±0.20a
T4 3.88±0.16b 4.45±0.29b 4.04±0.23b
F value
Y * ns ns
F ** ** **
C ** * **
Y×F ns * ns
Y×C ns ns ns
C×F ns * *
Y×C×F ns ns ns

Table 6

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on total nitrogen accumulation in fragrant rice at different stages of 2019-2020"

年份 Year 品种 Cultivar 施肥处理 Fertilization treatment 幼穗分化期PI (kg·hm-2) 抽穗期HS (kg·hm-2) 成熟期MS (kg·hm-2)
2019 玉香油占
T1 16.00±2.02d 38.78±2.51d 62.02±3.23c
T2 70.94±1.23a 92.97±1.38b 103.69±1.43b
T3 65.68±1.49b 101.61±1.61a 125.79±2.66a
T4 44.50±2.65c 69.63±0.74c 112.83±2.92b
T1 23.11±0.59c 36.52±1.06d 60.41±2.16c
T2 70.06±2.20a 87.05±2.24a 106.99±2.57b
T3 67.72±4.47a 79.26±1.36b 121.34±1.83a
T4 44.64±1.09b 69.81±1.67c 108.39±3.52b
T1 32.97±0.46c 43.59±1.14d 71.31±0.37d
T2 72.45±1.61a 84.26±1.22a 111.82±1.44c
T3 65.85±1.10b 70.20±2.11c 163.78±0.17a
T4 71.66±2.28a 81.88±1.81b 151.38±0.06b
T1 31.70±1.16c 42.02±0.94d 55.60±0.07d
T2 76.60±0.97a 86.09±0.79a 93.85±1.51b
T3 70.59±3.10a 80.62±1.30b 107.34±0.56a
T4 56.01±1.62b 69.76±1.40c 82.86±1.04c
F value
Y * ns ns
F ** ** **
C ns * **
Y×F ns * ns
Y×C ns ns **
C×F ns * ns
Y×C×F ns * ns

Table 7

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on nitrogen uptake and utilization in fragrant rice of 2019-2020"

Fertilization treatment
NGPE (kg·kg-1)
NHI (%)
NAE (kg·kg-1)
2019 玉香油占
T1 104.51±7.02a 38.18±2.60b
T2 76.84±5.56b 44.28±1.38b 33.54±5.36b 10.15±3.63b
T3 77.59±3.63b 48.30±1.71a 47.48±8.41a 21.91±5.62a
T4 88.52±9.23ab 49.88±1.17a 34.28±5.01b 20.67±4.60a
T1 96.57±10.33a 28.34±2.35b
T2 76.16±6.19b 36.87±2.47a 32.16±3.61b 9.41±0.55b
T3 70.13±5.97b 35.66±0.58a 45.18±4.64a 13.58±2.07a
T4 76.54±4.69b 34.06±0.97a 38.36±6.13a 12.19±1.49a
T1 88.49±10.02a 41.19±1.81a
T2 75.68±5.65a 36.70±1.76ab 26.34±2.95b 11.63±1.60a
T3 53.34±3.07b 31.48±2.41b 68.75±5.00a 13.97±2.68a
T4 49.03±5.14b 31.04±2.45b 64.48±4.82a 10.88±1.50a
T1 86.01±4.91a 43.11±0.84a
T2 82.96±6.59ab 35.62±1.08ab 25.75±4.33b 18.50±1.99a
T3 73.31±5.46b 34.68±0.95b 38.78±4.45a 20.16±1.10a
T4 72.64±6.58b 31.99±1.87b 22.26±1.84b 10.67±2.82b
F value
Y ns * ns ns
F * ns ** **
C ns * ** ns
Y×F * * ns ns
Y×C ns * * *
C×F * ns * ns
Y×C×F * ns * ns

Fig. 2

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on NR activity in leaves of fragrant rice at different stages of 2019-2020 Values followed by different lowercase letters during the same period indicate significant difference (P<0.05). PI: Panicle initiation stage; HS: Heading stage; MS: Maturity stage. NR: Nitrate reductase. The same as below"

Fig. 3

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on GS activity in leaves of fragrant rice at different stages of 2019-2020 GS: Glutamine synthetase"

Fig. 4

Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on GOGAT activity in leaves of fragrant rice at different stages of 2019-2020 GOGAT: Glutamate synthase"

[32] WANG F B, LIU K, SUN J L, YIN X, HOU Z A. Effects of nitrogen reduction on NH3 volatilization, nutrient uptake and cotton yield in drip-irrigated cotton fields. Xinjiang Agricultural Sciences, 2020, 57(9): 1746-1753. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2020.09.020
[33] ZHANG Y B, TANG Q Y, ZOU Y B, LI D Q, QIN J Q, YANG S H, CHEN L J, XIA B, PENG S B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Research, 2009, 114(1): 91-98.
doi: 10.1016/j.fcr.2009.07.008
[34] HUANG M, JIANG L G, XIA B, ZOU Y B, JIANG P, AO H J. Yield gap analysis of super hybrid rice between two subtropical environments. Australian Journal of Crop Science, 2013, 7(5): 600-608.
[35] PAN S G, WEN X C, WANG Z M, ASHRAF U, TIAN H, DUAN M Y, MO Z W, FAN P S, TANG X R. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Research, 2017, 203:139-149.
doi: 10.1016/j.fcr.2016.12.011
[1] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43(3): 474-479.
ZHU D F, CHENG S H, ZHANG Y P, LIN X Q, CHEN H Z. Analysis of status and constraints of rice production in the world. Scientia Agricultura Sinica, 2010, 43(3): 474-479. (in Chinese)
[36] 凌启鸿, 杨建昌. 水稻群体“粒叶比”与高产栽培途径的研究. 中国农业科学, 1986, 3(1): 8.
LING Q H, YANG J C. Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Scientia Agricultura Sinica, 1986, 3(1): 8. (in Chinese)
[2] ZHOU X, LU Y H, LIAO Y L, ZHU Q D, CHENG H D, NIE X, CAO W D, NIE J. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system. Journal of Integrative Agriculture, 2019, 18(10): 2381-2392.
doi: 10.1016/S2095-3119(18)62096-9
[3] 孙永飞, 严力蛟, 梁尹明. 水稻生产中的农田生态问题与可持续发展对策. 中国农学通报, 2005, 21(6): 358-362.
[37] 董桂春, 于小凤, 董燕萍, 李进前, 田昊, 周娟, 王云霞, 杨连新, 黄建晔, 王余龙. 不同库容量类型常规籼稻品种氮素吸收与分配的差异. 中国农业科学, 2009, 42(10): 3432-3441.
DONG G C, YU X F, DONG Y P, LI J Q, TIAN H, ZHOU J, WANG Y X, YANG L X, HUANG J Y, WANG Y L. A different in nitrogen uptake and distribution in conventional indica rice cultivars with different sink-potentials. Scientia Agricultura Sinica, 2009, 42(10): 3432-3441. (in Chinese)
[3] SUN Y F, YAN L J, LIANG Y M. Problems and countermeasures for sustainable rice production. Chinese Agricultural Science Bulletin, 2005, 21(6): 358-362. (in Chinese)
[4] PENG B, KONG D Y, SONG X H, LI H L, HE L L, GONG A D, SUN Y F, PANG R H, LIU L, LI J T, ZHOU Q Y, HUANG Y Q, DUAN B, SONG S Z, YUAN H Y. A method for detection of main metabolites in aromatic rice seeds. Agricultural Biotechnology, 2018, 7(1): 112-116.
[38] 薛艳凤, 陆江锋, 吕川根, 金军, 邹江石, 朱庆森. 两系亚种间杂交稻两优培九籽粒灌浆动态研究. 江苏农业研究, 2001, 22(2): 13-19.
XUE Y F, LU J F, LÜ C G, JIN J, ZOU J S, ZHU Q S. Studies on the development of grain filling of two-line intersubspecific hybrid rice Liangyoupeijiu. Journal of Yangzhou University (Agricultural and Life Science Edition), 2001, 22(2): 13-19. (in Chinese)
[39] TEWARI K, SATO T, ABIKO M, OHTAKE N, SUEYOSHI K, TAKAHASHI Y, NAGUMO Y, TUTIDA T, OHYAMA T. Analysis of the nitrogen nutrition of soybean plants with deep placement of coated urea and lime nitrogen. Soil Science and Plant Nutrition, 2007, 53(6): 772-781.
doi: 10.1111/j.1747-0765.2007.00194.x
[40] LIU T Q, FAN D J, ZHANG X X, CHEN J, LI C F, CAO C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research, 2015, 184: 80-90.
doi: 10.1016/j.fcr.2015.09.011
[41] 王肖娟, 危常州, 张君, 董鹏, 王娟, 朱齐超, 王金鑫. 灌溉方式和施氮量对棉花生长及氮素利用效率的影响. 棉花学报, 2012, 24(6): 554-561.
WANG X J, WEI C Z, ZHANG J, DONG P, WANG J, ZHU Q C, WANG J X. Effects of irrigation methods and N application level on cotton growth and nitrogen use efficiency. Cotton Science, 2012, 24(6): 554-561. (in Chinese)
[42] 廖欢, 王方斌, 刘凯, 殷星, 侯振安. 不同施氮措施配合硝化抑制剂对滴灌棉田土壤NH3挥发和N2O排放的影响. 西北农业学报, 2020, 29(9): 1378-1388.
LIAO H, WANG F B, LIU K, YIN X, HOU Z A. Effects of nitrogen application combined with nitrification inhibitors on NH3 volatilization and N2O emission in drip-irrigated cotton field. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(9): 1378-1388. (in Chinese)
[43] 曹小闯, 李烨锋, 吴龙龙, 朱春权, 朱练峰, 张均华, 金千瑜. 有机水溶肥对水稻干物质、氮素积累和转运的影响. 作物杂志, 2020, 36(5): 110-118.
CAO X C, LI Y F, WU L L, ZHU C Q, ZHU L F, ZHANG J H, JIN Q Y. Effects of organic soluble fertilizer on the accumulation and translocation of dry matter and nitrogen of rice. Crops, 2020, 36(5): 110-118. (in Chinese)
[44] 邹应斌, 黄见良, 屠乃美, 李合松, 黄升平, 张杨珠. “旺壮重”栽培对双季杂交稻产量形成及生理特性的影响. 作物学报, 2001, 27(3): 343-350.
ZOU Y B, HUANG J L, TU N M, LI H S, HUANG S P, ZHANG Y Z. Effects of the VSW cultural method on yield formation and physiological characteristics in double cropping hybrid rice. Acta Agronomica Sinica, 2001, 27(3): 343-350. (in Chinese)
[45] 刘昕萌, 陈庚, 王志国, 贺韵涵, 李威, 吴玥, 杨德光. 不同氮肥基追比对玉米氮素吸收利用、土壤氮素供应及产量的影响. 华北农学报, 2020, 35(5): 124-131.
LIU X M, CHEN G, WANG Z G, HE Y H, LI W, WU Y, YANG D G. Effects of different nitrogen fertilizers on nitrogen uptake and utilization, soil nitrogen supply and yield of maize. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 124-131. (in Chinese)
[46] 贾琰, 沈阳, 邹德堂, 沙汉景, 王敬国, 刘化龙, 赵振东, 夏楠, 赵宏伟. 孕穗期冷水灌溉对寒地粳稻籽粒灌浆及其氮素积累的影响. 中国水稻科学, 2015, 29(3): 259-272.
JIA Y, SHEN Y, ZOU D T, SHA H J, WANG J G, LIU H L, ZHAO Z D, XIA N, ZHAO H W. Effect of cold-water irrigation at booting stage on grain filling and nitrogen accumulation of rice in cold-region. Chinese Journal of Rice Science, 2015, 29(3): 259-272. (in Chinese)
[47] KARGBO M B, PAN S G, MO Z W, WANG Z M, LUO X W, TIAN H, HOSSAIN M, ASHRAF U, TANG X R. Physiological basis of improved performance of super rice (Oryza sativa) to deep placed fertilizer with precision hill-drilling machine. International Journal of Agriculture and Biology, 2016, 18(4): 797-804.
doi: 10.17957/IJAB/15.0173
[48] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43(3): 407-419.
doi: 10.3724/SP.J.1006.2017.00407
SUN Y J, SUN Y Y, YAN F J, YANG Z Y, XU H, LI Y, WANG H Y, MA J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agronomica Sinica, 2017, 43(3): 407-419. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00407
[49] 陈军文, 刘强, 荣湘民, 彭建伟, 汤桂容, 谢桂先, 廖育林, 于方明. 氮磷钾不同配比对饲用稻威优198产量及糙米蛋白含量的影响. 土壤通报, 2006, 37(3): 522-529.
CHEN J W, LIU Q, RONG X M, PENG J W, TANG G R, XIE G X, LIAO Y L, YU F M. Effect of different ratio of nitrogen, phosphorus and potassium on yield and protein contents in brown rice of fodder (Weiyou198). Chinese Journal of Soil Science, 2006, 37(3): 522-529. (in Chinese)
[50] 白由路. 高效施肥技术研究的现状与展望. 中国农业科学, 2018, 51(11): 2116-2125.
BAI Y L. The situation and prospect of research on efficient fertilization. Scientia Agricultura Sinica, 2018, 51(11): 2116-2125. (in Chinese)
[5] SASMAL S, PAL S K. Effect of integrated nutrition in aromatic rice on carbon and nutrient status in an inceptisol. Communications in Soil Science and Plant Analysis, 2018, 49(1): 30-37.
doi: 10.1080/00103624.2017.1421216
[6] BHATTACHARJEE P, SINGHAL R S, KULKARNI P R. Basmati rice: A review. International Journal of Food Science and Technology, 2002, 37(1): 1-12.
doi: 10.1046/j.1365-2621.2002.00541.x
[7] DU B, LUO H W, HE L X, ZHENG A X, CHENG Y L, ZHANG T T, WANG Z M, HU L, TANG X R. Deep fertilizer placement improves rice growth and yield in zero tillage. Applied Ecology and Environment Research, 2018, 16(6): 8045-8054.
doi: 10.15666/aeer/1606_80458054
[8] 张鲁云, 何义川, 杨怀君, 汤智辉, 郑炫, 孟祥金. 液体施肥机械发展现状与现代农业关系分析. 中国农机化学报, 2021, 42(4): 34-40.
ZHANG L Y, HE Y C, YANG H J, TANG Z H, ZHENG X, MENG X J. Analysis of the relationship between the development of liquid fertilizer machinery and modern agriculture. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 34-40. (in Chinese)
[9] 李汉常, 谭歆, 李宗浩, 钟诚, 李炎, 易达理, 张文萍. 施磷量和灌溉方式对水稻磷素吸收利用的影响. 灌溉排水学报, 2021, 40(6): 45-52.
LI H C, TAN X, LI Z H, ZHONG C, LI Y, YI D L, ZHANG W P. Irrigation and phosphorus fertilization combine to affect uptake and utilization of phosphorus by rice. Journal of Irrigation and Drainage, 2021, 40(6): 45-52. (in Chinese)
[10] 李燕婷, 李秀英, 肖艳, 赵秉强, 王丽霞. 叶面肥的营养机理及应用研究进展. 中国农业科学, 2009, 42(1): 162-172.
LI Y T, LI X Y, XIAO Y, ZHAO B Q, WANG L X. Advances in study on mechanism of foliar nutrition and development of foliar fertilizer application. Scientia Agricultura Sinica, 2009, 42(1): 162-172. (in Chinese)
[11] 桑文, 赵亚光, 张霁峰, 张凤华. 化肥减量配施有机液体肥对加工番茄生长及土壤酶活性的影响. 中国土壤与肥料, 2021(2): 53-60.
SANG W, ZHAO Y G, ZHANG J F, ZHANG F H. Effects of chemical fertilizer reduction combined with organic liquid fertilizer on processed tomato growth and soil enzyme activity. Soil and Fertilizer Sciences in China, 2021(2): 53-60. (in Chinese)
[12] 田昌, 周旋, 谢桂先, 刘强, 荣湘民, 张玉平, 谭力彰, 彭建伟. 控释尿素减施对双季稻田氨挥发损失和氮肥利用率的影响. 中国水稻科学, 2018, 32(4): 387-397.
TIAN C, ZHOU X, XIE G X, LIU Q, RONG X M, ZHANG Y P, TANG L Z, PENG J W. Ammonia volatilization loss and nitrogen use efficiency in double-cropping rice field as affected by decreasing controlled-release urea application level. Chinese Journal of Rice Science, 2018, 32(4): 387-397. (in Chinese)
[13] 侯红乾, 黄永兰, 冀建华, 刘益仁, 刘秀梅, 胡兆平. 缓/控释肥对双季稻产量和氮素利用率的影响. 中国水稻科学, 2016, 30(4): 389-396.
HOU H Q, HUANG Y L, JI J H, LIU Y R, LIU X M, HU Z P. Effects of controlled-release fertilizer application on double cropping rice yield and nitrogen use efficiency. Chinese Journal of Rice Science, 2016, 30(4): 389-396. (in Chinese)
[14] YAO Z S, ZHENG X H, ZHANG Y A, LIU C Y, WANG R, LIN S, ZUO Q, BUTTERBACH B K. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7(1): 1-11.
doi: 10.1038/s41598-016-0028-x
[15] 李殿平, 曹海峰, 张俊宝, 金学泳. 全程深施肥对水稻产量形成及稻米品质的影响. 中国水稻科学, 2006, 20(1): 73-78.
LI D P, CAO H F, ZHANG J B, JIN X Y. Effect of deep application of fertilizer in the whole growing period on yield formation and quality of rice. Chinese Journal of Rice Science, 2006, 20(1): 73-78. (in Chinese)
[16] ZHANG M, YAO Y L, ZHAO M, ZHANG B W, TIAN Y H, YIN B, ZHU Z L. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agriculture Ecosystems and Environment, 2017, 247: 236-245.
doi: 10.1016/j.agee.2017.07.001
[17] RAHMAN S, BARMON B K. Exploring the potential to improve energy saving and energy efficiency using fertilizer deep placement strategy in modern rice production in Bangladesh. Energy Efficiency, 2015, 8(6): 1241-1250.
doi: 10.1007/s12053-015-9391-x
[18] 陈立才, 李艳大, 秦战强, 黄俊宝, 吴罗发, 王康军, 周明. 侧深施用控释肥对机插中稻生长、产量及氮肥农学效率的影响. 安徽农业大学学报, 2020, 47(5): 839-844.
CHEN L C, LI Y D, QIN Z Q, HUANG J B, WU L F, WANG K J, ZHOU M. Effects of side deep apply controlled release fertilizer on growth, yield and nitrogen agronomic efficiency in transplanted middle-season rice. Journal of Anhui Agricultural University, 2020, 47(5): 839-844. (in Chinese)
[19] 钟雪梅, 黄铁平, 彭建伟, 卢文璐, 康兴蓉, 孙梦飞, 宋思明, 唐启源, 陈裕新, 湛冬至, 周旋. 机插同步一次性精量施肥对双季稻养分累积及利用率的影响. 中国水稻科学, 2019, 33(5): 436-446.
ZHONG X M, HUANG T P, PENG J W, LU W L, KANG X R, SUN M F, SONG S M, TANG Q Y, CHENG Y X, ZHAN D Z, ZHOU X. Effects of machine-transplanting synchronized with one-time precision fertilization on nutrient uptake and use efficiency of double cropping rice. Chinese Journal of Rice Science, 2019, 33(5): 436-446. (in Chinese)
[20] 王丽妍, 杨成林, 徐惠风. 氮肥运筹对寒地水稻生长及产量的影响. 东北农业科学, 2017, 42(5): 15-19.
WANG L Y, YANG C L, XU H F. Effects of nitrogen management on rice growth and yield in cold region. Journal of Northeast Agricultural Sciences, 2017, 42(5): 15-19. (in Chinese)
[21] 范平珊. 氮肥运筹和施肥深度对精量穴直播水稻产量和氮素利用效率的影响[D]. 广州: 华南农业大学, 2018.
FAN P S. Effects of nitrogen fertilizer management and application depth on yield and nitrogen use efficiency in precision hill-direct- seeded rice[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
[22] 李忠光, 龚明. 磺胺比色法测定植物组织硝酸还原酶活性的改进. 植物生理学通讯, 2009, 45(1): 67-68.
doi: 10.1111/j.1399-3054.1979.tb01665.x
LI Z G, GONG M. Improvement of sulfonamide colorimetric method for determination of nitrate reductase activity in plant tissues. Plant Physiology Journal, 2009, 45(1): 67-68. (in Chinese)
doi: 10.1111/j.1399-3054.1979.tb01665.x
[23] 赵全志, 陈静蕊, 刘辉, 乔江方, 高桐梅, 杨海霞, 王继红. 水稻氮素同化关键酶活性与叶色变化的关系. 中国农业科学, 2008, 41(9): 2607-2616.
ZHAO Q Z, CHEN J R, LIU H, QIAO J F, GAO T M, YANG H X, WANG J H. Relationship between activities of nitrogen assimilation enzymes and leaf color of rice. Scientia Agricultura Sinica, 2008, 41(9): 2607-2616. (in Chinese)
[24] 陈建珍, 闫浩亮, 杨前玉, 田小海. 大穗型水稻品种剪叶处理后灌浆结实期源库关系分析. 中国农业气象, 2020, 41(4): 222-229.
CHEN J Z, YAN H L, YANG Q Y, TIAN X H. Source-sink relationship during grain filling in response to leaf-cutting treatment for heavy panicle rice cultivars. Chinese Journal of Agrometeorology, 2020, 41(4): 222-229. (in Chinese)
[25] RANDALL G W, HOEFT R G. Placement methods for improved efficiency of P and K fertilizers: A review. Journal of Production Agriculture, 1988, 1(1): 70-79.
doi: 10.2134/jpa1988.0070
[26] MULLINS G L, BURMESTER C H, REEVES D W. Cotton response to in-row subsoiling and potassium fertilizer placement in Alabama. Soil and Tillage Research, 1997, 40(3/4): 145-154.
doi: 10.1016/S0167-1987(96)01070-7
[27] 郑文汉, 齐龙, 曹聪, 龚浩, 邓若玲, 陶明, 刘闯. 分蘖期深施液体氮肥对水稻分蘖及产量影响. 农机化研究, 2020, 42(7): 160-165.
ZHENG W H, QI L, CAO C, GONG H, DENG R L, TAO M, LIU C. Effects of deep placement liquid fertilizer in tillering stage on tillering dynamics and yield components. Journal of Agricultural Mechanization Research, 2020, 42(7): 160-165. (in Chinese)
[28] 曾贤恩, 魏中伟, 马国辉. 施氮量对超级杂交稻粒叶比及产量的影响. 作物研究, 2017, 31(4): 377-383.
ZENG X E, WEI Z W, MA G H. Effect of nitrogen application rate on grain-leaf ratio and yield of super hybrid rice. Crop Research, 2017, 31(4): 377-383. (in Chinese)
[29] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44(20): 4159-4169.
MA Q, YANG X, LI M, LI G Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Scientia Agricultura Sinica, 2011, 44(20): 4159-4169. (in Chinese)
[30] 王允青, 郭熙盛, 戴明伏. 氮肥运筹方式对杂交水稻干物质积累和产量的影响. 中国土壤与肥料, 2008(2): 31-34.
WANG Y Q, GUO X S, DAI M F. Effects of nitrogen application on dry matter accumulation and yield of hybrid rice. Soil and Fertilizer Sciences in China, 2008(2): 31-34. (in Chinese)
[31] LI L, ZHANG Z, TIAN H, MO Z W, ASHRAF U, DUAN M Y, WANG Z M, WANG S L, TANG X R, PAN S G. Roles of nitrogen deep placement on grain yield, nitrogen use efficiency, and antioxidant enzyme activities in mechanical pot-seedling transplanting rice. Agronomy, 2020, 10(9): 1252.
doi: 10.3390/agronomy10091252
[32] 王方斌, 刘凯, 孙嘉璘, 殷星, 侯振安. 氮肥减施对滴灌棉田NH3挥发及棉花养分吸收和产量的影响. 新疆农业科学, 2020, 57(9): 1746-1753.
doi: 10.6048/j.issn.1001-4330.2020.09.020
[1] LI Yi, LU JianXin, CAO Peng, ZHOU DengWen, LIU JiMin, TIAN PingPing, CAI MingLi, CAO CouGui, YANG TeWu. Critical Lowest Temperature for the Safe Heading of Various Types of Late-Season Rice Cultivars and the Safe Dates for Their Full Heading in Different Double-Season Rice Cropping Regions of Hubei Province [J]. Scientia Agricultura Sinica, 2023, 56(17): 3302-3316.
[2] ZHANG WenXia, LI Pan, YIN Wen, CHEN GuiPing, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Effects of Multiple Green Manure After Wheat Combined with Different Levels of Nitrogen Fertilization on Wheat Yield, Grain Quality, and Nitrogen Utilization [J]. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330.
[3] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[4] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
[5] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[10] GAO RenCai, CHEN SongHe, MA HongLiang, MO Piao, LIU WeiWei, XIAO Yun, ZHANG Xue, FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[11] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[12] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[13] CAO XiaoChuang,WU LongLong,ZHU ChunQuan,ZHU LianFeng,KONG YaLi,LU RuoHui,KONG HaiMin,HU ZhaoPing,DAI Feng,ZHANG JunHua,JIN QianYu. Effects of Different Irrigation and Nitrogen Application Regimes on the Yield, Nitrogen Utilization of Rice and Nitrogen Transformation in Paddy Soil [J]. Scientia Agricultura Sinica, 2021, 54(7): 1482-1498.
[14] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[15] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
Full text



No Suggested Reading articles found!