Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 729-742.doi: 10.3864/j.issn.0578-1752.2022.04.009
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
ZHANG XueLin(),WU Mei,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,HOU XiaoPan,HAO XiaoFeng,YANG QingHua,LI ChaoHai
[1] |
FRENEY J R, DENMEAD O T, SIMPSON J R. Soil as a source or sink for atmospheric nitrous oxide. Nature, 1978, 273:530-532. doi: 10.1038/273530a0.
doi: 10.1038/273530a0 |
[2] |
CHEN H H, LI X C, HU F, SHI W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology, 2013, 19(10):2956-2964. doi: org/10.1111/gcb.12274.
doi: org/10.1111/gcb.12274 |
[3] |
HARRION R, WEBB J. A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 2001, 73:65-108. doi: 10.1016/S0065-2113(01)73005-2.
doi: 10.1016/S0065-2113(01)73005-2 |
[4] |
LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112:47-55. doi: org/10.1016/j.soilbio.2017.04.018.
doi: org/10.1016/j.soilbio.2017.04.018 |
[5] |
WEI T, ZHANG P, WANG K, DING R X, YANG B P, NIE J F, JIA Z K, HAN Q F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One, 2015, 10(4):e0120994. doi: 10.1371/journal.pone.0120994.
doi: 10.1371/journal.pone.0120994 |
[6] |
李廷亮, 王宇峰, 王嘉豪, 栗丽, 谢钧宇, 李丽娜, 黄晓磊, 谢英荷. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示. 中国农业科学, 2020, 53(23):4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010.
doi: 10.3864/j.issn.0578-1752.2020.23.010 |
LI T L, WANG Y F, WANG J H, LI L, XIE J Y, LI L N, HUANG X L, XIE Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China. Scientia Agricultura Sinica, 2020, 53(23):4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.010 |
|
[7] |
BEGUM N, GUPPY C, HERRIDGE D, SCHWENKE G. Influence of source and quality of plant residues on emissions of N2O and CO2 from a fertile, acidic Black Vertisol. Biology and Fertility of Soils, 2014, 50(3):499-506. doi: 10.1007/s00374-013-0865-8.
doi: 10.1007/s00374-013-0865-8 |
[8] |
WU Y, LIN S, LIU T, WAN T, HU R. Effect of crop residue returns on N2O emissions from red soil in China. Soil Use and Management, 2016, 32(1):80-88. doi: 10.1111/sum.12220.
doi: 10.1111/sum.12220 |
[9] |
HUANG Y, ZOU J W, ZHENG X H, WANG Y S, XU X K. Nitrous oxide emissions as influenced by amendments of plant residues with different C: N ratio. Soil Biology and Biochemistry, 2004, 36(6):973-981. doi: 10.1016/j.soilbio.2004.02.009.
doi: 10.1016/j.soilbio.2004.02.009 |
[10] |
YANG G R, HAO X Y, LI C L, LI Y M. Effects of greenhouse intensive cultivation and organic amendments on greenhouse gas emission according to a soil incubation study. Archives of Agronomy and Soil Science, 2015, 61(1):89-103. doi: org/10.1080/03650340.2014.922177.
doi: org/10.1080/03650340.2014.922177 |
[11] |
SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013, 71:170-175. doi: org/10.1016/j.atmosenv.2013.02.009.
doi: org/10.1016/j.atmosenv.2013.02.009 |
[12] |
WEITZ A M, LINDER E, FROLKING S, CRILL P M, KELLER M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biology and Biochemistry, 2001, 33(7/8):1077-1093. doi: org/10.1016/S0038-0717(01)00013-X.
doi: org/10.1016/S0038-0717(01)00013-X |
[13] |
BAGGS E M, REES R M, SMITH K A, VINTEN A J A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 2000, 16:82-87. doi: org/10.1111/j.1475-2743.2000.tb00179.x.
doi: org/10.1111/j.1475-2743.2000.tb00179.x |
[14] |
LIN S, IQBAL J, HU R G, SHAABAN M, CAI J B, CHEN X. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China. Archives of Environmental Contamination and Toxicology, 2013, 65(2):183-192. doi: 10.1007/s00244-013-9903-7.
doi: 10.1007/s00244-013-9903-7 |
[15] |
MUHAMMAD W, VAUGHAN S M, DALAL R C, MENZIES N W. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biology and Fertility of Soils, 2011, 47(1):15-23. doi: 10.1007/s00374-010-0497-1.
doi: 10.1007/s00374-010-0497-1 |
[16] |
BASCHE A D, MIGUEZ F E, KASPAR T C, CASTELLANO M J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 2014, 69(6):471-482. doi: 10.2489/jswc.69.6.471.
doi: 10.2489/jswc.69.6.471 |
[17] |
GENTILE R, VANLAUWE B, VAN KESSEL C, SIX J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131(3/4):308-314. doi: 10.1016/j.agee.2009.02.003.
doi: 10.1016/j.agee.2009.02.003 |
[18] |
MCFARLAND J W, RUESS R W, KIELLAND K, DOYLE A P. Cycling dynamics of NH4+ and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems, 2002, 5(8):775-788. doi: 10.1007/s10021-002-0146-0.
doi: 10.1007/s10021-002-0146-0 |
[19] |
GILLIAM F S, LYTTLE N L, THOMAS A, ADAMS M B. Soil variability along a nitrogen mineralization/nitrification gradient in a nitrogen-saturated hardwood forest. Soil Science Society of America Journal, 2005, 69(1):247-256.
doi: 10.2136/sssaj2005.0247a |
[20] |
BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006, 38(8):2219-2232. doi: 10.1016/j.soilbio.2006.01.022.
doi: 10.1016/j.soilbio.2006.01.022 |
[21] |
SCHNECKENBERGER K, DEMIN D, STAHR K, KUZYAKOV Y. Microbial utilization and mineralization of [14C]-glucose added in six orders of concentration to soil. Soil Biology and Biochemistry, 2008, 40(8):1981-1988. doi: 10.1016/j.soilbio.2008.02.020.
doi: 10.1016/j.soilbio.2008.02.020 |
[22] |
NETT L, SRADNICK A, FUß R, FLESSA H, FINK M. Emissions of nitrous oxide and ammonia after cauliflower harvest are influenced by soil type and crop residue management. Nutrient Cycling in Agroecosystems, 2016, 106(2):217-231. doi: 10.1007/s10705-016-9801-2.
doi: 10.1007/s10705-016-9801-2 |
[23] |
FRIMPONG K A, BAGGS E M. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management, 2010, 26(4):412-424. doi: 10.1111/j.1475-2743.2010.00293.x.
doi: 10.1111/j.1475-2743.2010.00293.x |
[24] |
LIU C Y, WANG K, MENG S X, ZHENG X H, ZHOU Z X, HAN S H, CHEN D L, YANG Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agriculture Ecosystems and Environment, 2011, 140(1/2):226-233. doi: 10.1016/j.agee.2010.12.009.
doi: 10.1016/j.agee.2010.12.009 |
[25] |
GAILLARD R, DUVAL B D, OSTERHOLZ W R, KUCHARIK C J. Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. Journal of Environmental Quality, 2016, 45:1540-1548. doi: 10.2134/jeq2016.03.0112.
doi: 10.2134/jeq2016.03.0112 |
[26] |
TOMA Y, HATANO R. Effect of crop residue C:N ratio on N2O emissions from gray lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(2):198-205. doi: org/10.1111/j.1747-0765.2007.00125.x.
doi: org/10.1111/j.1747-0765.2007.00125.x |
[27] |
BLAGODATSKAYA E V, BLAGODATSKY S A, ANDERSON T H, KUZYAKOV Y. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science, 2009, 60(2):186-197. doi: org/10.1111/j.1365-2389.2008.01103.x.
doi: org/10.1111/j.1365-2389.2008.01103.x |
[28] |
GU J X, NICOULLAUD B, ROCHETTE P, GROSSEL A, HENAULT C, CELLIER P, RICHARD G. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biology and Biochemistry, 2013, 60:134-141. doi: 10.1016/j.soilbio.2013.01.029.
doi: 10.1016/j.soilbio.2013.01.029 |
[29] |
STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74(3):207-228. doi: 10.1007/s10705-006-9000-7.
doi: 10.1007/s10705-006-9000-7 |
[30] |
VAN GROENIGEN J W, KASPER G J, VELTHOF G L, VAN DEN POL-VAN DASSELAAR A, KUIKMAN P J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263:101-111. doi: 10.1023/B:PLSO.0000047729.43185.46.
doi: 10.1023/B:PLSO.0000047729.43185.46 |
[31] |
LESSCHEN J P, VELTHOF G L, DE VRIES W, KROS J. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 2011, 159(11):3215-3222. doi: org/10.1016/j.envpol.2011.04.001.
doi: org/10.1016/j.envpol.2011.04.001 |
[32] |
JIAN S Y, LI J W, CHEN J, WANG G S, MAYES M A, DZANTOR K E, HUI D F, LUO Y Q. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101:32-43. doi: org/10.1016/j.soilbio.2016.07.003.
doi: org/10.1016/j.soilbio.2016.07.003 |
[33] | 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和质地对稻田N2O排放的影响. 土壤学报, 2000, 37(4):499-505. |
XU H, XING G X, CAI Z C, HETIAN Z X. Effects of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedologica Sinica, 2000, 37(4):499-505. (in Chinese) | |
[34] |
张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10):1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.
doi: 10.3864/j.issn.0578-1752.2019.10.008 |
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10):1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.008 |
|
[35] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science of Technology Press, 2000. (in Chinese) | |
[36] | 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. |
GUAN S Y. Soil Enzymes and Their Research Methods. Beijing: Agricultural Press, 1986. (in Chinese) | |
[37] |
夏志敏, 周建斌, 梅沛沛, 王平, 桂林国, 李隆. 玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响. 应用生态学报, 2012, 23(1):103-108. doi: 10.13287/j.1001-9332.2012.0014.
doi: 10.13287/j.1001-9332.2012.0014 |
XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L. Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents. Chinese Journal of Applied Ecology, 2012, 23(1):103-108. doi: 10.13287/j.1001-9332.2012.0014. (in Chinese)
doi: 10.13287/j.1001-9332.2012.0014 |
|
[38] |
MILLAR N, NDUFA J K, CADISCH G, BAGGS E M. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles, 2004, 18(1): GB1032. doi: 10.1029/2003gb002114.
doi: 10.1029/2003gb002114 |
[39] |
MANZONI S, JACKSON R B, TROFYMOW J A, PORPORATO A. The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321:684-686. doi: 10.1126/science.1159792.
doi: 10.1126/science.1159792 |
[40] |
QIU Q Y, WU L F, OUYANG Z, LI B B, XU Y Y, WU S S, GREGORICH E G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Applied Soil Ecology, 2015, 96:122-130. doi: 10.1016/j.apsoil.2015.07.016.
doi: 10.1016/j.apsoil.2015.07.016 |
[41] |
马小婷, 隋玉柱, 朱振林, 王勇, 李新华. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展. 江苏农业科学, 2017, 45(6):14-20. doi: 10.15889/j.issn.1002-1302.2017.06.003.
doi: 10.15889/j.issn.1002-1302.2017.06.003 |
MA X T, SUI Y Z, ZHU Z L, WANG Y, LI X H. Effects of straw returning on soil carbon pool and greenhouse gas emissions. Jiangsu Agricultural Sciences. 2017, 45(6):14-20. doi: 10.15889/j.issn.1002-1302.2017.06.003. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2017.06.003 |
|
[42] |
李英臣, 侯翠翠, 李勇, 过治军. 免耕和秸秆覆盖对农田土壤温室气体排放的影响. 生态环境学报, 2014, 23(6):1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020.
doi: 10.16258/j.cnki.1674-5906.2014.06.020 |
LI Y C, HOU C C, LI Y, GUO Z J. Effects of no-till and straw mulch on greenhouse gas emission from farmland: A review. Ecology and Environmental Sciences, 2014, 23(6):1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2014.06.020 |
|
[43] |
王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2):345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.
doi: 10.3864/j.issn.0578-1752.2021.02.010 |
WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2):345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.02.010 |
[1] | LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961. |
[2] | ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364. |
[3] | CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184. |
[4] | MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618. |
[5] | ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902. |
[6] | ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153. |
[7] | ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989. |
[8] | WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062. |
[9] | XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645. |
[10] | WEN YanChen,LI HaiYan,YUAN Liang,XU JiuKai,MA RongHui,LIN ZhiAn,ZHAO BingQiang. Effect of Long-Term Fertilization on Nutrient Distribution of Fluvo-Aquic Soil Profile [J]. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469. |
[11] | ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236. |
[12] | ZHOU JiXiang,ZHANG He,YANG Jing,LI GuiHua,ZHANG JianFeng. Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components [J]. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318. |
[13] | YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906. |
[14] | LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424. |
[15] | ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271. |
|