Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 729-742.doi: 10.3864/j.issn.0578-1752.2022.04.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil

ZHANG XueLin(),WU Mei,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,HOU XiaoPan,HAO XiaoFeng,YANG QingHua,LI ChaoHai   

  1. Agronomy College, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops for 2011, Zhengzhou 450002
  • Received:2021-01-11 Accepted:2021-03-11 Online:2022-02-16 Published:2022-02-23

Abstract:

【Objective】The purpose of this study was to examine the effects of crop residue decomposition on soil available nitrogen (N) and nitrous oxide (N2O) emissions, and provide a theoretical basis for reasonable N fertilizer rate in agricultural soils to promote residue decomposition, to increase soil available nutrients, and to reduce N2O emissions. 【Method】The indoor soil incubations with nylon decomposition bag were conducted to study the effects of crop residue types (wheat and maize), soil types (fluvo-aquic soil: AS and Shajiang black soil: LS) and N fertilizer rates (N0: 0; N1: 180 kg N·hm-2; N2: 360 kg N·hm-2) on soil N2O emission. A control (CK) without residue addition and N fertilizer input was also established for the two soil types. Inorganic N content, N2O and CO2 flux, and soil enzyme activity were measured in incubated soil. 【Result】Compared with CK, soil inorganic N content under N0 decreased significantly, which was decreased by 0.8 mg·g-1 for 1 g wheat residue addition or 0.4 mg·g-1 for 1 g maize residue addition. Compared with AS, soil inorganic N content in LS reduced by 16% with wheat residue addition, by 41% with maize residue addition. Compared with wheat residue addition, soil inorganic N content in AS and LS increased by 111% and 252% with maize residue addition, respectively. Compared with CK, both soil N2O and CO2 flux increased with wheat residue or maize residue addition, and the total accumulation of soil N2O flux under N0 treatment increased by 70% and 47% with wheat residue and maize residue addition, by 346% and 154% for CO2 accumulation, and by 53% and 71% for global warming potential, respectively. Compared with AS, soil N2O flux in LS reduced by 38% and 61% with wheat residue and maize residue addition, by 12% and 51% for the accumulation of N2O flux, and by 28% and 16% for the accumulation of CO2 flux, respectively. And the global warming potential in LS increased by 13% with the wheat residue addition in comparison with that in AS, while declined by 44% with maize residue addition. Compared with wheat residue addition, the accumulation of soil N2O flux with maize residue addition increased by 88% in AS, and by 6% in LS, and reduced by 21% and 6% for the accumulation of soil CO2 flux in AS and LS, respectively. And the global warming potential with maize residue addition was 91% higher than that of wheat residue addition under the conditions of different N fertilizer rates and soil types. Compared with N0 and N2, soil N2O flux and their global warming potential under N1 treatment reduced significantly with wheat residue or maize residue addition in LS. Compared with CK, soil invertase activity increased with wheat residue or maize residue addition in both AS and LS, while which declined for soil Catalase and O2 content. Compared with wheat residue addition, soil urease activity, Catalase, and invertase activities declined with maize residue addition. Compared with AS, soil urease and catalase activities in LS reduced with wheat residue or maize residue addition, while soil O2 content increased. The catalase activities and O2 content was significantly and negatively related with soil N2O flux. 【Conclusion】The decomposition of wheat residue and maize residue reduced soil inorganic N content while increasing soil N2O flux. Soil inorganic N content and N2O flux with maize residue addition were higher than that of wheat residue. Emissions of N2O from Fluvo-aquic soil with wheat or maize residue addition was higher than that from Shajiang black soil. When combined with suitable N fertilizer rate, neither residues additions in Shajiang black soil increased N2O flux and global warming potential. These results suggested that, in the field, comprehensive management methods by returning residue to soil should consider the residue type, soil type and rate of N fertilization.

Key words: crop residue, fluvo-aquic soil, Shajiang black soil, greenhouse gas, soil nitrogen mineralization, global warming potential

Table 1

Comparison of the basic properties between two soil types or residue types by paired T-test"

项目
Item
土壤类型Soil type 秸秆类型 Residue type
潮土AS 砂姜黑土LS 小麦Wheat 玉米Maize
全碳TC (%) 7.3 ± 0.43 8.17 ± 0.96 448.13 ± 90.23 598.39 ± 39.48*
全氮TN (%) 3.18 ± 0.72 2.79 ± 0.18 6.19 ± 1.79 12.07 ± 0.29**
全磷TP (%) 3.88 ± 0.20 4.46 ± 0.81 - -
C:N 2.45 ± 0.34 2.99 ± 0.54 74.66 ± 11.62* 49.60 ± 3.35
速效氮Available N (g·kg-1) 0.08 ± 0.009 0.1 ± 0.003 - -
速效磷Available P (g·kg-1) 0.01 ± 0.001 0.02 ± 0.001 0.38 ± 0.06 0.34 ± 0.03
可溶性糖Soluble sugar (%) - - 3.34 ± 2.24 8.09 ± 0.23*
pH 7.78 ± 0.006* 6.81 ± 0.21 - -
砂粒Sand (%) 5.65 ± 0.42 39.09 ± 4.6** - -
粉粒Silt (%) 56.38 ± 3.96** 21.35 ± 1.17 - -
黏粒Clay (%) 37.93 ± 3.84 39.56 ± 5.07 - -

Fig. 1

Temporal variations of soil NO3--N (A, B, C, D), NH4+-N (E, F, G, H), and inorganic N (I, J, K, L) concentrations during wheat and maize residue decomposition"

Table 2

Effects of crop residues, soil types and N fertilizer rates on soil inorganic N, greenhouse gas emissions and global warming potential via GLM-ANOVA"

处理
Tr
硝态氮含量
NO3--N concentration
(mg·kg-1)
无机氮含量
INN concentration
(mg·kg-1)
180天N2O排放累积量
Accumulation for N2O flux in
180 d (kg·hm-2)
180天CO2 排放累积量
Accumulation for CO2 flux in
180 d (kg·hm-2)
全球变暖潜力
Global warming potential
(kg CO2-e·hm-2)
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
小麦秸秆
Wheat residue
CK 51.25±1.84b 56.97±2.82b 59.76±1.53b 65.43±2.96b 0.47±0.04a 0.77±0.06a 8.21±0.72a 3.85±0.49a 149.53±12.47a 234.72±16.77a
N0 42.02±6.32a 34.05±1.82a 50.20±6.85a 42.74±1.89a 0.61±0.06b 1.30±0.05c 21.62±1.04bc 13.07±0.77b 204.19±18.82b 399.86±14.29b
N1 79.06±4.50c 59.37±3.64b 87.81±4.70c 68.60±4.60b 1.15±0.07c 1.21±0.05b 22.18±1.64c 15.13±1.13c 363.65±19.80c 375.43±15.24b
N2 110.95±4.86d 96.41±6.51c 120.62±5.24d 107.08±6.36c 1.61±0.14d 1.41±0.06d 19.89±0.98b 16.65±1.13d 501.09±42.45d 437.34±18.13c
玉米秸秆
Maize residue
CK 130.27±3.75a 148.09±5.25a 142.25±4.46a 162.67±4.80a 1.01±0.05a 0.81±0.11a 7.10±1.19a 7.64±0.78a 306.97±15.71a 249.96±32.62a
N0 116.96±4.98a 145.83±10.91a 130.58±4.63a 159.69±10.81a 1.38±0.07b 1.63±0.12b 20.06±1.33c 17.17±1.01c 430.74±22.78b 504.11±35.33b
N1 170.85±5.59b 242.94±10.98b 183.38±5.34b 255.42±11.68b 1.88±0.08c 1.58±0.11b 17.14±0.43b 13.62±0.91b 576.79±23.25c 483.52±33.24b
N2 220.95±21.26c 339.68±8.30c 231.72±22.80c 353.15±8.59c 5.72±0.08d 1.77±0.18b 17.84±0.80b 13.37±2.24b 1721.24±24.59d 540.82±55.87b
秸秆处理
Residue (R)
159.74*** 3715.61*** 157.98*** 8.81** 1513.11***
土壤处理
Soil (S)
594.82*** 156.19*** 7024.73*** 223.57*** 346.75***
氮肥处理
Nitrogen (N)
296.75*** 542.02*** 10234.15*** 360.45*** 1200.99***
R×S 114.04*** 276.89*** 983.78*** 32.78*** 724.15***
R×N 23.66*** 96.72*** 411.09*** 19.55*** 367.45***
S×N 47.02*** 22.61*** 4895.21*** 9.36*** 595.95***
R×S×N 159.74*** 42.38*** 705.76*** 7.59*** 323.89***

Fig. 2

Temporal variations of soil N2O flux during wheat and maize residue decomposition"

Fig. 3

Temporal variations of soil CO2 flux during wheat and maize residue decomposition"

Table 3

Effects of crop residues, soil types and N fertilizer rates on residue soluble sugar content, soil enzyme activities and O2 content via GLM-ANOVA"

处理
Tr
秸秆可溶性糖
Residue soluble sugar
(%)
脲酶
Soil urease
(mg NH4+-N·g-1·24h-1)
过氧化氢酶
Soil catalase
(mg H2O2·g-1·20min-1)
蛋白酶
Soil protease
(mg glycine·kg-1·h-1)
蔗糖酶
Soil invertase
(mg glucose·g-1·24h-1)
土壤O2含量
Soil O2 content
(%)
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
潮土
AS
砂姜黑土
LS
小麦秸秆
Wheat residue
CK - - 1.53±0.02a 0.44±0.01a 1.19±0.02b 1.09±0.01b 13.13±0.65a 11.91±0.55 25.73±1.02a 25.35±0.94a 20.48±0.20b 23.63±0.68c
N0 1.98±0.14 2.06±0.14 1.67±0.02c 0.55±0.01b 1.17±0.01a 1.08±0.01b 14.02±0.71ab 11.70±0.25 29.14±1.19b 34.08±2.26b 20.14±0.20ab 22.95±0.24bc
N1 2.26±0.13 2.16±0.24 1.67±0.03c 0.53±0.03b 1.17±0.00a 1.08±0.01b 14.33±0.05b 12.08±0.20 29.89±1.43b 36.27±3.40b 20.02±0.21a 22.35±0.23b
N2 1.97±0.14 2.11±0.06 1.60±0.03b 0.52±0.00b 1.17±0.01a 1.04±0.01a 15.47±0.24c 11.71±0.27 30.47±2.28b 33.53±1.81b 20.15±0.24ab 21.08±0.89a
玉米秸秆
Maize residue
CK - - 1.02±0.03 0.29±0.02 1.17±0.00c 0.99±0.01d 12.86±0.30c 12.75±0.17 7.95±0.37a 5.55±0.27a 21.08±0.04c 22.49±0.50b
N0 3.37±0.21 3.05±0.11 1.02±0.04 0.28±0.03 1.16±0.00b 0.96±0.02c 13.11±0.20c 12.78±0.28 8.57±0.17ab 6.40±0.26b 20.64±0.03b 21.47±0.04a
N1 3.05±0.23 2.90±0.16 1.03±0.02 0.27±0.01 1.16±0.00bc 0.91±0.00b 12.34±0.15b 12.69±0.21 9.22±0.14b 6.45±0.31b 20.54±0.10b 21.38±0.30a
N2 2.86±0.11 2.90±0.11 1.00±0.06 0.25±0.03 1.12±0.01a 0.84±0.01a 11.84±0.15a 12.67±0.15 7.91±0.80a 5.93±0.35ab 20.20±0.29a 21.07±0.15a
秸秆处理
Residue (R)
430.17*** 3685.63*** 166.44*** 13.45*** 3924.52*** 7.59**
土壤处理
Soil (S)
1.30 18148.06*** 612.93*** 95.38*** 2.45 346.54***
氮肥处理
Nitrogen (N)
4.62* 17.83*** 18.61*** 1.14 25.87*** 37.37***
R×S 3.74 683.12*** 83.15*** 130.59*** 61.35*** 55.5***
R×N 8.57*** 19.63*** 6.24*** 10.99*** 16.82*** 1.39
S×N 2.45 2.16 5.36** 2.55 3.62* 10.54***
R×S×N 1.57 0.83 2.31 10.72*** 4.19** 5.86**

Fig. 4

Temporal variations of soil O2 content during wheat and maize residue decomposition."

Table 4

Pearson correlation coefficients (r) between soil N2O and CO2 accumulation with soil inorganic N, enzyme activities and other properties (n=16)"

排放累
积量
(kg·hm-2)
秸秆
Residue
土壤
Soil
CO2 flux
(kg·hm-2)
无机氮
Inorganic
N (mg·kg-1)
脲酶
Urease
(mg NH4-N·
g-1·24h-1)
过氧化氢酶
Catalase
(mg H2O2·g-1·
20min-1)
蛋白酶
Protease
(mg glycine·
kg-1·h-1)
蔗糖酶
Invertase
(mg glucose·
g-1·24h-1)
氧气含量
O2 content
(%)
秸秆可溶性糖
Residue soluble sugar (%)
N2O flux 小麦
Wheat
AS 0.46 0.96** 0.18 -0.33 0.84** 0.62* -0.36 0.03
LS 0.93** 0.32 0.85** -0.71** -0.17 0.79** -0.72** -0.08
玉米
Maize
AS 0.68** 0.89** -0.24 -0.97** -0.83** -0.31 -0.78** -0.68*
LS 0.39 0.59* -0.26 -0.72** 0.01 0.58* -0.81** 0.04
CO2 flux 小麦
Wheat
AS - 0.26 0.89** -0.73** 0.54* 0.69** -0.69** 0.17
LS - 0.29 0.85** -0.69** -0.13 0.81** -0.69** 0.34
玉米
Maize
AS - 0.54* -0.11 -0.66** -0.45 0.13 -0.80** -0.46
LS - -0.34 0.28 0.18 0.09 0.47 -0.2 0.38
[1] FRENEY J R, DENMEAD O T, SIMPSON J R. Soil as a source or sink for atmospheric nitrous oxide. Nature, 1978, 273:530-532. doi: 10.1038/273530a0.
doi: 10.1038/273530a0
[2] CHEN H H, LI X C, HU F, SHI W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology, 2013, 19(10):2956-2964. doi: org/10.1111/gcb.12274.
doi: org/10.1111/gcb.12274
[3] HARRION R, WEBB J. A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 2001, 73:65-108. doi: 10.1016/S0065-2113(01)73005-2.
doi: 10.1016/S0065-2113(01)73005-2
[4] LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112:47-55. doi: org/10.1016/j.soilbio.2017.04.018.
doi: org/10.1016/j.soilbio.2017.04.018
[5] WEI T, ZHANG P, WANG K, DING R X, YANG B P, NIE J F, JIA Z K, HAN Q F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One, 2015, 10(4):e0120994. doi: 10.1371/journal.pone.0120994.
doi: 10.1371/journal.pone.0120994
[6] 李廷亮, 王宇峰, 王嘉豪, 栗丽, 谢钧宇, 李丽娜, 黄晓磊, 谢英荷. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示. 中国农业科学, 2020, 53(23):4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010.
doi: 10.3864/j.issn.0578-1752.2020.23.010
LI T L, WANG Y F, WANG J H, LI L, XIE J Y, LI L N, HUANG X L, XIE Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China. Scientia Agricultura Sinica, 2020, 53(23):4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.010
[7] BEGUM N, GUPPY C, HERRIDGE D, SCHWENKE G. Influence of source and quality of plant residues on emissions of N2O and CO2 from a fertile, acidic Black Vertisol. Biology and Fertility of Soils, 2014, 50(3):499-506. doi: 10.1007/s00374-013-0865-8.
doi: 10.1007/s00374-013-0865-8
[8] WU Y, LIN S, LIU T, WAN T, HU R. Effect of crop residue returns on N2O emissions from red soil in China. Soil Use and Management, 2016, 32(1):80-88. doi: 10.1111/sum.12220.
doi: 10.1111/sum.12220
[9] HUANG Y, ZOU J W, ZHENG X H, WANG Y S, XU X K. Nitrous oxide emissions as influenced by amendments of plant residues with different C: N ratio. Soil Biology and Biochemistry, 2004, 36(6):973-981. doi: 10.1016/j.soilbio.2004.02.009.
doi: 10.1016/j.soilbio.2004.02.009
[10] YANG G R, HAO X Y, LI C L, LI Y M. Effects of greenhouse intensive cultivation and organic amendments on greenhouse gas emission according to a soil incubation study. Archives of Agronomy and Soil Science, 2015, 61(1):89-103. doi: org/10.1080/03650340.2014.922177.
doi: org/10.1080/03650340.2014.922177
[11] SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013, 71:170-175. doi: org/10.1016/j.atmosenv.2013.02.009.
doi: org/10.1016/j.atmosenv.2013.02.009
[12] WEITZ A M, LINDER E, FROLKING S, CRILL P M, KELLER M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biology and Biochemistry, 2001, 33(7/8):1077-1093. doi: org/10.1016/S0038-0717(01)00013-X.
doi: org/10.1016/S0038-0717(01)00013-X
[13] BAGGS E M, REES R M, SMITH K A, VINTEN A J A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 2000, 16:82-87. doi: org/10.1111/j.1475-2743.2000.tb00179.x.
doi: org/10.1111/j.1475-2743.2000.tb00179.x
[14] LIN S, IQBAL J, HU R G, SHAABAN M, CAI J B, CHEN X. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China. Archives of Environmental Contamination and Toxicology, 2013, 65(2):183-192. doi: 10.1007/s00244-013-9903-7.
doi: 10.1007/s00244-013-9903-7
[15] MUHAMMAD W, VAUGHAN S M, DALAL R C, MENZIES N W. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biology and Fertility of Soils, 2011, 47(1):15-23. doi: 10.1007/s00374-010-0497-1.
doi: 10.1007/s00374-010-0497-1
[16] BASCHE A D, MIGUEZ F E, KASPAR T C, CASTELLANO M J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 2014, 69(6):471-482. doi: 10.2489/jswc.69.6.471.
doi: 10.2489/jswc.69.6.471
[17] GENTILE R, VANLAUWE B, VAN KESSEL C, SIX J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131(3/4):308-314. doi: 10.1016/j.agee.2009.02.003.
doi: 10.1016/j.agee.2009.02.003
[18] MCFARLAND J W, RUESS R W, KIELLAND K, DOYLE A P. Cycling dynamics of NH4+ and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems, 2002, 5(8):775-788. doi: 10.1007/s10021-002-0146-0.
doi: 10.1007/s10021-002-0146-0
[19] GILLIAM F S, LYTTLE N L, THOMAS A, ADAMS M B. Soil variability along a nitrogen mineralization/nitrification gradient in a nitrogen-saturated hardwood forest. Soil Science Society of America Journal, 2005, 69(1):247-256.
doi: 10.2136/sssaj2005.0247a
[20] BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006, 38(8):2219-2232. doi: 10.1016/j.soilbio.2006.01.022.
doi: 10.1016/j.soilbio.2006.01.022
[21] SCHNECKENBERGER K, DEMIN D, STAHR K, KUZYAKOV Y. Microbial utilization and mineralization of [14C]-glucose added in six orders of concentration to soil. Soil Biology and Biochemistry, 2008, 40(8):1981-1988. doi: 10.1016/j.soilbio.2008.02.020.
doi: 10.1016/j.soilbio.2008.02.020
[22] NETT L, SRADNICK A, FUß R, FLESSA H, FINK M. Emissions of nitrous oxide and ammonia after cauliflower harvest are influenced by soil type and crop residue management. Nutrient Cycling in Agroecosystems, 2016, 106(2):217-231. doi: 10.1007/s10705-016-9801-2.
doi: 10.1007/s10705-016-9801-2
[23] FRIMPONG K A, BAGGS E M. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management, 2010, 26(4):412-424. doi: 10.1111/j.1475-2743.2010.00293.x.
doi: 10.1111/j.1475-2743.2010.00293.x
[24] LIU C Y, WANG K, MENG S X, ZHENG X H, ZHOU Z X, HAN S H, CHEN D L, YANG Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agriculture Ecosystems and Environment, 2011, 140(1/2):226-233. doi: 10.1016/j.agee.2010.12.009.
doi: 10.1016/j.agee.2010.12.009
[25] GAILLARD R, DUVAL B D, OSTERHOLZ W R, KUCHARIK C J. Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. Journal of Environmental Quality, 2016, 45:1540-1548. doi: 10.2134/jeq2016.03.0112.
doi: 10.2134/jeq2016.03.0112
[26] TOMA Y, HATANO R. Effect of crop residue C:N ratio on N2O emissions from gray lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(2):198-205. doi: org/10.1111/j.1747-0765.2007.00125.x.
doi: org/10.1111/j.1747-0765.2007.00125.x
[27] BLAGODATSKAYA E V, BLAGODATSKY S A, ANDERSON T H, KUZYAKOV Y. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science, 2009, 60(2):186-197. doi: org/10.1111/j.1365-2389.2008.01103.x.
doi: org/10.1111/j.1365-2389.2008.01103.x
[28] GU J X, NICOULLAUD B, ROCHETTE P, GROSSEL A, HENAULT C, CELLIER P, RICHARD G. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biology and Biochemistry, 2013, 60:134-141. doi: 10.1016/j.soilbio.2013.01.029.
doi: 10.1016/j.soilbio.2013.01.029
[29] STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74(3):207-228. doi: 10.1007/s10705-006-9000-7.
doi: 10.1007/s10705-006-9000-7
[30] VAN GROENIGEN J W, KASPER G J, VELTHOF G L, VAN DEN POL-VAN DASSELAAR A, KUIKMAN P J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263:101-111. doi: 10.1023/B:PLSO.0000047729.43185.46.
doi: 10.1023/B:PLSO.0000047729.43185.46
[31] LESSCHEN J P, VELTHOF G L, DE VRIES W, KROS J. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 2011, 159(11):3215-3222. doi: org/10.1016/j.envpol.2011.04.001.
doi: org/10.1016/j.envpol.2011.04.001
[32] JIAN S Y, LI J W, CHEN J, WANG G S, MAYES M A, DZANTOR K E, HUI D F, LUO Y Q. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101:32-43. doi: org/10.1016/j.soilbio.2016.07.003.
doi: org/10.1016/j.soilbio.2016.07.003
[33] 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和质地对稻田N2O排放的影响. 土壤学报, 2000, 37(4):499-505.
XU H, XING G X, CAI Z C, HETIAN Z X. Effects of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedologica Sinica, 2000, 37(4):499-505. (in Chinese)
[34] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10):1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.
doi: 10.3864/j.issn.0578-1752.2019.10.008
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10):1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.008
[35] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science of Technology Press, 2000. (in Chinese)
[36] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzymes and Their Research Methods. Beijing: Agricultural Press, 1986. (in Chinese)
[37] 夏志敏, 周建斌, 梅沛沛, 王平, 桂林国, 李隆. 玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响. 应用生态学报, 2012, 23(1):103-108. doi: 10.13287/j.1001-9332.2012.0014.
doi: 10.13287/j.1001-9332.2012.0014
XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L. Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents. Chinese Journal of Applied Ecology, 2012, 23(1):103-108. doi: 10.13287/j.1001-9332.2012.0014. (in Chinese)
doi: 10.13287/j.1001-9332.2012.0014
[38] MILLAR N, NDUFA J K, CADISCH G, BAGGS E M. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles, 2004, 18(1): GB1032. doi: 10.1029/2003gb002114.
doi: 10.1029/2003gb002114
[39] MANZONI S, JACKSON R B, TROFYMOW J A, PORPORATO A. The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321:684-686. doi: 10.1126/science.1159792.
doi: 10.1126/science.1159792
[40] QIU Q Y, WU L F, OUYANG Z, LI B B, XU Y Y, WU S S, GREGORICH E G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Applied Soil Ecology, 2015, 96:122-130. doi: 10.1016/j.apsoil.2015.07.016.
doi: 10.1016/j.apsoil.2015.07.016
[41] 马小婷, 隋玉柱, 朱振林, 王勇, 李新华. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展. 江苏农业科学, 2017, 45(6):14-20. doi: 10.15889/j.issn.1002-1302.2017.06.003.
doi: 10.15889/j.issn.1002-1302.2017.06.003
MA X T, SUI Y Z, ZHU Z L, WANG Y, LI X H. Effects of straw returning on soil carbon pool and greenhouse gas emissions. Jiangsu Agricultural Sciences. 2017, 45(6):14-20. doi: 10.15889/j.issn.1002-1302.2017.06.003. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2017.06.003
[42] 李英臣, 侯翠翠, 李勇, 过治军. 免耕和秸秆覆盖对农田土壤温室气体排放的影响. 生态环境学报, 2014, 23(6):1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020.
doi: 10.16258/j.cnki.1674-5906.2014.06.020
LI Y C, HOU C C, LI Y, GUO Z J. Effects of no-till and straw mulch on greenhouse gas emission from farmland: A review. Ecology and Environmental Sciences, 2014, 23(6):1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2014.06.020
[43] 王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2):345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.
doi: 10.3864/j.issn.0578-1752.2021.02.010
WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2):345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.02.010
[1] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[2] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[3] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[4] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[5] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[6] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[7] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[8] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[9] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[10] WEN YanChen,LI HaiYan,YUAN Liang,XU JiuKai,MA RongHui,LIN ZhiAn,ZHAO BingQiang. Effect of Long-Term Fertilization on Nutrient Distribution of Fluvo-Aquic Soil Profile [J]. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469.
[11] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[12] ZHOU JiXiang,ZHANG He,YANG Jing,LI GuiHua,ZHANG JianFeng. Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components [J]. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318.
[13] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[14] LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424.
[15] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!