Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 932-947.doi: 10.3864/j.issn.0578-1752.2022.05.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates

LIU Miao(),LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Crop Physio-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2021-01-20 Accepted:2021-05-07 Online:2022-03-01 Published:2022-03-08
  • Contact: Jun LI E-mail:3318757297@qq.com;junli@nwsuaf.edu.cn

Abstract:

【Objective】This study investigated the effects of different nitrogen and phosphorus application rates on summer maize aboveground biomass, nitrogen accumulation, and drew a critical nitrogen concentration dilution curve. The nitrogen status of maize plant was diagnosed and evaluated based on a model of nitrogen nutrition index (NNI) under different nitrogen and phosphorus interaction conditions, which provided a theoretical basis for the rational application of nitrogen and phosphorus fertilizers in summer maize.【Method】By using Zhengdan958 (ZD958) and Yuyu22 (YY22) as tested materials, the field experiments in Guanzhong Plain, Shaanxi included four phosphorus application rates and five nitrogen application rates, such as 0 (P0), 60 (P1), 120 (P2), 180 (P3) kg P2O5·hm-2and 0 (N0), 75 (N1), 150 (N2), 225 (N3), 300 (N4) kg N·hm-2during 2019-2020. The aboveground samples were taken during the jointing, tasseling, filling, and maturity stages of summer maize to analyze the effects of nitrogen and phosphorus application rate on maize dry matter accumulation, dynamic changes of nitrogen concentration and grain yield. The field test data was used to construct and verify the critical nitrogen dilution curve model of summer maize.【Result】The results showed that nitrogen and phosphorus application rate significantly increased aboveground biomass, plant nitrogen concentrations and grain yield of summer maize. The grain yield and aboveground biomass of summer maize increased as the nitrogen application rate increased within the same phosphorus application condition. The nitrogen concentration of maize plants showed a decreasing trend with the extension of growth period and the increase of aboveground dry matter weight. There was a power exponential relationship between nitrogen concentration and aboveground biomass. In addition, the phosphorus application could promote maize plant nitrogen absorption and aboveground dry matter accumulation. The overall performance of the phosphorus application treatments was P2>P3≈P1>P0 under the same nitrogen application conditions, appropriate phosphorus application could improve the capacity of maize plant for nitrogen absorption and relieved the decline of nitrogen concentration. The critical nitrogen concentration (Nc) curves of maize (P0, Nc=27.98DM-0.249; P1, Nc=29.77DM -0.182; P2, Nc= 30.81DM -0.138; P3, Nc=30.06DM -0.187) were constructed according to the aboveground dry matter (DM) weight and its nitrogen concentration under different phosphorus application conditions; the relatively stable model had a linear correlation between the fitted and actual plant nitrogen concentrations, which showed that the n-RMSE were 10.23%, 6.67%, 6.95% and 7.19%, respectively. The NNI values were calculated based on the critical nitrogen concentration curves. NNI increased with the increase of nitrogen application in each growth stages within the same phosphorus application conditions, which was also positively correlated with relative aboveground biomass (RDW) and relative yield (RY). 【Conclusion】Based on the model of nitrogen nutrition(NNI) in this study, N2-N3 and P1-P2 were the best conditions. Based on the fitting curve of comprehensive nitrogen application rate and grain yield, the nitrogen rate of 187.5-205.7 kg·hm-2and phosphorus rate of 60-120 kg·hm-2was the optimal fertilization option for summer maize in Guanzhong Plain, Shaanxi.

Key words: summer maize, nitrogen and phosphorus application rate, critical nitrogen dilution curve, nitrogen nutrition index

Table 1

The basic nutrient characteristics of the tested soils"

年份
Year
施氮水平
Nitrogen rate
有机质
OM
(g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
全钾
Total K
(g·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
硝态氮
Nitrate N (mg·kg-1)
铵态氮
Ammonium N
(mg·kg-1)
2019 N0 18.45 0.92 0.95 10.21 15.12 122.64 3.92 3.11
N1 19.29 0.98 0.93 10.27 14.62 137.33 7.27 3.56
N2 19.02 1.04 0.94 10.26 13.31 128.93 8.29 3.80
N3 19.03 1.09 0.91 10.04 12.73 134.01 9.96 4.72
N4 19.56 1.09 0.98 10.28 11.36 130.26 10.63 4.16
2020 N0 18.08 0.95 0.92 10.04 12.98 163.51 3.86 2.59
N1 19.14 0.98 0.97 10.14 10.76 178.96 13.94 3.44
N2 19.19 1.07 1.01 9.89 11.15 162.25 14.73 4.01
N3 18.76 1.05 0.97 9.96 13.33 157.29 15.63 4.91
N4 19.23 1.02 0.96 9.65 12.57 152.86 16.98 4.68

Table 2

Variance analysis of aboveground biomass, nitrogen uptake and yield at different stages of summer maize"

年份
Year
因子
Factor
V6 VT R2 R6 产量
Yield
DM Na DM Na DM Na DM Na
2019 V 1.36NS 0.14NS 7.62* 3.61* 1.79NS 2.72NS 4.42NS 4.19NS 4.64NS
P 113.9*** 146.1*** 110.9*** 389.9*** 9.84*** 308.3*** 4.14* 490.8*** 32.12***
N 103.2*** 145.9*** 811.2*** 692.8*** 105.8*** 744.5*** 169.4*** 131.9*** 679.2***
V×P 2.48NS 4.95NS 1.25NS 5.89NS 5.69* 3.65NS 1.09NS 6.98* 1.19NS
V×N 8.44* 1.15NS 1.12NS 3.75* 5.56NS 1.42NS 1.24NS 2.42NS 0.19NS
P×N 5.06*** 7.02*** 4.98*** 5.36*** 17.09*** 6.87*** 2.64* 13.29*** 2.61**
V×P×N 3.29* 2.59NS 2.20* 1.42* 1.21NS 2.21NS 1.69NS 3.45* 0.26NS
2020 V 1.87NS 4.12NS 3.17NS 0.54NS 7.44* 1.79NS 3.77NS 1.84NS 0.83NS
P 48.19*** 843.2*** 31.15*** 770.4*** 194.2*** 626.6*** 92.42*** 559.7*** 22.07***
N 525.4*** 127.1*** 355.1*** 146.4*** 140.1*** 109.4*** 136.6*** 128.6*** 756.9***
V×P 3.99* 5.03* 0.36NS 3.22NS 3.74NS 2.42NS 1.43NS 2.23NS 0.74NS
V×N 2.86NS 2.00NS 3.47* 4.04* 7.11* 3.07NS 0.54NS 3.65NS 0.03NS
P×N 5.27*** 2.82NS 5.98*** 2.18NS 19.08*** 1.55NS 9.21*** 1.06NS 3.98***
V×P×N 2.69* 1.47NS 1.42NS 1.84NS 5.73* 1.66NS 2.63NS 2.16NS 0.55NS

Fig. 1

Effects of different nitrogen and phosphorus application rates on the dynamics of aboveground dry matter in summer maize The different lowercase letters mean significantly different among the treatments within the same year (P<0.05). The same as below"

Fig. 2

Effects of different nitrogen and phosphorus application rates on summer maize yield"

Table 3

Yield effect equation of summer maize under different nitrogen and phosphorus application rates"

年份
Year
施磷水平
Phosphorus rate
拟合方程
Regression equation
R2 最高产量
Maximum yield
(kg·hm-2)
最高产量施氮量
Optimum nitrogen rate
(kg·hm-2)
经济最佳施氮量
Optimum economic nitrogen rate (kg·hm-2)
2019 P0 y=-0.063x2+28.53x+4573.22 0.898* 7790.00 225.54 215.65
P1 y=-0.079x2+33.44x+4824.29 0.975* 8385.22 212.97 205.01
P2 y=-0.077x2+33.63x+4916.68 0.987** 8572.61 217.43 209.35
P3 y=-0.070x2+30.43x+4980.28 0.922* 8288.92 217.45 208.52
2020 P0 y=-0.074x2+34.22x+5886.84 0.886* 9853.29 231.82 223.35
P1 y=-0.078x2+33.64x+6463.53 0.946* 10086.82 215.40 207.40
P2 y=-0.078x2+32.58x+6752.42 0.988** 10155.48 208.93 200.91
P3 y=-0.076x2+32.12x+6762.87 0.851* 10144.10 210.51 202.32

Fig. 3

Effects of different nitrogen and phosphorus application rates on the dynamics of nitrogen concentration in summer maize"

Fig. 4

The nitrogen dilution model of summer maize aboveground biomass under different phosphorus application rates"

Table 4

Observed and simulated values of critical nitrogen concentrations (g·kg-1) in summer maize under different phosphorus application rates"

生育时期
Growth stage
P0 P1 P2 P3
实测值Observed value 模拟值Simulated value 实测值Observed value 模拟值Simulated value 实测值Observed value 模拟值Simulated value 实测值Observed value 模拟值Simulated value
拔节期 V6 25.36 25.65 26.38 27.78 27.09 29.54 26.39 28.05
23.53 26.09 26.08 27.86 27.91 28.84 26.79 27.61
抽雄期 VT 18.66 17.62 21.33 21.19 24.41 23.42 22.88 20.76
20.29 17.69 23.51 21.20 25.23 23.42 22.91 20.88
灌浆期 R2 16.25 14.77 18.45 18.41 22.05 21.04 19.04 18.02
17.99 14.46 20.63 18.33 21.92 21.07 20.25 18.07
成熟期 R6 14.01 13.72 16.85 17.49 18.67 20.38 17.99 17.10
14.39 13.74 17.78 17.54 18.25 20.48 18.35 17.32
RMSE 1.925 1.426 1.611 1.570
n-RMSE 10.23% 6.67% 6.95% 7.19%

Fig. 5

Dynamic changes of nitrogen nutrition index (NNI) under different nitrogen and phosphorus application rates of summer maize"

Fig. 6

Relationship between nitrogen nutrition index (NNI) and relative aboveground dry biomass (RDW) of summer maize under different phosphorus application rates"

Fig. 7

Relationship between nitrogen nutrition index (NNI) and relative yield (RY) of summer maize under different phosphorus application rates"

[37] LEMAIRE G, JEUFFROY M H, GASTAL F. Diagnosis tool for plant and crop N status in vegetative stage. European Journal of Agronomy, 2008, 28(4):614-624. doi: 10.1016/j.eja.2008.01.005.
doi: 10.1016/j.eja.2008.01.005
[38] 王宜伦, 李潮海, 谭金芳, 韩燕来, 张许. 超高产夏玉米植株氮素积累特征及一次性施肥效果研究. 中国农业科学, 2010, 43(15):3151-3158. doi: 10.3864/j.issn.0578-1752.2010.15.012.
doi: 10.3864/j.issn.0578-1752.2010.15.012
WANG Y L, LI C H, TAN J F, HAN Y L, ZHANG X. Studies on plant nitrogen accumulation characteristics and the effect of single application of base fertilizer on super-high-yield summer maize. Scientia Agricultura Sinica, 2010, 43(15):3151-3158. doi: 10.3864/j.issn.0578-1752.2010.15.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.15.012
[39] 王宜伦, 刘天学, 赵鹏, 张许, 谭金芳, 李潮海. 施氮量对超高产夏玉米产量与氮素吸收及土壤硝态氮的影响. 中国农业科学, 2013, 46(12):2483-2491.
WANG Y L, LIU T X, ZHAO P, ZHANG X, TAN J F, LI C H. Effect of nitrogen fertilizer application on yield, nitrogen absorption and soil nitric N in super-high-yield summer maize. Scientia Agricultura Sinica, 2013, 46(12):2483-2491. (in Chinese)
[40] 杨宪龙, 路永莉, 同延安, 马海洋, 陈毓君, 丁燕. 陕西关中小麦-玉米轮作区协调作物产量和环境效应的农田适宜氮肥用量. 生态学报, 2014, 34(21):6115-6123. doi: 10.5846/stxb201301280182.
doi: 10.5846/stxb201301280182
YANG X L, LU Y L, TONG Y N, MA H Y, CHEN Y J, DING Y. Optimum-N application rate to maximize yield and protect the environment in a wheat-maize rotation system on the Guanzhong Plain, Shaanxi Province. Acta Ecologica Sinica, 2014, 34(21):6115-6123. doi: 10.5846/stxb201301280182. (in Chinese)
doi: 10.5846/stxb201301280182
[1] BURKART M R, KOLPIN D W. Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers. Journal of Environmental Quality, 1993, 22(4):646-656. doi: 10.2134/jeq1993.00472425002200040002x.
doi: 10.2134/jeq1993.00472425002200040002x
[2] HEUER S, GAXIOLA R, SCHILLING R, HERRERA-ESTRELLA L, LÓPEZ-ARREDONDO D, WISSUWA M, DELHAIZE E, ROUACHED H. Improving phosphorus use efficiency: A complex trait with emerging opportunities. The Plant Journal, 2017, 90(5):868-885. doi: 10.1111/tpj.13423.
doi: 10.1111/tpj.13423
[3] 刘凯, 张吉旺, 郭艳青, 裴书君, 董树亭, 刘鹏, 杨今胜, 赵斌. 施磷量对高产夏玉米产量和磷素利用的影响. 山东农业科学, 2016, 48(4):61-65. doi: 10.14083/j.issn.1001-4942.2016.04.015.
doi: 10.14083/j.issn.1001-4942.2016.04.015
LIU K, ZHANG J W, GUO Y Q, PEI S J, DONG S T, LIU P, YANG J S, ZHAO B. Effects of phosphorus fertilization on yield and phosphorus use efficiency of high-yielding summer maize. Shandong Agricultural Sciences, 2016, 48(4):61-65. doi: 10.14083/j.issn.1001-4942.2016.04.015. (in Chinese)
doi: 10.14083/j.issn.1001-4942.2016.04.015
[4] 陈书强, 许海涛, 段翠平. 施磷量对玉米生长发育产量构成因子及品质的影响. 河北农业科学, 2011, 15(2):62-64, 95. doi: 10.16318/j.cnki.hbnykx.2011.02.042.
doi: 10.16318/j.cnki.hbnykx.2011.02.042
CHEN S Q, XU H T, DUAN C P. Effects of phosphorus application amount on growth and development, yield components and quality of maize. Journal of Hebei Agricultural Sciences, 2011, 15(2):62-64, 95. doi: 10.16318/j.cnki.hbnykx.2011.02.042. (in Chinese)
doi: 10.16318/j.cnki.hbnykx.2011.02.042
[5] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1):27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y
[6] 常艳丽, 刘俊梅, 李玉会, 孙本华, 张树兰, 杨学云. 陕西关中平原小麦/玉米轮作体系施肥现状调查与评价. 西北农林科技大学学报(自然科学版), 2014, 42(8):51-61. doi: 10.13207/j.cnki.jnwafu.2014.08.033.
doi: 10.13207/j.cnki.jnwafu.2014.08.033
CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y. Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong Plain, Shaanxi Province. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(8):51-61. doi: 10.13207/j.cnki.jnwafu.2014.08.033. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2014.08.033
[7] 陈祥, 同延安, 杨倩. 氮磷钾平衡施肥对夏玉米产量及养分吸收和累积的影响. 中国土壤与肥料, 2008(6):19-22. doi: 10.3969/j.issn.1673-6257.2008.06.005
doi: 10.3969/j.issn.1673-6257.2008.06.005
CHEN X, TONG Y N, YANG Q. Effect of balanced fertilization on the yield, nutrients absorption and accumulation of summer maize. Soils and Fertilizers Sciences in China, 2008(6):19-22. doi: 10.3969/j.issn.1673-6257.2008.06.005 (in Chinese)
doi: 10.3969/j.issn.1673-6257.2008.06.005
[8] PLÉNET D, LEMAIRE G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil, 1999, 216(1):65-82. doi: 10.1023/A:1004783431055.
doi: 10.1023/A:1004783431055
[9] LEMAIRE G, OOSTEROM E V, SHEEHY J, JEUFFROY M H, MASSIGNAM A, ROSSATO L. Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Research, 2007, 100(1):91-106. doi: 10.1016/j.fcr.2006.05.009.
doi: 10.1016/j.fcr.2006.05.009
[10] 张加康, 李斐, 李跃进, 杨海波, 贾禹泽, 刘玉峰, 石焱. 基于全株生物量和全株氮浓度的马铃薯氮临界浓度稀释模型的构建及验证. 植物营养与肥料学报, 2020, 26(9):1691-1701.
ZHANG J K, LI F, LI Y J, YANG H B, JIA Y Z, LIU Y F, SHI Y. Establishment and validation of critical nitrogen dilution curve based on the total plant biomass and nitrogen concentration. Plant Nutrition and Fertilizer Science, 2020, 26(9):1691-1701. (in Chinese)
[11] 薛晓萍, 王建国, 郭文琦, 陈兵林, 王友华, 张丽娟, 周治国. 棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究. 作物学报, 2007, 33(4):669-676. doi: 10.3321/j.issn:0496-3490.2007.04.023.
doi: 10.3321/j.issn:0496-3490.2007.04.023
XUE X P, WANG J G, GUO W Q, CHEN B L, WANG Y H, ZHANG L J, ZHOU Z G. Accumulation characters of biomass and nitrogen and critical nitrogen concentration dilution model of cotton fruit-branch leaf after flowering. Acta Agronomica Sinica, 2007, 33(4):669-676. doi: 10.3321/j.issn:0496-3490.2007.04.023. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.04.023
[12] 牟思维, 解君, 罗成, 刘铁宁, 杨宝平, 韩清芳, 刘晓雪. 关中地区大蒜临界氮浓度稀释曲线及验证. 农业工程学报, 2019, 35(19):126-133. doi: 10.11975/j.issn.1002-6819.2019.19.015.
doi: 10.11975/j.issn.1002-6819.2019.19.015
MOU S W, XIE J, LUO C, LIU T N, YANG B P, HAN Q F, LIU X X. Establishment and verification of critical nitrogen concentration dilution curve of garlic in Guanzhong plain. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19):126-133. doi: 10.11975/j.issn.1002-6819.2019.19.015. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.19.015
[13] 强生才, 张富仓, 田建柯, 吴悠, 闫世程, 范军亮. 基于叶片干物质的冬小麦临界氮稀释曲线模拟研究. 农业机械学报, 2015, 46(11):121-128. doi: 10.6041/j.issn.1000-1298.2015.11.017.
doi: 10.6041/j.issn.1000-1298.2015.11.017
QIANG S C, ZHANG F C, TIAN J K, WU Y, YAN S C, FAN J L. Development of critical nitrogen dilution curve in winter wheat based on leaf dry matter. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11):121-128. doi: 10.6041/j.issn.1000-1298.2015.11.017. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2015.11.017
[14] 王新, 马富裕, 刁明, 樊华, 崔静, 贾彪, 何海兵, 刘其. 滴灌番茄临界氮浓度、氮素吸收和氮营养指数模拟. 农业工程学报, 2013, 29(18):99-108. doi: 10.3969/j.issn.1002-6819.2013.18.013
doi: 10.3969/j.issn.1002-6819.2013.18.013
WANG X, MA F Y, DIAO M, FAN H, CUI J, JIA B, HE H B, LIU Q. Simulation of critical nitrogen concentration, nitrogen uptake and nitrogen nutrition index of processing tomato with drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18):99-108. doi: 10.3969/j.issn.1002-6819.2013.18.013. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2013.18.013
[15] YUE S C, MENG Q F, ZHAO R F, LI F, CHEN X P, ZHANG F S, CUI Z L. Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the North China plain. Agronomy Journal, 2012, 104(2):523-529. doi: 10.2134/agronj2011.0258.
doi: 10.2134/agronj2011.0258
[16] 陕西省统计局. 陕西统计年鉴. 北京: 中国统计出版社, 2010.
Shaanxi Bureau of Statistics. Shaanxi Statistical Yearbook. Beijing: China Statistics Press, 2010. (in Chinese)
[17] 李正鹏, 宋明丹, 冯浩. 关中地区玉米临界氮浓度稀释曲线的建立和验证. 农业工程学报, 2015, 31(13):135-141. doi: 10.11975/j.issn.1002-6819.2015.13.019.
doi: 10.11975/j.issn.1002-6819.2015.13.019
LI Z P, SONG M D, FENG H. Development and validation of critical nitrogen content curve for maize in Guanzhong area. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13):135-141. doi: 10.11975/j.issn.1002-6819.2015.13.019. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2015.13.019
[18] 强生才, 张富仓, 向友珍, 张燕, 闫世程, 邢英英. 关中平原不同降雨年型夏玉米临界氮稀释曲线模拟及验证. 农业工程学报, 2015, 31(17):168-175. doi: 10.11975/j.issn.1002-6819.2015.17.022.
doi: 10.11975/j.issn.1002-6819.2015.17.022
QIANG S C, ZHANG F C, XIANG Y Z, ZHANG Y, YAN S C, XING Y Y. Simulation and validation of critical nitrogen dilution curve for summer maize in Guanzhong Plain during different rainfall years. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17):168-175. doi: 10.11975/j.issn.1002-6819.2015.17.022. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2015.17.022
[19] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计. 作物学报, 2021, 47(3):530-545. doi: 10.3724/SP.J.1006.2021.03021.
doi: 10.3724/SP.J.1006.2021.03021
SU W N, XIE J, HAN J, LIU T N, HAN Q F. Construction of critical nitrogen dilution curve based on dry matter in different organs of summer maize and estimation of grain yield. Acta Agronomica Sinica, 2021, 47(3):530-545. doi: 10.3724/SP.J.1006.2021.03021. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03021
[20] 张英利, 许安民, 尚浩博, 马爱生. AA3型连续流动分析仪测定土壤和植物全氮的方法研究. 西北农林科技大学学报(自然科学版), 2006, 34(10):128-132. doi: 10.13207/j.cnki.jnwafu.2006.10.026.
doi: 10.13207/j.cnki.jnwafu.2006.10.026
ZHANG Y L, XU A M, SHANG H B, MA A S. Determination study of total nitrogen in soil and plant by continuous flow analytical system. Journal of Northwest Sci- Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(10):128-132. doi: 10.13207/j.cnki.jnwafu.2006.10.026. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2006.10.026
[21] JUSTES E, MARY B, MEYNARD J M, MACHET J M, THELIER- HUCHE L. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 1994, 74(4):397-407. doi: 10.1006/anbo.1994.1133.
doi: 10.1006/anbo.1994.1133
[22] NULL. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 1982, 63(11):1309-1313.
doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
[23] YANG J, GREENWOOD D J, ROWELL D L, WADSWORTH G A, BURNS I G. Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE. Agricultural Systems, 2000, 64(1):37-53. doi: 10.1016/S0308-521X(00)00010-X.
doi: 10.1016/S0308-521X(00)00010-X
[24] JAMIESON P D, PORTER J R, WILSON D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 1991, 27(4):337-350. doi: 10.1016/0378-4290(91)90040-3.
doi: 10.1016/0378-4290(91)90040-3
[25] GASTAL F, LEMAIRE G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. Journal of Experimental Botany, 2002, 53(370):789-799. doi: 10.1093/jexbot/53.370.789.
doi: 10.1093/jexbot/53.370.789
[26] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良. 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019, 25(1):123-133. doi: 10.11674/zwyf.18020.
doi: 10.11674/zwyf.18020
AN Z C, HUANG Y F, WANG Y, ZHAO Y N, YUE S H, SHI H B, YE Y L. Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies. Journal of Plant Nutrition and Fertilizer, 2019, 25(1):123-133. doi: 10.11674/zwyf.18020. (in Chinese)
doi: 10.11674/zwyf.18020
[27] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020, 46(2):290-299.
FU J P, HE Z, JIA B, LIU H F, LI Z Z, LIU Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agronomica Sinica, 2020, 46(2):290-299. (in Chinese)
[28] 卢宪菊, 郭新宇, 温维亮, 于泽涛. 东北地区春玉米临界氮浓度稀释曲线的建立和验证. 中国农业科技导报, 2019, 21(11):77-83. doi: 10.13304/j.nykjdb.2018.0588.
doi: 10.13304/j.nykjdb.2018.0588
LU X J, GUO X Y, WEN W L, YU Z T. Development and validation of critical nitrogen dilution curve for spring maize in northeast China. Journal of Agricultural Science and Technology, 2019, 21(11):77-83. doi: 10.13304/j.nykjdb.2018.0588. (in Chinese)
doi: 10.13304/j.nykjdb.2018.0588
[29] 刘朋召, 师祖姣, 宁芳, 王瑞, 王小利, 李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断. 作物学报, 2020, 46(8):1225-1237. doi: 10.3724/SP.J.1006.2020.03007.
doi: 10.3724/SP.J.1006.2020.03007
LIU P Z, SHI Z J, NING F, WANG R, WANG X L, LI J. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland. Acta Agronomica Sinica, 2020, 46(8):1225-1237. doi: 10.3724/SP.J.1006.2020.03007. (in Chinese)
doi: 10.3724/SP.J.1006.2020.03007
[30] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利. 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013, 39(2):292-299.
LIANG X G, ZHANG J T, ZHOU L L, LI X H, ZHOU S L. Critical nitrogen dilution curve and nitrogen nutrition index for summer maize in North China plain. Acta Agronomica Sinica, 2013, 39(2):292-299. (in Chinese)
[31] 刘小刚, 张富仓, 杨启良, 李志军. 玉米叶绿素、脯氨酸、根系活力对调亏灌溉和氮肥处理的响应. 华北农学报, 2009, 24(4):106-111.
LIU X G, ZHANG F C, YANG Q L, LI Z J. Response of chlorophyll, proline and root activity of maize to regulated deficit irrigation and N fertilization treatment. Acta Agriculturae Boreali-Sinica, 2009, 24(4):106-111. (in Chinese)
[32] 曹彩云, 郑春莲, 李科江, 马俊永, 崔彦宏. 长期定位施肥对夏玉米光合特性及产量的影响研究. 中国生态农业学报, 2009, 17(6):1074-1079. doi: 10.3724/SP.J.1011.2009.01074.
doi: 10.3724/SP.J.1011.2009.01074
CAO C Y, ZHENG C L, LI K J, MA J Y, CUI Y H. Effect of long-term fertilization on photosynthetic property and yield of summer maize(Zea mays L.). Chinese Journal of Eco-Agriculture, 2009, 17(6):1074-1079. doi: 10.3724/SP.J.1011.2009.01074. (in Chinese)
doi: 10.3724/SP.J.1011.2009.01074
[33] 华伟, 曹国军, 耿玉辉, 车明, 韩圆圆, 黄岩. 氮磷互作对春玉米产量及氮素吸收积累的影响. 中国农学通报, 2017, 33(6):27-33.
HUA W, CAO G J, GENG Y H, CHE M, HAN Y Y, HUANG Y. Interaction of nitrogen and phosphorus affecting spring maize yield and N uptake accumulation. Chinese Agricultural Science Bulletin, 2017, 33(6):27-33. (in Chinese)
[34] 史桂清, 石书亚, 赵颖佳, 肖凯. 氮磷钾施用方式对夏玉米植株、产量和土壤养分的影响. 中国农学通报, 2019, 35(13):23-30.
SHI G Q, SHI S Y, ZHAO Y J, XIAO K. NPK application modes affect plants and yield of summer maize and soil nutrients. Chinese Agricultural Science Bulletin, 2019, 35(13):23-30. (in Chinese)
[35] 侯云鹏, 杨建, 孔丽丽, 尹彩侠, 李前, 秦裕波, 王立春, 谢佳贵. 不同施磷水平对春玉米产量、养分吸收及转运的影响. 玉米科学, 2017, 25(3):123-130. doi: 10.13597/j.cnki.maize.science.20170321.
doi: 10.13597/j.cnki.maize.science.20170321
HOU Y P, YANG J, KONG L L, YIN C X, LI Q, QIN Y B, WANG L C, XIE J G. Effect of different phosphorus levels on yield, nitrogen, phosphorus and potassium absorption and translocation of spring maize. Journal of Maize Sciences, 2017, 25(3):123-130. doi: 10.13597/j.cnki.maize.science.20170321. (in Chinese)
doi: 10.13597/j.cnki.maize.science.20170321
[36] 王子凤, 李絮花, 王鹏. 长期定位施肥条件下土壤理化性质的演变. 山东农业科学, 2020, 52(6):65-70. doi: 10.14083/j.issn.1001-4942.2020.06.011.
doi: 10.14083/j.issn.1001-4942.2020.06.011
WANG Z F, LI X H, WANG P. Evolution analysis of soil physical and chemical properties under long-term positioning fertilization condition. Shandong Agricultural Sciences, 2020, 52(6):65-70. doi: 10.14083/j.issn.1001-4942.2020.06.011. (in Chinese)
doi: 10.14083/j.issn.1001-4942.2020.06.011
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[3] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[4] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[5] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[6] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[7] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[8] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[9] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[10] HU DanDan,LI RongFa,LIU Peng,DONG ShuTing,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Mixed-Cropping Improved on Grain Filling Characteristics and Yield of Maize Under High Planting Densities [J]. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868.
[11] XU TianJun,LÜ TianFang,ZHAO JiuRan,WANG RongHuan,XING JinFeng,ZHANG Yong,CAI WanTao,LIU YueE,LIU XiuZhi,CHEN ChuanYong,WANG YuanDong,LIU ChunGe. The Grain Dehydration Characteristics of the Main Summer Maize Varieties in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(4): 708-719.
[12] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[13] XU HaoCong,YAO Bo,WANG Quan,CHEN TingTing,ZHU TieZhong,HE HaiBing,KE Jian,YOU CuiCui,WU XiaoWen,GUO ShuangShuang,WU LiQuan. Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra [J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4538.
[14] YU WeiZhen,ZHANG XiaoChi,HU Juan,SHAO JingYi,LIU Peng,ZHAO Bin,REN BaiZhao. Combined Effects of Shade and Waterlogging on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846.
[15] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!