Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1479-1491.doi: 10.3864/j.issn.0578-1752.2022.08.001


Research Progress of Nitrogen Efficiency Related Genes in Rice

SANG ShiFei1,2(),CAO MengYu1(),WANG YaNan1,WANG JunYi1,SUN XiaoHan1,ZHANG WenLing3(),JI ShengDong1,2()   

  1. 1College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan
    2Henan Crop Genetic Improvement and Germplasm Innovation Engineering Research Center, Xinxiang 453007, Henan
    3Henan Seed Management Station, Zhengzhou 450046
  • Received:2021-11-01 Accepted:2021-12-30 Online:2022-04-16 Published:2022-05-11
  • Contact: WenLing ZHANG,ShengDong JI;;;


Over the last few years, China government has put forward a strategy to achieve the goal of “zero growth of chemical fertilizer”. It is particularly important to reduce the input of nitrogen fertilizer in agricultural production and enhance the nitrogen use efficiency in crops. Nitrogen is mostly absorbed from the soil by plant roots in the form of nitrate nitrogen (NO3-) and ammonium nitrogen (NH4-). It is transported from roots in plants to synthesize essential life substances, such as amino acids and nucleotides. Nitrogen is used as a basic element for crop growth and yield formation. However, excessive application of nitrogen fertilizer destroys the physical and chemical properties of the soil, causes undesirable changes to soil salinization, and pollutes the ecological environment, and pollutes the ecological environment. By reducing the quantity of nitrogen fertilizer, will destabilize the yield potential of field crops including rice and wheat which is being used as a staple food in China. It can threaten food security of the country. To improve the nitrogen use efficiency (NUE) and stabilize the food security, mining nitrogen-efficient genes, such as NRT1.1B, OsGRF4 etc., genetic improvement of current existing varieties through molecular design breeding will help to cultivate new nitrogen efficiently rice lines. Tapping the productive potential of current rice varieties will improve the level of sustainable agricultural development in our country. In this article, based on the nitrogen-efficient genes excavated in the current rice research, this article reviews the PTR (polypeptide transporter) family, NRT (nitrate transporter) family, AMT family (ammonium transporter family), NLP family and other types of rice nitrogen-efficient genes. The future prospects of gene utilization have been prospected. Based on the nitrogen-efficient genes excavated in the current rice research, they are divided into four categories: NRT/PTR, AMT (ammonium transporter), NLP and other types, and summarize their functions and characteristics, and analysis the utilization prospect and existing problems of nitrogen-efficient genes with potential breeding value.

Key words: nitrogen, rice, nitrogen fertilizer, nitrogen efficient gene

Table 1

Gene types and characteristics of NPF family"

Gene name
Gene accession No.
Authentication method
OsNPF2.2/OsPTR2 LOC_Os12g44100 低亲和力硝酸盐转运蛋白,参与从根到茎的硝酸盐转运和维管发育
Low-affinity nitrate transporter, involved in nitrate transport from root to stem and vascular development
T-DNA insertion mutant
OsNPF2.4 LOC_Os03g48180 pH依赖性低亲和力硝酸盐转运蛋白,参与获取和长距离硝酸盐运输
pH-dependent low-affinity nitrate transporter, involved in acquisition and long-distance nitrate transport
T-DNA insertion mutant, overexpression
OsNPF4.5 LOC_Os01g54515 低亲和硝酸盐转运蛋白,增强表达显著提高氮素吸收效率并促进水稻生长
Low-affinity nitrate transporter, enhanced expression, significantly improves nitrogen absorption efficiency and promotes rice growth
Knockout mutant
OsNPF6.1 LOC_Os01g01360 编码硝酸盐转运蛋白,可能直接参与硝酸盐的吸收和再分配
Encodes a nitrate transporter, which may be directly involved in the absorption and redistribution of nitrate
T-DNA insertion mutant, overexpression
OsNRT1 LOC_Os03g13274 低亲和力硝酸盐转运蛋白,增加氮积累
Low-affinity nitrate transporter, increasing nitrogen accumulation
OsNPF6.3/OsNRT1.1A LOC_Os08g05910 定位于液泡膜的硝酸盐转运蛋白,参与调节氮素利用
Nitrate transporter located in the vacuole membrane, involved in regulating nitrogen utilization
OsNPF6.5/OsNRT1.1B LOC_Os10g40600 通过改变根际微环境影响水稻籼粳亚种间的氮肥利用效率
Influence of NUE between indica and japonica rice subspecies by changing the rhizosphere microenvironment
OsNPF7.2 LOC_Os02g47090 低浓度硝酸盐转运蛋白,参与根细胞中硝酸盐的分配
Low-concentration nitrate transporter, involved in the distribution of nitrate in root cells
Knockout mutant
OsNPF7.3/OsPTR6 LOC_Os04g50950 高表达可提高水稻的氮素利用效率
High expression can improve the NUE of rice
[20,31 -32]
OsNPF7.7/OsPTR10 LOC_Os10g42870 调节枝条的分支和氮素的利用效率
Regulates the branching of branches and NUE
OsNPF8.1/OsPTR7 LOC_Os01g04950 参与了稻谷中砷酸二甲酯的积累
Participated in the accumulation of dimethyl arsenate in rice
MiRNA [34]
OsNRT8.2/OsPTR1 LOC_Os07g01070 干旱胁迫诱导
Drought and Salt Stress induced
Expression patterns
OsNPF8.20/OsPTR9 LOC_Os06g49250 正调节铵吸收、侧根形成和籽粒产量
Positive regulation of ammonium absorption, lateral root formation and grain yield
T-DNA insertion mutant, RNAi

Fig. 1

Phylogenetic tree of NRT and homologous genes in japonica and indica rice Red part is indica genes, and the rest are japonica genes"

Table 2

Types and characteristics of NRT2 genes"

Gene name
Gene accession No.
Authentication method
OsNRT2.4 LOC_Os01g36720 双重亲和力硝酸盐转运蛋白
Dual affinity nitrate transporter
Knockout mutant
OsNRT2.1 LOC_Os02g02170 高亲和力硝酸盐转运蛋白
High affinity nitrate transporter
[39,41 -43]
OsNRT2.2 LOC_Os02g02190 与OsNAR2.1相互作用以进行高亲和力的硝酸盐转运
Interacts with OsNAR2.1 for high-affinity nitrate transport
OsNRT2.3a LOC_Os01g50820 参与根到茎的远距离硝态氮运输
Participate in long-distance nitrate nitrogen transport from root to stem
OsNRT2.3b LOC_Os01g50820 正向调节pH缓冲和氮素利用效率
Positive adjustment of pH buffer and nitrogen utilization efficiency

Table 3

Types and characteristics of AMT genes"

Gene name
Gene accession No.
Authentication method
OsAMT1.1 LOC_Os04g43070 铵吸收和铵钾稳态
Ammonium absorption and ammonium potassium homeostasis
OsAMT1.2 LOC_Os02g40730 功能性铵转运体 Functional ammonium transporter 突变体 Mutant [49,58]
OsAMT1.3 LOC_Os02g40710 高亲和力铵转运蛋白,参与根系形态和碳氮代谢
High affinity ammonium transporter, involved in root morphology and carbon and nitrogen metabolism
OsAMT2.1 LOC_Os05g39240 功能性铵转运蛋白,组成型表达
Functional ammonium transporter, constitutively expressed
突变体 Mutant [54]
OsAMT2.2 LOC_Os01g61510 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]
OsAMT2.3 LOC_Os01g61550 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]
OsAMT3.1 LOC_Os01g65000 介导菌根铵转移 Mediated Mycorrhizal Ammonium Transfer 突变体 Mutant [56,60]
OsAMT3.2 LOC_Os03g62200 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]
OsAMT3.3 LOC_Os02g34580 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]
OsAMT4 LOC_Os03g53780 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]
OsAMT5.1 LOC_Os12g01420 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]
OsAMT5.2 LOC_Os11g01410 铵转运蛋白 Ammonium transporter 突变体 Mutant [59]

Table 4

Types and characteristics of NLP genes"

Gene name
Gene accession No.
Authentication method
OsNLP1 LOC_Os03g03900 初级硝酸盐反应中具有潜在作用
Potential role in primary nitrate reactions

OsNLP2 LOC_Os04g41850 无 None 无 None 无 None [60]
OsNLP3 LOC_Os01g13540 硝酸盐信号传导的核心转录因子
Core transcription factor for nitrate signaling
Transgenic lines

OsNLP4 LOC_Os09g37710 通过结合启动子上的顺式元件调控N的吸收同化
Regulate N uptake and assimilation by binding the cis-elements on the promoter
Compared with the wild type, the yield of the overexpression line is increased by 30%, and the nitrogen utilization rate is increased by 47%
OsNLP5 LOC_Os11g16290 无 None 无 None 无 None [60]
OsNLP6 LOC_Os02g04340 无 None 无 None 无 None [60]

Table 5

Gene types and characteristics of others"

Gene name
Gene accession No.
Authentication method
OsMADS25 LOC_Os04g23910 正调控硝酸盐转运蛋白基因表达
Positive regulation of nitrate transporter gene expression
OsNAR2.1 LOC_Os02g38230 能与OsNRT2.1/2.2和OsNRT2.3a互作
Interacts with OsNRT2.1/2.2 and OsNRT2.3a
RNAi [40,44]
OsGRF4 LOC_Os02g47280 正调控植物碳-氮代谢,促进氮素吸收、同化和转运
Positively regulate plant carbon-nitrogen metabolism, promote nitrogen absorption, assimilation and transport
TOND1 LOC_Os12g43440 过表达TOND1能增加水稻对低氮的耐性
Overexpression of TOND1 can increase the tolerance of rice to low nitrogen
OsGOGAT1 LOC_Os01g48960 与OsAMT1.2同时激活,提高氮素利用效率
Activate simultaneously with OsAMT1.2 to improve NUE
Ghd7 LOC_Os07g15770 抑制ARE1的表达,调节氮素利用效率
Inhibit the expression of ARE1 and regulate NUE
OsTCP19 LOC_Os06g12230 OsTCP19-H有提高氮肥利用率的潜力
OsTCP19-H has the potential to improve nitrogen fertilizer utilization
qNGR9/DEP1 LOC_Os09g26999 株高对氮的响应
Response of plant height to nitrogen
Positional cloning and genetic complementation

Fig. 2

Nitrogen utilization forms and rice transportation routes"

[1] 刘爽. 浅析世界及我国水稻生产状况. 新农业, 2020(20): 14-16.
LIU S. Analysis on the status of rice production in the world and my country. New Agriculture, 2020(20): 14-16. (in Chinese)
[2] 刘慧, 周向阳. 基于需求视角的我国杂粮主食化发展分析. 中国食物与营养, 2016, 22(8): 17-20.
LIU H, ZHOU X Y. Analysis on the development of staple food in China from the perspective of demand. Food and Nutrition in China, 2016, 22(8): 17-20. (in Chinese)
[3] 吴晶. 氮肥施用量及种类对高产稻田土壤理化性质和细菌群落的影响[D]. 扬州: 扬州大学, 2019.
WU J. Effects of nitrogen fertilizer application amount and types on soil physical and chemical properties and bacterial community in high-yielding paddy field[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[4] 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 北京: 中国农业科学院, 2019.
BAI Z G. Effects of nitrogen management on rice nitrogen metabolism and rice field nitrogen utilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[5] LASSALETTA L, BILLEN G, GRIZZETTI B, ANGLADE J, GARNIER J. 50 years trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014, 9: 105011.
[6] HAN M, OKAMOTO M, BEATTY P H, ROTHSTEIN S J, GOOD A G. The genetics of nitrogen use efficiency in crop plants. Annual Review of Genetics, 2015, 49: 269-289.
doi: 10.1146/annurev-genet-112414-055037
[7] 曾希柏, 陈同斌, 林忠辉, 胡清秀. 中国粮食生产潜力和化肥增产效率的区域分异. 地理学报, 2002, 57(5): 539-546.
ZENG X B, CHEN T B, LIN Z H, HU Q X. Regional differentiation of China's grain production potential and fertilizer production efficiency. Journal of Geographical Sciences, 2002, 57(5): 539-546. (in Chinese)
[8] 刘学英, 李姗, 吴昆, 刘倩, 高秀华, 傅向东. 提高农作物氮肥利用效率的关键基因发掘与应用. 科学通报, 2019, 64(25): 2633-2640.
LIU X Y, LI S, WU K, LIU Q, GAO X H, FU X D. Discovery and application of key genes to improve crop nitrogen utilization efficiency. Science Bulletin, 2019, 64(25): 2633-2640. (in Chinese)
[9] PENG S, BURESH R J, HUANG J L, ZHONG X H, Zou Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by site specific N management: A review. Agronomy for Sustainable Development, 2010, 30(3): 649-656.
doi: 10.1051/agro/2010002
[10] NARITS L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agronomy Research, 2010, 8(3): 671-686.
[11] MCALLISTER C H, BEATTY P H, GOOD A G. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal, 2012, 10(9): 1011-1025.
doi: 10.1111/j.1467-7652.2012.00700.x
[12] HU B, WANG W, QU S J, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LINAG Y, ZHANG L H, LI L G, CHU C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7): 834-838.
doi: 10.1038/ng.3337
[13] XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63(1): 153-182.
doi: 10.1146/annurev-arplant-042811-105532
doi: 10.1016/j.tplants.2013.08.008
[15] 聂海鹏. 水稻NPF家族选择性剪接基因功能初步探究[D]. 武汉: 华中农业大学, 2018.
NIE H P. Preliminary study on the function of alternative splicing genes in rice NPF family[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[16] LI Y G, OUYANG J, WANG Y Y, HU R, XIA K F, DUAN J, WANG Y Q, TSAY Y F, ZHANG M Y. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Scientific Reports, 2015, 5(1): 9635.
doi: 10.1038/srep09635
[17] XIA X D, FAN X R, WEI J, FENG H M, QU H Y, XIE D, MILLER A J, HU G H. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany, 2014, 66(1): 317.
doi: 10.1093/jxb/eru425
[18] WANG S S, CHEN A Q, XIE K, YANG X F, LUO Z Z, CHEN J D, ZENG D C, REN Y H, YANG C F, WANG L X, FENG H M, DAMAR L L, LUIS H E, XU G H.Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences of the USA, 2020, 117(28): 16649-16659.
[19] RUI H, QIU D, YI C, MILLER A J, FAN X, PAN X, ZHANG M. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Frontiers in Plant Science, 2016, 7(48): 1529.
[20] FAN X R, XIE D, CHEN J G, LU H Y, XU Y L, CUI M, XU G H. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Science an International Journal of Experimental Plant Biology, 2014, 227(10): 1-11.
[21] WANG J, LU K, NIE H P, ZENG Q, WU B W, QIAN J J, FANG Z M. Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice, 2018, 11(1): 12.
doi: 10.1186/s12284-018-0205-6
[22] HUANG W T, BAI G X, WANG J, WEI Z, ZENG Q S, LU K, SUN S Y, FANG Z M. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Frontiers in Plant Science, 2018, 9: 300.
doi: 10.3389/fpls.2018.00300
[23] TANG W J, YE J, YAO X M, ZHAO P Z, XUAN W, TIAN Y L, ZHANG Y Y, XU S, AN H Z, CHEN G M, YU J, WU W, GE Y W, LIU X L, LI J, ZHANG H Z, ZHAN Y Q, YANG B, JIANG X Z, PENG C, ZHOIU C, TERZAGHI W, WAN J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10(1): 5279.
doi: 10.1038/s41467-019-13187-1
[24] TANG Z, CHEN Y, CHEN F, JI Y C, ZHAO F J. OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant and Cell Physiology, 2017, 58(5): 904-913.
doi: 10.1093/pcp/pcx029
[25] KOMAROVA N Y, THOR K, GUBLER A, MEIER S, DIETRICH D, WEICHERT A, GROTEMEYER M S, TEGEDER M, RENTSCH D. AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiology, 2008, 148(2): 856-869.
doi: 10.1104/pp.108.123844
[26] OUYANG J, CAI Z Y, XIA K F, WANG Y Q, DUAN J, ZHANG M Y. Identification and analysis of eight peptide transporter homologs in rice. Plant Science, 2010, 179(4): 374-382.
doi: 10.1016/j.plantsci.2010.06.013
[27] FANG Z M, XIA K F, YANG X, GROTEMEYER M S, MEIER S, RENTSH D, XU X L, ZHANG M Y. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnology, 2013, 11(4): 446-458.
[28] LIN C M, KOH S, STACEY G, YU S M, LIN T Y, TSAY Y F. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiology, 2000, 122(2): 379-388.
doi: 10.1104/pp.122.2.379
[29] WANG W, HU B, YUAN D Y, LIU Y Q, CHE R H, HU Y C, OU S J, LIU Y X, ZHANG Z H, WANG H R, LI H, JIANG Z M, ZHANG Z L, GAO X K, QIU Y H, MENG X B, LIU Y X, BAI Y, LIANG Y, WANG Y Q, ZHANG L H, LI L G, SODMERGEN, JING H C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell, 2018, 30(3): 638-651.
doi: 10.1105/tpc.17.00809
[30] ZHANG J Y, LIU Y X, ZHANG N, HU B, JIN T, XU H R, QIN Y, YAN P X, ZHANG X N, GUO X X, HUI J, CAO S Y, WANG X, WANG C, WANGF H, QU B Y, FAN G Y, YUAN L X, RYBEN G O, CHU C C, BAI Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37(6): 676-684.
doi: 10.1038/s41587-019-0104-4
[31] FAN X R, TANG Z, TAN Y W, ZHANG Y, LUO B B, YANG M, LIAN X M, SHEN Q R, MILLER A J, XU G H.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences 2016, 113(26): 7118-7123.
[32] FANG Z M, BAI G X, HUANG W T, WANG Z X, WANG X L, ZHANG M Y. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Frontiers in Plant Science, 2017, 8:1338.
doi: 10.3389/fpls.2017.01338
[33] HUANG W T, BAI G X, WANG J, ZHU W, ZENG Q S, LU K, SUN S Y, FANG Z M. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Frontiers in Plant Science, 2018, 9: 300.
doi: 10.3389/fpls.2018.00300
[34] TANG J Y, CHU C C. MicroRNAs in crop improvement: Fine-tuners for complex traits. Nature Plants, 2017, 3(7): 17077.
doi: 10.1038/nplants.2017.77
[35] GOJON A, KROUK G, PERRINE-WALKER F, LAUGIER E. Nitrate transceptor(s) in plants. Journal of Experimental Botany, 2011, 62(7): 2299-2308.
doi: 10.1093/jxb/erq419
[36] 赵敏华, 刘吉, 徐晨曦, 蔡晓锋, 王全华, 王小丽. NRT在植物根系发育及非生物胁迫中的功能研究进展. 上海师范大学学报(自然科学版), 2020, 49(6): 709-718.
ZAHO M H, LIU J, XU C X, CAI X F, WANG Q H, WANG X L. Research progress on the function of NRT in plant root development and abiotic stress. Journal of Shanghai Normal University (Natural Science Edition), 2020, 49(6): 709-718. (in Chinese)
[37] TANG Z, FAN X R, LI Q, FENG H M, MILLER A J, SHEN Q R, XU G H. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiology, 2012, 160(4): 2052-2063.
doi: 10.1104/pp.112.204461
[38] WEI J, ZHENG Y, FENG H M, QU H Y, FAN X R, NAOKI Y J, MA J F, XU G H. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 2018, 69(5): 1095-1107.
doi: 10.1093/jxb/erx486
[39] KATAYAMA H, MORI M, KAWAMURA Y, TANAKA T, MORI M, HASEGAWAET H.Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Science, 2009, 59(3): 237-243.
doi: 10.1270/jsbbs.59.237
[40] YAN M, FAN X R, FENG H M, MILLER A J, SHEN Q R, XU G H. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell & Environment, 2011, 34(8): 1360-1372.
[41] 陈景光, 张勇, 谭雅文, 徐国华, 范晓荣. 过量表达OsNRT2.1对水稻日本晴生长和氮素利用效率的影响. 分子植物育种, 2016, 14(1): 1-9.
CHEN J G, ZHANG Y, TAN Y W, XU G H, FAN X R. The effects of OsNRT2.1 over-expression on plant growth and nitrogen use efficiency in rice Nipponbare (Oryza sativa L. ssp. japonica). Molecular Plant Breeding, 2016, 14(1): 1-9. (in Chinese)
[42] ARAKI R, HASEGAWA H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breeding Science, 2006, 56(3): 295-302.
doi: 10.1270/jsbbs.56.295
[43] LUO B B, CHEN J G, ZHU L L, LIU S H, LI B, LU H, YE G Y, XU G H, FAN X R. Overexpression of a high-affinity nitrate transporter OsNRT2.1 increases yield and manganese accumulation in rice under alternating wet and dry condition. Frontiers in Plant Science, 2018, 9: 1192.
doi: 10.3389/fpls.2018.01192
[44] FENG H M, YAN M, FAN X R, LI B Z, SHEN Q R, MILLER A J, XU G H. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, 2011, 62(7): 2319-2332.
doi: 10.1093/jxb/erq403
[45] TABUCHI M, ABIKO T, YAMAYA T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(9): 2319-2327.
doi: 10.1093/jxb/erm016
[46] LOQUE D, WIREN N V. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany, 2004, 55(401): 1293-1305.
doi: 10.1093/jxb/erh147
[47] YANG S Y, HAO D L, CONG Y, JIN M, SU Y H. The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Reports, 2015, 34(2): 321-330.
doi: 10.1007/s00299-014-1709-1
[48] LI C, TANG Z, WEI J, QU H Y, XIE Y J, XU G H. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. Journal of Genetics & Genomics, 2016(11): 639-649.
[49] SONODA Y, IKEDA A, SAIKI S, WIRÉN N V, YAMAYA T, YAMAGUCHI J J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1- 1;3) in rice. Plant & Cell Physiology, 2003, 44(7): 726-734.
[50] FERREIRA L M, SOUZA V M D, TAVARES O C H, ZONTA E, SANTA-CATARINA C, SOUZA S R D, FERNANDES M S, SANTOS L A. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, 2015, 9: 221-229.
doi: 10.1007/s11816-015-0359-2
[51] BAO A, LIANG Z J, ZHAO Z Q, CAI H M. Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. International Journal of Molecular Sciences, 2015, 16(12): 9037-9063.
doi: 10.3390/ijms16059037
[52] KUMAR A, SILIM S N, OKAMOTO M, SIDDIQI M Y, GLASS A D M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell & Environment, 2003, 26(6): 907-914.
[53] KONISHI N Y, MA J F. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytologist, 2021, 232(4): 1778-1792.
doi: 10.1111/nph.17679
[54] SUENAGA A, MORIYA K, SONODA Y, IKEDA A, WIREN N V, HAYAKAWA T, YAMAGUCHI J J, YAMAYA T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiology, 2003, 44(2): 206-211.
doi: 10.1093/pcp/pcg017
[55] 李畅. 水稻铵转运蛋白基因OsAMT1.1OsAMT2.1生物学功能分析[D]. 南京: 南京农业大学, 2016.
LI C. Biological function analysis of rice ammonium transporter genes OsAMT1.1 and OsAMT2.1[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[56] KOEGEL S, MIEULET D, BADAY S, CHATAGNIER O, LEHMANN M F, WIEKEN A, BOLLER T, WIPF D, BERNÈCHE S, GUIDERDONI E, COURTY P E. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza, 2017, 27(7): 695-708.
doi: 10.1007/s00572-017-0786-8
[57] KOSALA R, ASHRAF E K, SATINDER G, BI Y M, ROTHSTEIN S J. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions. Journal of Experimental Botany, 2014, 65(4): 965-979.
doi: 10.1093/jxb/ert458
[58] XUAN Y H, DUAN F Y, JE B I, KIM C M, LI T Y, LIU J M, PARK S J, CHO J H, KIM T H, WIREN N V, HAN C D. Related to ABI3/VP1-Like 1 (RAVL1) regulates brassinosteroid-mediated activation of AMT1;2 in rice (Oryza sativa). Journal of Experimental Botany, 2017, 68(3): 727-737.
[59] LI B Z, MERRICK M, LI S M, LI H Y, ZHU S W, SHI W M, SU Y H. Molecular basis and regulation of ammonium transporter in rice. Rice Science, 2009, 16(4):314-322.
doi: 10.1016/S1672-6308(08)60096-7
[60] JAGADHESAN B, SATHEE L, MEENA H S, JHA S K, CHINNUSAMY V, KUMAR A, KUMAR S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice. Scientific Reports, 2020, 10(1): 9368.
doi: 10.1038/s41598-020-66338-6
[61] HU B, JIANG Z M, WANG W, QIU Y H, ZHANG Z H, LIU Y Q, LI A F, GAO X K, LIU L C, QIAN Y W, HUANG X H, YU F F, KANG S, WAGN Y Q, XIE J P, CAO S Y, ZHANG L H, WANG Y C, XIE Q, KOPRIVA S, CHU C C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants, 2019, 5(4): 401-413.
doi: 10.1038/s41477-019-0384-1
[62] ALFATIH A A A. 水稻类根瘤起始蛋白OsNLP1和拟南芥AtNLP7在作物氮利用效率方面的功能解析[D]. 合肥: 中国科学技术大学, 2020.
ALFATIH A A A.Functional analysis of rice nodule-like initiation protein OsNLP1 and Arabidopsis AtNLP 7 in crop nitrogen use efficiency[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese)
[63] WU J, ZHANG Z S, XIA J Q, ALFATIIH A, SONG Y, HUANG Y J, WAN G Y, LIANG Q S, TANG H, LIU Y, WANG A W, ZHU Q S, QIN P, WANG Y P, LI S G, MAO C Z, ZHANG G Q, CHU C C, YU L H, XIANG C B. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 2020, 19(3): 448-461.
doi: 10.1111/pbi.13475
[64] PÉREZ-TIENDA J, CORRÊA A, AZCÓN-AGUILAR C, FERROL N. Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology Biochemistry, 2014, 75: 1-8.
doi: 10.1016/j.plaphy.2013.11.029
[65] ZHANG Y J, TAN L B, ZHU Z F, YUAN L X, XIE D X, SUN C Q. TOND1 confers tolerance to nitrogen deficiency in rice. The Plant Journal, 2015, 81(3): 367.
doi: 10.1111/tpj.12736
[66] ZHU Y Z, LI T, XU J, WANG J J, WANG L, ZOU W W, ZENG D L, ZHU L, CHEN G, HU J, GAO Z Y, DONG G J, REN D Y, SHEN L, ZHANG Q, GUO L B, HU S P, QIAN Q, ZHANG G H. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiology and Biochemistry, 2020, 157: 359-369.
doi: 10.1016/j.plaphy.2020.10.035
[67] LI S, TIAN Y H, WU K, YE Y F, YU J P, ZHANG J Q, LIU Q, HU M Y, LI H, TONG Y P, HARBERD N P, FU X D. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720): 595-600.
doi: 10.1038/s41586-018-0415-5
[68] LIU X Q, HUANG D M, TAO J Y, MILLER A J, FAN X R, XU G H. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytologist, 2014, 204(1): 74-80.
doi: 10.1111/nph.12986
[69] WANG Q, SU Q M, NIAN J Q, ZHANG J, GUO M, DONG G J, HU J, WANG R S, WEI C S, LI G W, WAGN W, GUO H S, LIN S Y, QIAN W F, XIE X Z, QIAN Q, CHEN F, ZUO J R. The Ghd7transcription factor represses the ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023.
doi: 10.1016/j.molp.2021.04.012
[70] LEE S, MARMAGNE A, PARK J H, FABIEN C, YIM Y, KIM S J, KIM T H, LIM P O, DAUBRESSE C M, NAM H G. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. The Plant Journal, 2020, 103(1): 7-20.
doi: 10.1111/tpj.14794
[71] LIU Y Q, WANG H R, JIANG Z M, WANG W, XU R N, WANG Q H, ZHANG Z H, LI A F, LIANG Y, OU S J, LIU X J, CAO S Y, TONG H N, WANG Y H, ZHOU F, LIAO H, HU B, CHU C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605.
doi: 10.1038/s41586-020-03091-w
[72] SUN H Y, QIAN Q, WU K, LUO J J, WANG S S, ZHANG C W, MA Y F, LIU Q, HUANG X Z, YUAN Q B, HAN R H, ZHAO M, DONG G J, GUO L B, ZHU X D, GOU Z H, WANG W, WU Y J, LIN H X, FU X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 6(46): 652-656.
[73] 李军, 李白. 水稻氮高效利用基因NRT1.1B InDel分子标记的开发与应用. 分子植物育种, 2016, 14(12): 3405-3413.
LI J, LI B. Development and application of rice nitrogen efficient utilization gene NRT1.1B InDel molecular marker. Molecular Plant Breeding, 2016, 14(12): 3405-3413. (in Chinese)
[74] 陈传华, 刘广林, 李虎, 罗群昌, 陈远孟, 朱其南. 优质常规水稻新品种桂育11号的选育. 种子, 2019, 38(2): 121-123.
CHEN C H, LIU G L, LI H, LUO Q C, CHEN Y M, ZHU Q N. Breeding of a new high-quality conventional rice variety Guiyu 11. Seed, 2019, 38(2): 121-123. (in Chinese)
[75] 吴碧球, 罗翠萍, 黄所生, 程学江, 李成, 陈传华, 李虎, 吴子帅, 凌炎, 黄芊, 黄凤宽, 龙丽萍. 不同施药量对氮高效利用水稻品种桂11号病虫防治效果和产量的影响. 西南农业学报, 2021, 34(1): 1-8.
WU B Q, LUO C P, HUANG S S, CHENG X J, LI C, CHEN C H, LI H, WU Z S, LIN Y, HUANG Q. Effects of different application rates on pest control and yield of rice variety Gui 11 with high nitrogen utilization efficiency. Southwest China Journal of Agricultural Sciences, 2021, 34(1):1-8. (in Chinese)
[76] 阮新民, 施伏芝, 罗志祥, 佘德红. 水稻苗期氮高效品种评价与筛选的初步研究. 中国稻米, 2010, 16(2): 22-25.
RUAN X M, SHI F Z, LUO Z X, SHE D H. Preliminary study on evaluation and screening of rice seedling nitrogen-efficient varieties. Chinese Rice, 2010, 16(2): 22-25. (in Chinese)
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[6] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[7] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[8] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[9] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[10] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[11] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[12] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[13] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[14] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[15] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
Full text



No Suggested Reading articles found!