Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1518-1528.doi: 10.3864/j.issn.0578-1752.2022.08.004


Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut

WU Yue1(),SUI XinHua2,DAI LiangXiang1,ZHENG YongMei1,ZHANG ZhiMeng1,TIAN YunYun1,YU TianYi1,SUN XueWu1,SUN QiQi1,MA DengChao3,WU ZhengFeng1()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong
    2College of Biological Sciences, China Agricultural University, Beijing 100193
    3Jining Academy of Agricultural Sciences, Jining 272009, Shandong
  • Received:2021-07-14 Accepted:2021-10-09 Online:2022-04-16 Published:2022-05-11
  • Contact: ZhengFeng WU;


Nitrogen is one of the essential elements for plant growth, which is obtained by legumes through symbiotic nitrogen fixation with rhizobia. The establishment of symbiotic relationship includes nodulation and nitrogen fixation, involving complex regulatory mechanisms, which is also significantly affected by environmental factors. Symbiosis between peanut and bradyrhizobia is essential for peanut growth and production, but contains many specific and unknown symbiotic mechanisms. In this review, symbiosis between peanut bradyrhizobia and peanut was reviewed, including: (1) Diversity and genomic functions of peanut bradyrhizobia; (2) Symbiotic mechanisms between peanut and bradyrhizobia: rhizobial crack infection and symbiotic signal exchange with peanut, peanut nodulation, nitrogen fixation, and nodule number regulation mechanisms; (3) Effects of environmental factors (soil nitrogen, pH, temperature and water content) on peanut nodulation, nitrogen fixation and yield. This review pointed out current problems in peanut bradyrhizobia, symbiosis between peanut and bradyrhizobia, and peanut field application, including few studies on genome functions of peanut bradyrhizobia, unknown interaction mechanisms between bradyrhizobia and peanut in details, as well as, poor utilization rate of peanut bradyrhizobia in the field, etc. Based on this analysis, the future researches should focus on genome omics analysis and gene functional analysis of peanut bradyrhizobia; signal communication pathways, nodule number regulation mechanisms, nutrient exchange systems between bradyrhizobia and peanut; rational application systems of nitrogen fertilizer that match with nodule nitrogen fixation rules, and obtain new peanut bradyrhizobia agents for peanut planting through synthetic biology. This article provided the theoretical basis for further understanding the symbiotic mechanisms of legumes and rhizobia, improving nodulation and nitrogen fixation efficiency of legume crops, reducing chemical nitrogen application, and improving agricultural ecological environment.

Key words: bradyrhizobia, peanut, symbiotic nitrogen fixation, mechanism of nodulation and nitrogen fixation, diversity, environmental factor

[1] 张秋磊, 林敏, 平淑珍. 生物固氮及在可持续农业中的应用. 生物技术通报, 2008, 2: 1-4.
ZHANG Q L, LIN M, PING S Z. Biological nitrogen fixation and its application in sustainable agriculture. Biotechnology Bulletin, 2008, 2: 1-4. (in Chinese)
[2] 陈文新, 汪恩涛, 陈文峰. 根瘤菌-豆科植物共生多样性与地理环境的关系. 中国农业科学, 2004, 37(1): 81-86.
CHEN W X, WANG E T, CHEN W F. The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments. Scientia Agricultura Sinica, 2004, 37(1): 81-86. (in Chinese)
[3] 常月立. 中国南方地区花生、扁豆根瘤菌的多相分类[D]. 北京: 中国农业大学, 2010.
CHANG Y L. Polyphasic systematics of rhizobia isolated from Arachis hypogaea and Lablab purpureus grown in southern China[D]. Beijing: China Agricultural University, 2010. (in Chinese)
[4] 陈文新, 汪恩涛. 中国根瘤菌. 北京: 科学出版社, 2011.
CHEN W X, WANG E T. Rhizobia in China. Beijing: Science Press, 2011. (in Chinese)
[5] DE LAJUDIE P, MOUSAVI S A, YOUNG J P W. International committee on systematics of prokaryotes subcommittee on the taxonomy of rhizobia and agrobacteria minutes of the closed meeting by videoconference, 6 July 2020. International Journal of Systematic and Evolutionary Microbiology, 2021, 71: 4784.
[6] 张丹. 中国北方花生主产区花生根瘤菌多样性及其与土壤生态因子之间关系的研究[D]. 北京: 中国农业大学, 2010.
ZHANG D. Diversity of rhizobia isolated from peanut nodules in main peanut producing region of northern China and relationship between the diversity and soil factors[D]. Beijing: China Agricultural University, 2010. (in Chinese)
[7] CHEN J Y, GU J, WANG E T, MA X X, KANG S T, HUANG L Z, CAO X P, LI L B, WU Y L. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils. Systematic and Applied Microbiology, 2014, 37: 525-532.
doi: 10.1016/j.syapm.2014.05.004
[8] 刘保平. 根瘤菌菌剂研究[D]. 武汉: 华中农业大学, 2005.
LIU B P. Study on rhizobium inoculants[D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese)
[9] BOGINO P, BANCHIO E, GIORDANO W. Molecular diversity of peanut-nodulating rhizobia in soils of Argentina. Journal of Basic Microbiology, 2010, 50: 274-279.
doi: 10.1002/jobm.200900245
[10] El-AKHAL M R, RINCON A, El-MOURABIT N, PUEYO J J, BARRIJAL S. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. Journal of Basic Microbiology, 2009, 49: 415-425.
doi: 10.1002/jobm.200800359 pmid: 19455516
[11] GRONEMEYER J L, CHIMWAMUROMBE P, REINHOLD-HUREK B. Bradyrhizobium subterraneum sp nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 3241-3247.
doi: 10.1099/ijsem.0.000403
[12] GRONEMEYER J L, HUREK T, BUNGER W, REINHOLD-HUREK B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. International Journal of Systematic and Evolutionary Microbiology, 2016, 66: 62-69.
doi: 10.1099/ijsem.0.000674
[13] 王蕊. 中国南方花生根瘤菌多样性及其与土壤因子相关性研究[D]. 北京: 中国农业大学, 2013.
WANG R. Biodiversity of peanut rhizobia collected from southern China and its correlation with soil factors[D]. Beijing: China Agricultural University, 2013. (in Chinese)
[14] 张小平. 四川花生根瘤菌的遗传多样性和系统发育研究[D]. 武汉: 华中农业大学, 2001.
ZHANG X P. Diversity and phylogeny of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan[D]. Wuhan: Huazhong Agricultural University. (in Chinese)
[15] CHANG Y L, WANG J Y, WANG E T, LIU H C, SUI X H, CHEN W X. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea grown. International Journal of Systematic and Evolutionary Microbiology, 2011, 61: 2496-2502.
doi: 10.1099/ijs.0.027110-0
[16] WANG R, CHANG Y L, ZHRNG W T, ZHANG D, ZHANG X X, SUI X H, WANG E T, HU J Q, ZHANG L Y, CHEN W X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Systematic and Applied Microbiology, 2013, 36: 101-105.
doi: 10.1016/j.syapm.2012.10.009
[17] LI Y H, WANG R, ZHANG X X, YOUNG J P W, WANG E T, SUI X H, CHEN W X. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 4655-4661.
doi: 10.1099/ijsem.0.000629
[18] LI Y H, WANG R, SUI X H, WANG E T, ZHAGN X X, TIAN C F, CHEN W F, CHEN W X. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in southeast China. Systematic and Applied Microbiology, 2019, 42: 126002.
[19] 李永华. 比较基因组学阐释根瘤菌在花生和绿豆上的共生差异及慢生根瘤菌的进化[D]. 北京: 中国农业大学, 2019.
LI Y H. Comparative genomic analysis of peanut bradyrhizobia reveals the genetic differences underlying two symbiotic phenotypes in peanut and mung bean and the evolution of Bradyrhizobium spp[D]. Beijing: China Agricultural University, 2019. (in Chinese)
[20] 吴月. 不同花生慢生根瘤菌共生差异的表型和遗传比较[D]. 北京: 中国农业大学, 2020.
WU Y. Comparison of symbiotic difference in phenotype and genotype of peanut bradyrhizobia[D]. Beijing: China Agricultural University, 2020. (in Chinese)
[21] D‘HAEZE W, GAO M S, RYCKE R D, MONTAGU M V, ENGLER G, HOLSTERS M. Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Molecular Plant-Microbe Interactions, 1998, 11(10): 999-1008.
doi: 10.1094/MPMI.1998.11.10.999
[22] HIRSCH A M. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Current Opinion in Plant Biology, 1999, 2: 320-326.
doi: 10.1016/S1369-5266(99)80056-9
[23] VAN RHIJN P, FUJISHIGE N A, LIM P O, HIRSCH A M. Sugar- binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae1. Plant Physiology, 2001, 126: 133-144.
doi: 10.1104/pp.126.1.133
[24] DARDANELLI M, ANGELINI J, FABRA A. A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Canadian Journal of Microbiology, 2003, 49: 399-405.
doi: 10.1139/w03-054
[25] FABRA A, CASTRO S, TAURIAN T, ANGELINI J, IBANEZ F, DARDANELLI M, TONELLI M, BIANUCCI E, VALETTI L. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: How much is it known? Critical Reviews in Microbiology, 2010, 36(3): 179-194.
doi: 10.3109/10408410903584863
[26] BREWIN N J. Plant cell wall remodeling in the rhizobium-legume symbiosis. Critical Reviews in Plant Sciences, 2004, 23: 293-316.
doi: 10.1080/07352680490480734
[27] ROTH L E, STACEY G. Bacterium release into host-cells of nitrogen-fixing soybean nodules-the symbiosome membrane comes from 3 sources. European Journal of Cell Biology, 1989, 49(1): 13-23.
[28] MURRAY J D. Invasion by invitation: Rhizobial infection in legumes. Molecular Plant-Microbe Interactions, 2011, 24(6): 631-639.
doi: 10.1094/MPMI-08-10-0181
[29] GAGE D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 2004, 68(2): 280-300.
doi: 10.1128/MMBR.68.2.280-300.2004
[30] BONALDI K, GARGANI D, PRIN Y, FARDOUX J, GULLY D, NOUWEN N, GOORMACHTIG S, GIRAUD E. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: The Nod-dependent versus the Nod-independent symbiotic interaction. Molecular Plant-Microbe Interactions, 2011, 24(11): 1359-1371.
doi: 10.1094/MPMI-04-11-0093
[31] BOOGERD F C, VAN ROSSUM D. Nodulation of groundnut by Bradyrhizobium: A simple infection process by crack infection. FEMS Microbiology Reviews, 1997, 21(1): 5-27.
doi: 10.1111/j.1574-6976.1997.tb00342.x
[32] FOURNIER J, TIMMERS A C J, SIEBERER B J, JAUNEAU A, CHABAUD M, BARKER VAN RHIJN P, VANDERLEYDEN J. The Rhizobium-plant symbiosis. Microbiological Reviews, 1995, 59(1): 124-142.
doi: 10.1128/mr.59.1.124-142.1995
[33] SPAINK H P. Root nodulation and infection factors produced by rhizobial bacteria. Annual Review of Microbiology, 2000, 54: 257-288.
doi: 10.1146/annurev.micro.54.1.257
[34] EHRHARDT D W, WAIS R, LONG S R. Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell, 1996, 85: 673-681.
doi: 10.1016/S0092-8674(00)81234-9
[35] MADSEN L H, TIRICHINE L, JURKIEWICZ A, SULLIVAN J T, HECKMANN A B, BEK A S, RONSON C W, JAMES E K, STOUGAARD J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicas. Nature Communications, 2010, 1: 1-10.
[36] STACEY G, SO J S, ROTH L E, LAKSHMI B S K, CARLSON R W. A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation. Molecular Plant-Microbe Interactions, 1991, 4(4): 332-340.
doi: 10.1094/MPMI-4-332
[37] LEIGH J A, COPLIN D L. Exopolysaccharides in plant-bacteria interactions. Annual Review Microbiology, 1992, 46: 307-346.
doi: 10.1146/annurev.mi.46.100192.001515
[38] IBANEZ F, FABRA A. Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis. Plant Biology, 2011: 1 3: 794-800.
[39] GUHA S, SARKAR M, GANGULY P, UDDIN M R, MANDAL S, DASGUPTA M. Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India. Environmental Microbiology, 2016, 18(8): 2575-2590.
doi: 10.1111/1462-2920.13348
[40] IBANEZ F, ANGELINI J, FIGUEREDO M S, MUNOZ V, TONELLI M L, FABRA A. Sequence and expression analysis of putative Arachis hypogaea (peanut) Nod factor perception proteins. Journal of Plant Research, 2015, 128: 709-718.
doi: 10.1007/s10265-015-0719-6
[41] KARMAKAR K, KUNDU A, RIZVI A Z, DUBOIS E, SEVERAC D, CZERNIC P, CARTIEAUX F, DASGUPTA M. Transcriptomic analysis with the progress of symbiosis in ‘Crack-Entry’ legume Arachis hypogaea highlights its contrast with ‘Infection Thread’ adapted legumes. Molecular Plant-Microbe Interactions, 2019, 32(3): 271-285.
doi: 10.1094/MPMI-06-18-0174-R
[42] SAHA S, PAUL A, HERRING L, DUTTA A, BHATTACHARYA A, SAMADDAR S, GOSHE M B, DASGUPTA M. Gatekeeper tyrosine phosphorylation of SYMRK is essential for synchronizing the epidermal and cortical responses in root nodule symbiosis. Plant Physiology, 2016, 171: 71-81.
doi: 10.1104/pp.15.01962
[43] SINHAROY S, DASGUPTA M. RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the aeschynomeneae legume Arachis. Molecular Plant-Microbe Interactions, 2009, 22(11): 1466-1475.
doi: 10.1094/MPMI-22-11-1466
[44] KUNDU A, DASGUPTA M. Silencing of putative cytokinin receptor histidine kinase1 inhibits both inception and differentiation of root nodules in Arachis hypogaea. Molecular Plant-Microbe Interactions, 2018, 31(2): 187-199.
doi: 10.1094/MPMI-06-17-0144-R
[45] SHARMA V, BHATTACHARYYA S, KUMAR R, KUMAR A, IBANEZ F, WANG J, GUO B, SUDINI H K, GOPALAKRISHNAN S, DASGUPTA M, VARSHNEY R K, PANDEY M K. Molecular basis of root nodule symbiosis between Bradyrhizobium and 'crack-entry' legume Groundnut (Arachis hypogaea L.). Plants, 2020, 9: 276.
doi: 10.3390/plants9020276
[46] PENG Z, LIU F, WANG L, ZHOU H, PAUDEL D, TAN L, MAKU J, GALLO M, WANG J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Scientific Reports, 2017, 7: 40066.
doi: 10.1038/s41598-017-00453-9
[47] MORGANTE C, ANGELINI J, CASTRO S, FABRA A. Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut. Soil Biology and Biochemistry, 2005, 37: 1436-1444.
doi: 10.1016/j.soilbio.2004.12.014
[48] MORGANTE C, CASTRO S, FABRA A. Role of rhizobial EPS in the evasion of peanut defense response during the crack-entry infection process. Soil Biology and Biochemistry, 2007, 39: 1222-1225.
doi: 10.1016/j.soilbio.2006.11.022
[49] JONES K M, KOBAYASHI H, DAVIES B W, TAGA M E, WALKER G C. How rhizobial symbionts invade plants: The Sinorhizobium-Medicago model. Nature Reviews, 2007, 5: 619-633.
[50] BAL A K, SEN D, WEAVER R W. Cell wall (outer membrane) of bacteroids in nitrogen-fixing peanut nodules. Current Microbiology, 1985, 12: 353-356.
doi: 10.1007/BF01567896
[51] WANG Q, LIU J, ZHU H. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 2018, 9: 313.
doi: 10.3389/fpls.2018.00313
[52] SEN D, WEAVER R W, BAL A K. Structure and organization of effective peanut and cowpea root nodules induced by rhizobial strain 32H1. Journal of Experimental Botany, 1986, 37(176): 356-363.
doi: 10.1093/jxb/37.3.356
[53] FERNANDEZ-LUQUENO F, DENDOOVEN L, MUNIVE A, CORLAY-CHEE L, SERRANO-COVARRUBIAS L M, ESPINOSA- VICTORIA D. Micro-morphology of common bean (Phaseolus vulgaris L.) nodules undergoing senescence. Acta Physiologiae Plantarum, 2008, 30: 545-552.
doi: 10.1007/s11738-008-0153-7
[54] CORBY H D L. Types of rhizobial nodules and their distribution among leguminosae. Kirkia, 1988, 13(1): 53-124.
[55] FABRE S, GULLY D, POITOUT A, PATREL D, ARRIGHI J F, GIRAUD E, CZERNIC P, CARTIEAUX F. Nod factor-independent nodulation in Aeschynomene evenia required the common plant- microbe symbiotic toolkit. Plant Physiology, 2015, 169: 2654-2664.
[56] BAL A K, HAMEED S, JAYARAM S. Ultrastructural characteristics of the host-symbiont interface in nitrogen-fixing peanut nodules. Protoplasma, 1989, 150: 19-26.
doi: 10.1007/BF01352917
[57] SIDDIQUE A M, BAL A K. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies. Plant Physiology, 1991, 95: 896-899.
doi: 10.1104/pp.95.3.896
[58] HUNT S, LAYZELL D B. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annual Review of Plant Physiology, 1993, 44: 483-511.
[59] FISCHER H M. Genetic regulation of nitrogen fixation in rhizobia. Microbiology Review, 1994, 58(3): 352-386.
doi: 10.1128/mr.58.3.352-386.1994
[60] 武维华. 植物生理学.第二版. 北京: 科学出版社, 2008: 121-122.
WU W H. Plant Physiology. 2nd edition. Beijing: Science Press, 2008: 121-122. (in Chinese)
[61] UDVARDI M, POOLE P S. Transport and metabolism in legume- rhizobia symbioses. Annual Review of Plant Biology, 2013, 64: 781-805.
doi: 10.1146/annurev-arplant-050312-120235
[62] RUBIO L M, LUDDEN P W. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual Review of Microbiology, 2008, 62: 93-111.
doi: 10.1146/annurev.micro.62.081307.162737
[63] HOFFMAN B M, LUKOYANOV D, YANG Z, DEAN D R, SEEFELDT L C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chemical Reviews, 2014, 114: 4041-4062.
doi: 10.1021/cr400641x
[64] POOLE P, ALLAWAY D. Carbon and nitrogen metabolism in Rhizobium. Advances in Microbial Physiology, 2000, 43: 117-163.
[65] MAUNOURY N, REDONDO-NIETO M, BOURCY M, DE VELDE W V, ALUNNI B, LAPORTE P, DURAND P, AGIER N, MARISA M, VAUBERT D, DELACROIX H, DUC G, RATET P, AGGERBECK L, KONDOROSI E, MERGAERT P. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE, 2010, 5(3): e9519.
doi: 10.1371/journal.pone.0009519
[66] LI Y, TIAN C F, CHEN W F, WANG L, SUI X H, CHEN W X. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS ONE, 2013, 8(8): e70531.
[67] JIAO J, WU L J, ZHANG B, HU Y, LI Y, ZHANG X X, GUO H J, LIU L X, CHEN W X, ZHANG Z, TIAN C F. MucR is required for transcriptional activation of conserved ion transporters to support nitrogen fixation of Sinorhizobium fredii in soybean nodules. Molecular Plant-Microbe Interactions, 2016, 29(5): 352-361.
doi: 10.1094/MPMI-01-16-0019-R
[68] HOOD G, RAMACHANDRAN V, EAST A K, DOWNIE J A, POOLE P S. Manganese transport is essential for N2‐fixation by Rhizobium leguminosarumin bacteroids from galegoid but not phaseoloid nodules. Environmental Microbiology, 2017, 19: 2715-2726.
doi: 10.1111/1462-2920.13773
[69] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30(3): 961-968.
ZHENG Y M, DU L T, WANG C X, WU Z F, SUN X W, YU T Y, SHEN P, WAGN C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chinese Journal of Applied Ecology, 2019, 30(3): 961-968. (in Chinese)
[70] KOSSLAK R M, BOHLOOL B B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiology, 1984, 75: 125-130.
doi: 10.1104/pp.75.1.125
[71] REID D E, FERGUSON B J, GRESSHOFF P M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Molecular Plant-Microbe Interactions, 2011, 24(5): 606-618.
doi: 10.1094/MPMI-09-10-0207
[72] FERGUSON B J, MENS C, HASTWELL A H, ZHANG M B, SU H, JONES C H, CHU X T, GRESSHOFF P M. Legume nodulation: The host controls the party. Plant Cell and Environment, 2019, 42: 41-51.
doi: 10.1111/pce.13348
[73] LIU H, ZHANG C, YANG J, YU N, WANG E. Hormone modulation of legume-rhizobial symbiosis. Journal of Integrative Plant Biology, 2018, 60(8): 632-648.
doi: 10.1111/jipb.12653
[74] GUINEL F C. Ethylene, a hormone at the center-stage of nodulation. Frontiers in Plant Science, 2015, 6: 1121.
[75] 崔贤, 王洪丹, 邱洪湘, 张国英, 谢金玉, 魏梅花. 花生配方施肥技术肥料效应试验研究. 花生学报, 2008, 37(3): 33-36.
CUI X, WANG H D, QIU H X, ZHANG G Y, XIE J Y, WEI M H. Effects of compounding application of fertilizer on peanut. Journal of Peanut Science, 2008, 37(3): 33-36. (in Chinese)
[76] OHYAMA T, FUJIKAKE H, YASHIMA H, TANABATA S, ISHIKAWA S, SATO T, NISHIWAKI T, OHTAKE N, SUEYOSHI K, ISHII S. Effect of nitrate on nodulation and nitrogen fixation of soybean//EL-SHEMY H A. In Soybean Physiology and Biochemistry. Croatia, Rijeka: InTech, 2011: 333-364.
[77] NISHIDA H, SUZAKI T. Nitrate-mediated control of root nodule symbiosis. Current Opinion in Plant Biology, 2018, 44: 129-136.
doi: 10.1016/j.pbi.2018.04.006
[78] DU M, GAO Z, LI X, LIAO H. Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins. Annals of Botany, 2020, 126: 61-72.
doi: 10.1093/aob/mcaa002
[79] CARROLL B J, MCNEIL D L, GRESSHOFF P M. A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiology, 1985, 78: 34-40.
doi: 10.1104/pp.78.1.34
[80] NISHIMURA R, HAYASHI M, WU G, KOUCHI H, IMAIZUMI- ANRAKU H, MURAKAMI Y, KAWASAKI S, AKAO S, OHMORI M, NAGASAWA M, HARADA K, KAWAGUCHI M. HAR1 mediates systemic regulation of symbiotic organ development. Nature, 2002, 420: 426-429.
doi: 10.1038/nature01231
[81] SEARLE I R, MEN A E, LANIYA T S, BUZAS D M, ITURBE- ORMAETXE I, CARROLL, B J, GRESSHOFF P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299: 109-112.
doi: 10.1126/science.1077937
[82] JIN J, WATT M, MATHESIUS U. The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiology, 2012, 159: 489-500.
doi: 10.1104/pp.112.194993
[83] OKAMOTO S, KAWAGUCHI M. Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus. Plant Signaling and Behavior, 2015, 10: 5.
[84] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38(2): 207-213.
WU Z F, CHEN D X, ZHENG Y M, WANG C B, SUN X W, LI X D, WANG X X, SHI C R, FENG H, YU T Y. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chinese Journal of Oil Crop Sciences, 2016, 38(2): 207-213. (in Chinese)
[85] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31(12): 2418-2425.
ZHENG Y M, WANG C X, LIU Q M, WU Z F, WANG C B, SUN X S, ZHENG Y P. Regulatory effects of nitrogen fertilizer on peanut root growth and nodulation. Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2418-2425. (in Chinese)
[86] VARGAS A A T, GRAHAM P H. Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Research, 1988, 19(2): 91-101.
doi: 10.1016/0378-4290(88)90047-0
[87] GRAHAM P H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology, 1992, 38: 475-484.
doi: 10.1139/m92-079
[88] MACCIÓ D, FABRA A, CASTRO S. Acidity and calcium interaction affect the growth of Bradyrhizobium sp. and the attachment to peanut roots. Soil Biology and Biochemistry, 2002, 34: 201-208.
doi: 10.1016/S0038-0717(01)00174-2
[89] ANGELINI J, CASTRO S, FABRA A. Alterations in root colonization and nodC gene induction in the peanut-rhizobia interaction under acidic conditions. Plant Physiology and Biochemistry, 2003, 41: 289-294.
doi: 10.1016/S0981-9428(03)00021-4
[90] KRULWICH T A, AGUS R, SCHNEIR M, GUFFANTI A A. Buffering capacity of bacilli that grow at different pH ranges. Journal of Bacteriology, 1985, 162(2): 768-772.
doi: 10.1128/jb.162.2.768-772.1985
[91] BHAGWAT A A, APTE S K. Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen- fixing cyanobacterium Anabaena sp. Strain L-31. Journal of Bacteriology, 1989, 171(9): 5187-5189.
doi: 10.1128/jb.171.9.5187-5189.1989
[92] GRAHAM P H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology, 1992, 38: 475-484.
doi: 10.1139/m92-079
[93] HOWIESON J G, ROBSON A D, ABBOTT L K. Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Australian Journal of Agricultural Research, 1992, 43(3): 765-772.
doi: 10.1071/AR9920765
[94] CHEN H, RICHARDSON A E, ROLFE B G. Studies of the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Applied and Environmental Microbiology, 1993, 59: 1798-1804.
doi: 10.1128/aem.59.6.1798-1804.1993
[95] ANGELINI J, TAURIAN T, MORGANTE C, IBANEZ F, CASTRO S, FABRA A. Peanut nodulation kinetics in response to low pH. Plant Physiology and Biochemistry, 2005, 43: 754-759.
doi: 10.1016/j.plaphy.2005.05.012
[96] NATERA V, SOBREVALS L, FABRA A, CASTRO S. Glutamate is involved in acid stress response in Bradyrhizobium sp. SEMIA 6144 (Arachis hypogaea L.) microsymbiont. Current Microbiology, 2006, 53: 479-482.
doi: 10.1007/s00284-006-0146-y
[97] ROUGHLEY R J. The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Annals of Botany, 1970, 34: 631-646.
doi: 10.1093/oxfordjournals.aob.a084397
[98] ROUGHLEY R J, DART P J. Root temperature and root-hair infection of Trifolium subterraneum L. cv. Cranmore. Plant Soil, 1970, 32: 518-520.
doi: 10.1007/BF01372887
[99] DARDANELLI M S, WOELKE M R, GONZÁLEZ P S, BUENO M A, GHITTONI N E. The effects of nonionic hyperosmolarity and of high temperature on cell-associated low molecular weight saccharides from two rhizobia strains. Symbiosis, 1997, 23(1): 73-84.
[100] MICHIELS J, VERRETH C, VANDERLEYDEN J. Effects of temperature stress on bean-nodulating Rhizobium strains. Applied and Environmental Microbiology, 1994, 60(4): 1206-1212.
doi: 10.1128/aem.60.4.1206-1212.1994
[101] PIMRATCH S, JOGLOY S, VORASOOT N, TOOMSAN B, PATANOTHAI A, HOLBROOK C C. Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. Journal of Agronomy and Crop Science, 2008, 194: 15-25.
doi: 10.1111/j.1439-037X.2007.00286.x
[102] SERRAJ R, SINCLAIR T R, PURCELL L C. Symbiotic N-2 fixation response to drought. Journal of Experimental Botany, 1999, 50(331): 143-155.
[103] FURLAN A, LLANES A, LUNA V, CASTRO S. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp.. International Scholarly Research Network ISRN Agronomy, 2012, 2012: 1-8.
[1] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[2] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[3] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[4] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[5] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[6] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[7] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[8] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[9] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[10] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[11] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[12] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[13] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[14] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[15] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
Full text



No Suggested Reading articles found!