Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1811-1821.doi: 10.3864/j.issn.0578-1752.2022.09.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands

HOU JiangJiang1(),WANG JinZhou2,*(),SUN Ping1,ZHU WenYan3,XU Jing2,LU ChangAi4   

  1. 1College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan
    2Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012
    3College of Horticultuer and Plant Protection, Henan University of Science and Technology, Luoyang 471000, Henan
    4Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2021-03-16 Revised:2021-06-07 Online:2022-05-01 Published:2022-05-19
  • Contact: JinZhou WANG E-mail:a44302620@qq.com;jwang963@163.com

Abstract:

【Objective】This study was to investigate the temporal and spatial patterns of nitrogen (N) limitation (indicated by N response efficiency) on aboveground productivity of China’s grasslands, which was important for the adoptive management and accurately simulating of ecosystem N cycling under global environmental change. 【Method】A meta-analysis was performed to investigate N response ratio (lnRR) and N response efficiency (lnRR/N, the ratio of lnRR to N addition rate) of aboveground productivity across China’s grasslands. All data (423 groups) were collected from in-situ N addition experiments published over 1980-2020. Linear, double-linear and multi-step regressions were explored to estimate the spatial and temporal dynamics of lnRR/N and its driving factors. 【Result】In general, lnRR increased with N addition rates and saturated at (21.1±5.5) g N·m-2·a-1 (mean±95%CI) with the maximum of 0.60±0.08. lnRR/N was, on average, 0.043±0.004, i.e., aboveground productivity could increase by (4.36±0.38) % per unit N addition (1 g N·m-2·a-1). lnRR/N also differed significantly among grassland types, N addition rates, experimental durations, and years. Over the past four decades, lnRR/N significantly decreased, with a much (1.5-1.7 times) faster rate in the warmer (MAT>4.5℃) and wetter (MAP>450 mm) climatic regions than that in the cooler (MAT≤4.5℃) and drier (MAP≤450 mm) climatic regions. Regression analyses revealed that the spatial variation of lnRR/N was mainly driving by annual precipitation and soil fertility (i.e., soil N content). In general, lnRR/N increased along with MAP and decreased with soil N content. However, the driving factors varied by climatic regions, with both MAP and soil N content in the wetter regions, MAP in the drier regions and MAT in the warmer regions. 【Conclusion】 The aboveground productivity in China’s grasslands was still limited by N, but the extent of N limitation or N response efficiency decreased over time, especially in those wetter and warmer climatic regions. To accurately predict the response of grassland ecosystem to the ongoing global environmental change, the studies should pay more attention to the spatial and temporal shifting in driving factors for plant productivity.

Key words: grassland, aboveground productivity, nitrogen addition, nitrogen response efficiency, global environmental change

Fig. 1

The number of cases of N addition experiments across China’s grasslands The cases were grouped by grassland types, N addition rates, N types, experimental duration and years. AM: Alpine meadow; AS: Alpine steppe; MS: Meadow steppe; TS: Typical steppe; DS: Desert steppe. The same as below"

Fig. 2

Relationships between lnRR (N response ratio of aboveground productivity) and N addition rate across China’ grasslands (a) Overall, all the grassland types. The open circles indicate observed values, and solid lines represent the best-fit models"

Fig. 3

The weighted N response efficiency (lnRR/N) of aboveground productivity across China’s grasslands and its variations among grassland types, N addition rates, N types, experimental durations and years The grassland types include alpine meadow (AM), alpine steppe (AS), meadow steppe (MS), typical steppe (TS), and desert steppe (DS). N addition rates are grouped by every 5 g N·m-2·a-1 intervals. N types include ammonium nitrate, urea and others. The error bar represents 95%CI. If the 95% CI does not overlap to zero, the lnRR/N is statistically significant. QB statistical test is used to compare the difference in weighted lnRR/N among groups by a significant indicator of P<0.05. Numbers in parentheses indicate the sample size"

Fig. 4

Relationship between N response efficiency (lnRR/N) of aboveground productivity and mean annual temperature (MAT) and annual precipitation (MAP) across China’s grasslands"

Fig. 5

Temporal dynamics of N response efficiency (lnRR/N) of aboveground productivity across China’s grasslands (a) Overall; (b) In a drier climatic region with MAP≤450 mm; (c) In a wetter climatic region with MAP>450 mm; (d) In a cooler climatic region with MAT≤4.5℃; (e) In a warmer climatic region with MAT>4.5℃"

Table 1

Step-wise regressions between lnRR/N and its explanatory factors: time, climate, and soil nutrients"

气候区 Climatic regions 逐步回归方程Step-wise regressions df R2
总体Overall lnRR/N = -0.0011Year -0.0070 STN +0.81×10-4 MAP 315 0.09***
MAP≤450 mm lnRR/N = -0.0008Year +2.35×10-4 MAP +0.0039 Duration +0.013 267 0.18***
MAP>450 mm lnRR/N = -0.0025Year -0.014 STN +1.98×10-4 MAP -0.016 77 0.27***
MAT≤4.5℃ NA NA NA
MAT>4.5℃ lnRR/N = -0.0019Year -0.0098 MAT -0.011 Duration +0.055 93 0.25***
[1] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89(2): 371-379.
doi: 10.1890/06-2057.1
[2] XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 2008, 179(2): 428-439.
doi: 10.1111/j.1469-8137.2008.02488.x
[3] PIAO S L, WANG X H, PARK T, CHEN C, LIAN X, HE Y E, BJERKE J W, CHEN A P, CIAIS P, TØMMERVIK H, NEMANI R R, MYNENI R B. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1(1): 14-27.
[4] LUO Y Q, SU B, CURRIE W S, DUKES J S, FINZI A, HARTWIG U, HUNGATE B, MCMURTRIE R E, OREN R, PARTON W J, PATAKI D E, SHAW R M, ZAK D R, FIELD C B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 2004, 54(8): 731-739.
doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
[5] NORBY R J, WARREN J M, IVERSEN C M, MEDLYN B E, MCMURTRIE R E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19368-19373.
[6] BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451.
doi: 10.1111/nph.12252
[7] ZHANG X Z, SHEN Z X, FU G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 2015, 87: 32-38.
doi: 10.1016/j.apsoil.2014.11.012
[8] CROWTHER T W, TODD-BROWN K E O, ROWE C W, WIEDER W R, CAREY J C, MACHMULLER M B, SNOEK B L, FANG S, ZHOU G, ALLISON S D, BLAIR J M, BRIDGHAM S D, BURTON A J, CARRILLO Y, REICH P B, CLARK J S, CLASSEN A T, DIJKSTRA F A, ELBERLING B, EMMETT B A, ESTIARTE M, FREY S D, GUO J, HARTE J, JIANG L, JOHNSON B R, KRÖEL-DULAY G, LARSEN K S, LAUDON H, LAVALLEE J M, LUO Y, LUPASCU M, MA L N, MARHAN S, MICHELSEN A, MOHAN J, NIU S, PENDALL E, PEÑUELAS J, PFEIFER- MEISTER L, POLL C, REINSCH S, REYNOLDS L L, SCHMIDT I K, SISTLA S, SOKOL N W, TEMPLER P H, TRESEDER K K, WELKER J M, BRADFORD M A. Quantifying global soil carbon losses in response to warming. Nature, 2016, 540(7631): 104-108.
doi: 10.1038/nature20150
[9] VAN GESTEL N, SHI Z, VAN GROENIGEN K J, OSENBERG C W, ANDRESEN L C, DUKES J S, HOVENDEN M J, LUO Y Q, MICHELSEN A, PENDALL E, REICH P B, SCHUUR E A G, HUNGATE B A. Predicting soil carbon loss with warming. Nature, 2018, 554(7693): E4-E5.
[10] GREAVER T L, CLARK C M, COMPTON J E, VALLANO D, TALHELM A F, WEAVER C P, BAND L E, BARON J S, DAVIDSON E A, TAGUE C L, FELKER-QUINN E, LYNCH J A, HERRICK J D, LIU L, GOODALE C L, NOVAK K J, HAEUBER R A. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6(9): 836-843.
doi: 10.1038/nclimate3088
[11] LU M, YANG Y H, LUO Y Q, FANG C M, ZHOU X H, CHEN J K, YANG X, LI B. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189(4): 1040-1050.
doi: 10.1111/j.1469-8137.2010.03563.x
[12] TIAN D S, WANG H, SUN J A, NIU S L. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 2016, 11(2): 024012.
doi: 10.1088/1748-9326/11/2/024012
[13] BAI Y F, WU J G, XING Q, PAN Q M, HUANG J H, YANG D L, HAN X G. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89(8): 2140-2153.
doi: 10.1890/07-0992.1
[14] WILCOX K R, SHI Z, GHERARDI L A, LEMOINE N P, KOERNER S E, HOOVER D L, BORK E, BYRNE K M, CAHILL J Jr, COLLINS S L, EVANS S, GILGEN A K, HOLUB P, JIANG L F, KNAPP A K, LECAIN D, LIANG J Y, GARCIA-PALACIOS P, PEÑUELAS J, POCKMAN W T, SMITH M D, SUN S H, WHITE S R, YAHDJIAN L, ZHU K, LUO Y Q. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 2017, 23(10): 4376-4385.
doi: 10.1111/gcb.13706
[15] 魏志标, 柏兆海, 马林, 张福锁. 中国天然草地氮磷流动空间特征. 中国农业科学, 2018, 51(3): 523-534.
WEI Z B, BAI Z H, MA L, ZHANG F S. Spatial characteristics of nitrogen and phosphorus flow in natural grassland of China. Scientia Agricultura Sinica, 2018, 51(3): 523-534. (in Chinese)
[16] 陈德亮, 徐柏青, 姚檀栋, 郭正堂, 崔鹏, 陈发虎, 张人禾, 张宪洲, 张镱锂, 樊杰, 侯增谦, 张天华. 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 2015, 60(32): 3025-3035.
CHEN D L, XU B Q, YAO T D, GUO Z T, CUI P, CHEN F H, ZHANG R H, ZHANG X Z, ZHANG Y L, FAN J E, HOU Z Q, ZHANG T H. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3025-3035. (in Chinese)
[17] 张煦庭, 潘学标, 徐琳, 魏培, 尹紫薇, 邵长秀. 基于降水蒸发指数的1960-2015年内蒙古干旱时空特征. 农业工程学报, 2017, 33(15): 190-199.
ZHANG X T, PAN X B, XU L, WEI P, YIN Z W, SHAO C X. Analysis of spatio-temporal distribution of drought characteristics based on SPEI in Inner Mongolia during 1960-2015. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 190-199. (in Chinese)
[18] ZHU J X, WANG Q F, HE N P, SMITH M D, ELSER J J, DU J Q, YUAN G F, YU G R, YU Q A. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1605-1616.
doi: 10.1002/2016JG003393
[19] LIU X J, ZHANG Y, HAN W X, TANG A H, SHEN J L, CUI Z L, VITOUSEK P, ERISMAN J W, GOULDING K, CHRISTIE P, FANGMEIER A, ZHANG F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462.
doi: 10.1038/nature11917
[20] LÜ C, TIAN H Q. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres, 2007, 112(D22): D22S05.
[21] YU G R, JIA Y L, HE N P, ZHU J X, CHEN Z, WANG Q F, PIAO S L, LIU X J, HE H L, GUO X B, WEN Z, LI P, DING G A, GOULDING K. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12(6): 424-429.
doi: 10.1038/s41561-019-0352-4
[22] BAI Y F, HAN X G, WU J G, CHEN Z Z, LI L H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181-184.
doi: 10.1038/nature02850
[23] LIU H Y, MI Z R, LIN L, WANG Y H, ZHANG Z H, ZHANG F W, WANG H, LIU L L, ZHU B A, CAO G M, ZHAO X Q, SANDERS N J, CLASSEN A T, REICH P B, HE J S. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4051-4056.
[24] PIAO S L, TAN K, NAN H J, CIAIS P, FANG J Y, WANG T, VUICHARD N, ZHU B A. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Global and Planetary Change, 2012, 98/99: 73-80.
doi: 10.1016/j.gloplacha.2012.08.009
[25] 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154.
SHEN H H, ZHU Y K, ZHAO X, GENG X Q, GAO S Q, FANG J Y. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. (in Chinese)
[26] FORNARA D A, TILMAN D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology, 2012, 93(9): 2030-2036.
doi: 10.1890/12-0292.1
[27] FORNARA D A, BANIN L, CRAWLEY M J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology, 2013, 19(12): 3848-3857.
doi: 10.1111/gcb.12323
[28] DEMALACH N, ZAADY E, KADMON R. Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis. Global Ecology and Biogeography, 2017, 26(8): 983-992.
doi: 10.1111/geb.12603
[29] MIDOLO G, ALKEMADE R, SCHIPPER A M, BENÍTEZ-LÓPEZ A, PERRING M P, DE VRIES W. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 2019, 28(3): 398-413.
doi: 10.1111/geb.12856
[30] YOU C M, WU F Z, GAN Y M, YANG W Q, HU Z M, XU Z F, TAN B, LIU L, NI X Y. Grass and forbs respond differently to nitrogen addition: A meta-analysis of global grassland ecosystems. Scientific Reports, 2017, 7: 1563.
doi: 10.1038/s41598-017-01728-x
[31] TIAN D S, NIU S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10(2): 024019.
doi: 10.1088/1748-9326/10/2/024019
[32] WANG N, QUESADA B, XIA L L, BUTTERBACH-BAHL K, GOODALE C L, KIESE R. Effects of climate warming on carbon fluxes in grasslands-A global meta-analysis. Global Change Biology, 2019, 25(5): 1839-1851.
doi: 10.1111/gcb.14603
[33] PENG Y F, CHEN H Y H, YANG Y H. Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 2020, 34(9): 1979-1990.
doi: 10.1111/1365-2435.13622
[34] BAI Y F, WU J G, CLARK C M, NAEEM S, PAN Q M, HUANG J H, ZHANG L X, HAN X G. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 2010, 16(1): 358-372.
doi: 10.1111/j.1365-2486.2009.01950.x
[35] TIAN D S, NIU S L, PAN Q M, REN T T, CHEN S P, BAI Y F, HAN X G. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 2016, 30(3): 490-499.
doi: 10.1111/1365-2435.12513
[36] CHEN W Q, ZHANG Y J, MAI X H, SHEN Y E. Multiple mechanisms contributed to the reduced stability of Inner Mongolia grassland ecosystem following nitrogen enrichment. Plant and Soil, 2016, 409(1): 283-296.
doi: 10.1007/s11104-016-2967-1
[37] ZONG N, SHI P L, SONG M H, ZHANG X Z, JIANG J, CHAI X. Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environmental Management, 2016, 57(3): 531-542.
doi: 10.1007/s00267-015-0626-6
[38] 辛晓平, 丁蕾, 程伟, 朱晓昱, 陈宝瑞, 刘钟龄, 何广礼, 青格勒, 杨桂霞, 唐华俊. 北方草地及农牧交错区草地植被碳储量及其影响因素. 中国农业科学, 2020, 53(13): 2757-2768.
XIN X P, DING L, CHENG W, ZHU X Y, CHEN B R, LIU Z L, HE G L, QING G L, YANG G X, TANG H J. Biomass carbon storage and its effect factors in steppe and agro-pastoral ecotones in Northern China. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768. (in Chinese)
[39] QUAN Q A, TIAN D S, LUO Y Q, ZHANG F Y, CROWTHER T W, ZHU K, CHEN H Y H, ZHOU Q P, NIU S L. Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 2019, 5(8): eaav1131.
doi: 10.1126/sciadv.aav1131
[40] LI J Z, LIN S, TAUBE F, PAN Q M, DITTERT K. Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 2011, 340(1/2): 253-264.
doi: 10.1007/s11104-010-0612-y
[41] CRAINE J M, ELMORE A J, WANG L X, ARANIBAR J, BAUTERS M, BOECKX P, CROWLEY B E, DAWES M A, DELZON S, FAJARDO A, FANG Y T, FUJIYOSHI L, GRAY A, GUERRIERI R, GUNDALE M J, HAWKE D J, HIETZ P, JONARD M, KEARSLEY E, KENZO T, MAKAROV M, MARAÑÓN-JIMÉNEZ S, MCGLYNN T P, MCNEIL B E, MOSHER S G, NELSON D M, PERI P L, ROGGY J C, SANDERS-DEMOTT R, SONG M H, SZPAK P, TEMPLER P H, VAN DER COLFF D, WERNER C, XU X L, YANG Y, YU G R, ZMUDCZYŃSKA-SKARBEK K. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution, 2018, 2(11): 1735-1744.
[42] XU W, ZHU M Y, ZHANG Z H, MA Z Y, LIU H Y, CHEN L T, CAO G M, ZHAO X Q, SCHMID B, HE J S. Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 2018, 55(3): 1486-1497.
doi: 10.1111/1365-2664.13066
[43] WANG S P, DUAN J C, XU G P, WANG Y F, ZHANG Z H, RUI Y C, LUO C Y, XU B, ZHU X X, CHANG X F, CUI X Y, NIU H S, ZHAO X Q, WANG W Y. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365-2376.
doi: 10.1890/11-1408.1
[44] CHANG R Y, WANG G X, YANG Y H, CHEN X P. Experimental warming increased soil nitrogen sink in the Tibetan permafrost. Journal of Geophysical Research: Biogeosciences, 2017, 122(7): 1870-1879.
doi: 10.1002/2017JG003827
[45] SORENSEN P L, MICHELSEN A. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Global Change Biology, 2011, 17(1): 528-537.
doi: 10.1111/j.1365-2486.2010.02234.x
[46] HOULTON B Z, WANG Y P, VITOUSEK P M, FIELD C B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 2008, 454(7202): 327-330.
doi: 10.1038/nature07028
[1] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[2] WANG DeLi,WANG Ling,XIN XiaoPing,LI LingHao,TANG HuaJun. Systematic Restoration for Degraded Grasslands: Concept, Mechanisms and Approaches [J]. Scientia Agricultura Sinica, 2020, 53(13): 2532-2540.
[3] FAN KaiKai,TONG XuZe,YAN YuChun,XIN XiaoPing,WANG Xu. Effect of Fairy Rings on Soil Respiration in Hulunber Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2595-2603.
[4] WANG HongYi, CHANG JiFang, WANG ZhengWen. Responses of Community Species Diversity and Productivity to Nitrogen and Phosphorus Addition During Restoration of Degraded Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2604-2613.
[5] ZHU RuiFen,LIU JieLin,WANG JianLi,HAN WeiBo,SHEN ZhongBao,XIN XiaoPing. Molecular Ecological Network Analyses Revealing the Effects of Nitrogen Application on Soil Microbial Community in the Degraded Grasslands [J]. Scientia Agricultura Sinica, 2020, 53(13): 2637-2646.
[6] LI Qiang, HUANG YingXin, ZHONG RongZhen, SUN HaiXia, ZHOU DaoWei. Influence of Medicago sativa Proportion on Its Individual Nitrogen Fixation Efficiency and Underlying Physiological Mechanism in Legume-Grass Mixture Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2647-2656.
[7] XU Meng,XU LiJun,CHENG ShuLan,FANG HuaJun,LU MingZhu,YU GuangXia,YANG Yan,GENG Jing,CAO ZiCheng,LI YuNa. Responses of Soil Organic Carbon Fractionation and Microbial Community to Nitrogen and Water Addition in Artificial Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2678-2690.
[8] LI Da,FANG HuaJun,WANG Di,XU LiJun,TANG XueJuan,XIN XiaoPing,NIE YingYing,Wuren qiqige. Coupling Mechanism of Herbage-Water-Nitrogen Fertilizer in Abandoned Farmland in Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2691-2702.
[9] ZHU XiaoYu,XU DaWei,XIN XiaoPing,SHEN BeiBei,DING Lei,WANG Xu,CHEN BaoRui,YAN RuiRui. The Spatial-Temporal Distribution of Different Grassland Types in Hulunber Grassland Based on Remote Sensing from 1992 to 2015 [J]. Scientia Agricultura Sinica, 2020, 53(13): 2715-2727.
[10] CHENG Wei, XIN XiaoPing. Analysis of Spatial-Temporal Characteristics of Drought Variation in Grassland Area of Inner Mongolia Based on TVDI [J]. Scientia Agricultura Sinica, 2020, 53(13): 2728-2742.
[11] JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry [J]. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645.
[12] ZHANG XueMei,MA QianHu,ZHANG ZiLong,WANG ZiKui,YANG HuiMin,SHEN YuYing. Effects of Fertilization Rate on Forage Yield and Water Use Efficiency of Artificial Grassland in an Alpine Arid Area [J]. Scientia Agricultura Sinica, 2019, 52(8): 1368-1379.
[13] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Spatial Characteristics of Nitrogen and Phosphorus Flow in Natural Grassland of China [J]. Scientia Agricultura Sinica, 2018, 51(3): 523-534.
[14] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Spatial Characteristics of Nitrogen and Phosphorus Flow in Cultivated Grassland of China [J]. Scientia Agricultura Sinica, 2018, 51(3): 535-555.
[15] WU Qi, WU Peng-fei, WANG Qun, WEN Yong-li, GAO Yan-mei, ZHANG Rong-zhi, LONG Wei. Effects of Grazing Intensity on the Community Structure and Diversity of Different Soil Fauna in Alpine Meadow [J]. Scientia Agricultura Sinica, 2016, 49(9): 1826-1834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!