Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1399-1410.doi: 10.3864/j.issn.0578-1752.2022.07.011

• HORTICULTURE • Previous Articles     Next Articles

Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress

YU QiLong1(),HAN YingYan1,HAO JingHong1,QIN XiaoXiao1,LIU ChaoJie1(),FAN ShuangXi2()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206
    2Beijing Vocational College of Agriculture, Beijing 102442
  • Received:2021-07-02 Accepted:2021-09-09 Online:2022-04-01 Published:2022-04-18
  • Contact: ChaoJie LIU,ShuangXi FAN E-mail:18879853952@qq.com;cliu@bua.edu.cn;fsx20@163.com

Abstract:

【Objective】 The lettuce yield and nutritional quality planted in high-temperature seasons are not good. Nitrogen is the most closely related nutrient element to lettuce yield. In this study, the regulation mechanism of exogenous spermidine (Spd) on nitrogen metabolism of lettuce under high-temperature stress was studied, and the changes of amino acid nutritional quality were observed, so as to provide some protective measures to reduce the harm of high temperature on lettuce. 【Method】 The test material was leaf lettuce Beisansheng 3. The test treatments were set as normal temperature (day/night: 22℃/17℃) control (CK), high-temperature stress (day/night: 35℃/30℃) treatment (H), and high temperature spraying Spd treatment (HS). The changes of lettuce morphology were observed, and the changes of the lettuce root ion flow rate, nitrogen compounds contents (total nitrogen, ammonia nitrogen, and nitrate nitrogen), and the activities of key enzymes in nitrogen metabolism as well as their relative expression levels were analyzed. In addition, the effects of the CK, H, and HS treatments on the lettuce leaf free amino acids content were studied. 【Result】 Compared with the CK, the lettuce growth of the H treatment was inhibited. Compared with the H treatment, the HS treatment increased total fresh weight, total dry weight, leaf length, leaf width, root length, root volume, and root surface area of lettuce by 24.00%, 24.62%, 14.97%, 11.83%, 23.24%, 29.47%, and 36.98%, respectively. The changes in the total nitrogen content of lettuce treated by CK, H, and HS were consistent with the growing trend of lettuce. The net absorption amount of NO3- in lettuce roots treated with CK, H and HS were much smaller than that of NH4+, indicating that lettuce roots mainly absorbed NH4+. The H treatment resulted in the outflow of NO3- from roots, while the HS treatment promoted the influx of NO3- from roots. The accumulation of ammonia nitrogen content in leaves under the HS treatment was effectively inhibited. Meanwhile, the activities of nitrate reductase (NR), glutamine synthase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) under the HS treatment were increased and the relative gene expression levels of LsNR, LsGS, LsGOGAT1, and LsGDH in leaves and roots were up-regulated. Compared with the CK treatment, the H treatment reduced the total free amino acid (TAA) content (P<0.05); the HS treatment alleviated the reduction in TAA content caused by high temperature. The changes of umami amino acids (UAA), sweet amino acids (SAA), and bitter amino acids (BAA) among the CK, H, and HS treatment were consistent with those of TAA, while aromatic amino acids (AAA) were the opposite. The changes of aspartic acid (Asp), threonine (Thr), glutamic acid (Glu), glycine (Gly), valine (Val), lysine (Lys), histidine (His), arginine (Arg), and proline (Pro) among the CK, H, and HS treatment were consistent with those of TAA. Among the free amino acids tested, Arg had the largest coefficient of variation. 【Conclusion】Spraying Spd treatment inhibited the decrease of lettuce biomass accumulation under high temperature. For spraying Spd treatment, the nitrogen metabolism disorders under high-temperature stress was alleviated, and the leaf total free amino acid content, flavor amino acids of umami amino acids, sweet amino acids, and bitter amino acids were increased, while the high-temperature resistant capacity of lettuce was effectively enhanced and the nutritional quality of lettuce was improved.

Key words: high temperature, Lactuca sativa L., nitrogen metabolism, spermidine, ion flow rate, amino acid

Table 1

Primer sequence information of genes of interest used in qPCR assay"

基因名称Gene name 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′)
LsNR CTCCGAGCCACCTTTGACTAAGC CGCATATCTCCACCGTCCAATCC
LsGS CTTCGCCACGCAGACCACATC ATGGAGCAACCACGGTTAGCAAC
LsGOGAT GCAGTTCGTGAGAAGCGTGAGAG TGAAGCAGCGGATTCCACCTTTC
LsGOGAT1 CGTGAGGAAGATGTGCTGAAGGAG GATGGTCGGGTTGCCTGTTCG
LsGDH CCGTATGGTGGTGCGAAAGGTG GAGCAGGAACATCGGTGTGGATTC
18S GTGAGTGAAGAAGGGCAATG CACTTTCAACCCGATTCACC

Table 2

Effects of exogenous Spd on the morphological indexes of lettuce under high-temperature stress"

处理Treatment 总鲜重
Total fresh weight (g/plant)
总干重
Total dry weight (g/plant)
叶长
Leaf length
(cm)
叶宽
Leaf width
(cm)
根长
Root length
(cm)
根系体积
Root volume
(cm3)
根系表面积
Root surface area
(cm2)
CK 15.60±0.49a 0.65±0.04b 13.78±0.25c 11.08±0.46a 24.30±0.98a 5.75±0.16a 281.96±10.49a
H 10.96±0.38c 0.65±0.73b 14.90±0.31b 7.86±0.24c 18.50±0.05c 3.19±0.35c 169.06±15.86c
HS 13.59±0.38b 0.81±0.11a 17.13±0.40a 8.79±0.28b 22.80±2.25b 4.13±0.40b 231.57±13.52b

Fig. 1

The effect of exogenous Spd on the flow rate of NH4+ and NO3- ions in the roots of lettuce under high temperature stress The ion velocity value is 2.5 mm from the apex of the root tip. A positive value represents external discharge, and a negative value represents internal flow. Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Effects of exogenous Spd on total nitrogen, nitrate nitrogen and ammonia nitrogen of lettuce under high-temperature stress"

Fig. 3

Effects of exogenous Spd on activities of key enzymes of nitrogen metabolism in lettuce under high-temperature stress"

Fig. 4

Effects of exogenous spermidine on gene expression of key enzymes in nitrogen metabolism of lettuce under high-temperature stress"

Table 3

Effects of exogenous Spd on the content of free amino acids in lettuce leaves under high temperature stress"

游离氨基酸组成
Free amino acid composition (μg·g-1)
处理 Treatment 含量均值
Average content (μg·g-1)
变异系数
CV (%)
CK H HS
天冬氨酸Asp 177.80±15.18a 100.46±10.14b 187.29±6.02a 155.18 30.69
苏氨酸Thr 528.62±6.69a 221.80±51.22c 332.73±24.36b 361.05 43.03
丝氨酸Ser 263.18±2.87a 195.94±5.54b 159.78±0.89c 206.30 25.44
谷氨酸Glu 949.11±46.19a 739.63±14.82c 839.33±32.91b 842.69 12.43
甘氨酸Gly 6.53±0.03a 4.81±0.47b 6.31±0.51a 5.88 15.91
丙氨酸Ala 128.55±1.59a 104.18±7.89b 85.38±0.93c 106.04 20.41
胱氨酸Cys 6.25±0.20a 6.39±0.16a 6.33±0.06a 6.32 1.11
缬氨酸Val 88.98±0.62b 68.14±3.20c 96.66±2.10a 84.59 17.45
蛋氨酸Met 2.90±0.04a 2.69±0.13a 2.88±0.13a 2.82 4.11
异亮氨酸Ile 17.32±0.05a 15.89±0.35b 15.41±0.6b 16.21 6.13
亮氨酸Leu 10.79±0.47a 6.77±0.22b 6.64±0.12b 8.07 29.25
酪氨酸Tyr 14.13±0.12b 16.28±0.52a 13.30±0.33c 14.57 10.56
苯丙氨酸Phe 23.63±0.08b 24.52±1.10ab 25.02±0.11a 24.39 2.89
赖氨酸Lys 14.10±0.24a 12.33±0.03b 11.55±0.36c 12.66 10.32
组氨酸His 9.50±0.21b 6.81±0.59c 12.60±1.76a 9.64 30.07
精氨酸Arg 60.55±0.71b 42.28±7.97c 101.88±7.04a 68.24 44.75
脯氨酸Pro 1085.58±30.69a 899.09±8.30c 943.91±4.74b 976.19 9.97
总氨基酸TAA 3387.54±44.14a 2468.01±63.91c 2847.01±37.26b 2900.85 15.93

Table 4

Effects of exogenous Spd on the content of flavor amino acids in lettuce leaves under high temperature stress"

呈味氨基酸组成
Flavor amino acid composition (μg·g-1)
处理 Treatment 含量均值
Average content (μg·g-1)
变异系数
CV (%)
CK H HS
鲜味氨基酸UAA 1276.09±34.67a 961.42±9.65c 1129.86±35.01b 1122.46 14.03
甜味氨基酸SAA 1886.89±31.66a 1323.64±55.74c 1449.03±28.59b 1553.19 19.04
芳香族氨基酸AAA 44.01±0.18b 47.19±1.56a 44.66±0.49b 45.29 3.71
苦味氨基酸BAA 180.54±1.36b 135.76±10.90c 223.47±9.43a 179.92 24.38
[1] CHON S U, JANG H G, KIM D K, KIM Y M, BOO H O, KIM Y J. Allelopathic potential in lettuce (Lactuca sativa L.) plants. Scientia Horticulturae, 2005, 106(3):309-317.
doi: 10.1016/j.scienta.2005.04.005
[2] 许世霖, 耿伟. 夏季生菜优质高效栽培技术. 吉林蔬菜, 2016(S1):17. doi: 10.16627/j.cnki.cn22-1215/s.2016.01.010.
doi: 10.16627/j.cnki.cn22-1215/s.2016.01.010
XU S L, GENG W. High-quality and efficient cultivation techniques for summer head lettuce. Jilin Vegetables, 2016(S1):17. doi: 10.16627/j.cnki.cn22-1215/s.2016.01.010. (in Chinese)
doi: 10.16627/j.cnki.cn22-1215/s.2016.01.010
[3] 刘慧, 郝敬虹, 韩莹琰, 刘超杰, 苏贺楠, 范双喜. 高温诱导叶用莴苣抽薹过程中内源激素含量变化分析. 中国农学通报, 2014, 30(25):97-103.
LIU H, HAO J H, HAN Y Y, LIU C J, SU H N, FAN S X. Analysis of endogenous hormone content during bolting caused by high temperature in lettuce. Chinese Agricultural Science Bulletin, 2014, 30(25):97-103. (in Chinese)
[4] COLLA G, KIM H J, KYRIACOU M C, ROUPHAEL Y. Nitrate in fruits and vegetables. Scientia Horticulturae, 2018, 237:221-238.
doi: 10.1016/j.scienta.2018.04.016
[5] TSIAKARAS G, PETROPOULOS S A, KHAH E M. Effect of GA3 and nitrogen on yield and marketability of lettuce (Lactuca sativa L.). Australian Journal of Crop Science, 2015, 8(1):127-132.
[6] WAHID A, GELANI S, ASHRAF M, FOOLAD M R. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 2007, 61(3):199-223.
doi: 10.1016/j.envexpbot.2007.05.011
[7] KUSANO T, YAMAGUCHI K, BERBERICH T, TAKAHASHI Y. Advances in polyamine research in 2007. Journal of Plant Research, 2007, 120(3):345-350. doi: 10.1007/s10265-007-0074-3.
doi: 10.1007/s10265-007-0074-3
[8] BOUCHEREAU A, AZIZ A, LARHER F, MARTIN-TANGUY J. Polyamines and environmental challenges: Recent development. Plant Science, 1999, 140(2):103-125. doi: 10.1016/S0168-9452(98)00218-0.
doi: 10.1016/S0168-9452(98)00218-0
[9] SHAN X, ZHOU H, SANG T, SHU S, SUN J, GUO S R. Effects of exogenous spermidine on carbon and nitrogen metabolism in tomato seedlings under high temperature. Journal of the American Society for Horticultural Science, 2016, 141(4):381-388.
doi: 10.21273/JASHS.141.4.381
[10] ERDAL S, TURK H. Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress. Environmental and Experimental Botany, 2016, 132:92-99. doi: 10.1016/j.envexpbot.2016.08.014.
doi: 10.1016/j.envexpbot.2016.08.014
[11] TEIXEIRA W F, FAGAN E B, SOARES L H, SOARES J N, REICHARDT K, NETO D D. Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Frontiers in Plant Science, 2018, 9:396. doi: 10.3389/fpls.2018.00396.
doi: 10.3389/fpls.2018.00396
[12] HUANG L L, LI M J, SHAO Y, SUN T T, LI C Y, MA F W. Ammonium uptake increases in response to PEG-induced drought stress in Malus hupehensis Rehd. Environmental and Experimental Botany, 2018, 151:32-42. doi: 10.1016/j.envexpbot.2018.04.007.
doi: 10.1016/j.envexpbot.2018.04.007
[13] YANG Y Y, LI X H, RATCLIFFE R G, RUAN J Y. Characterization of ammonium and nitrate uptake and assimilation in roots of tea plants. Russian Journal of Plant Physiology, 2013, 60(1):91-99. doi: 10.1134/S1021443712060180.
doi: 10.1134/S1021443712060180
[14] LUO J, QIN J J, HE F F, LI H, LIU T X, POLLE A, PENG C H, LUO Z B. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta, 2013, 237(4):919-931. doi: 10.1007/s00425-012-1807-7.
doi: 10.1007/s00425-012-1807-7
[15] KRAPP A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology, 2015, 25:115-122. doi: 10.1016/j.pbi.2015.05.010.
doi: 10.1016/j.pbi.2015.05.010
[16] O'BRIEN J A, VEGA A, BOUGUYON E, KROUK G, GOJON A, CORUZZI G, GUTIÉRREZ R A. Nitrate transport, sensing, and responses in plants. Molecular Plant, 2016, 9(6):837-856. doi: 10.1016/j.molp.2016.05.004.
doi: 10.1016/j.molp.2016.05.004
[17] 田婧, 郭世荣, 孙锦, 王丽萍, 阳燕娟, 李斌. 外源亚精胺对高温胁迫下黄瓜幼苗氮素代谢的影响. 生态学杂志, 2011, 30(10):2197-2202. doi: 10.13292/j.1000-4890.2011.0291.
doi: 10.13292/j.1000-4890.2011.0291
TIAN J, GUO S R, SUN J, WANG L P, YANG Y J, LI B. Effects of exogenous spermidine on nitrogen metabolism of cucumber seedlings under high temperature stress. Chinese Journal of Ecology, 2011, 30(10):2197-2202. doi: 10.13292/j.1000-4890.2011.0291. (in Chinese)
doi: 10.13292/j.1000-4890.2011.0291
[18] ASHRAF M, HARRIS P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 2003, 166(1):3-16. doi: 10.1016/j.plantsci.2003.10.024.
doi: 10.1016/j.plantsci.2003.10.024
[19] 王琦, 温婧玉, 赵玉杰, 杨烨, 朱家超, 穆莉, 刘潇威, 康为露. 腐植酸调节砷酸盐生菜毒性作用研究. 农业环境科学学报, 2020, 39(6):1196-1206.
WANG Q, WEN J Y, ZHAO Y J, YANG Y, ZHU J C, MU L, LIU X W, KANG W L. The effect of humic acid on arsenate toxicity of lettuce. Journal of Agro-Environment Science, 2020, 39(6):1196-1206. (in Chinese)
[20] DU J, SHU S, SHAO Q S, AN Y H, ZHOU H, GUO S R, SUN J. Mitigative effects of spermidine on photosynthesis and carbon- nitrogen balance of cucumber seedlings under Ca(NO3)2 stress. Journal of Plant Research, 2016, 129(1):79-91. doi: 10.1007/s10265-015-0762-3.
doi: 10.1007/s10265-015-0762-3
[21] HUANG H T, LIU R, HAN Y Y, HAO J H, LIU C J, FAN S X. Effects of exogenous spermidine on polyamine metabolism in lettuce (Lactuca sativa L.) under high-temperature stress. Pakistan Journal of Botany, 2021, 53(5):1571-1582.
[22] LI C J, HAN Y Y, HAO J H, QIN X X, LIU C J, FAN S X. Effects of exogenous spermidine on antioxidants and glyoxalase system of lettuce seedlings under high temperature. Plant Signaling & Behavior, 2020, 15(12):1824697. doi: 10.1080/15592324.2020.1824697.
doi: 10.1080/15592324.2020.1824697
[23] HOAGLAND D R, ARNON D I. The water-culture method for growing plants without soil. The College of Agriculture, University of California, Berkeley, CA. 1950.
[24] 李承洁, 刘蕊, 韩莹琰, 郝敬虹, 刘超杰, 范双喜. 外源亚精胺对高温胁迫下生菜幼苗生长及抗氧化酶活性的影响. 北京农学院学报, 2019, 34(2):56-61. doi: 10.13473/j.cnki.issn.1002-3186.2019.0214.
doi: 10.13473/j.cnki.issn.1002-3186.2019.0214
LI C J, LIU R, HAN Y Y, HAO J H, LIU C J, FAN S X. Effects of exogenousspermidineat on growth and antioxidant activityof lettuce under high temperature stress. Journal of Beijing University of Agriculture, 2019, 34(2):56-61. doi: 10.13473/j.cnki.issn.1002-3186.2019.0214. (in Chinese)
doi: 10.13473/j.cnki.issn.1002-3186.2019.0214
[25] 吕伟仙, 葛滢, 吴建之, 常杰. 植物中硝态氮、氨态氮、总氮测定方法的比较研究. 光谱学与光谱分析, 2004, 24(2):204-206.
LÜ W X, GE Y, WU J Z, CHANG J. Study on the method for the determination of nitric nitrogen, ammoniacal nitrogen and total nitrogen in plant. Spectroscopy and Spectral Analysis, 2004, 24(2):204-206. (in Chinese)
[26] ZHANG C X, MENG S, LI Y M, ZHAO Z. Net NH4+ and NO3- fluxes, and expression of NH4+ and NO3- transporter genes in roots of Populus simonii after acclimation to moderate salinity. Trees, 2014, 28(6):1813-1821. doi: 10.1007/s00468-014-1088-9.
doi: 10.1007/s00468-014-1088-9
[27] AURISANO N, BERTANI A, REGGIANI R. Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Giornale Botanico Italiano, 1995, 129(4):1087-1088. doi: 10.1080/11263509509440949.
doi: 10.1080/11263509509440949
[28] HÖGBERG P, GRANSTRÖM A, JOHANSSON T, LUNDMARK- THELIN A, NÄSHOLM T. Plant nitrate reductase activity as an indicator of availability of nitrate in forest soils. Canadian Journal of Forest Research, 1986, 16(6):1165-1169. doi: 10.1139/x86-207.
doi: 10.1139/x86-207
[29] WANG L, ZHOU Q X, DING L L, SUN Y B. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 2008, 154:818-825. doi: 10.1016/j.jhazmat.2007.10.097.
doi: 10.1016/j.jhazmat.2007.10.097
[30] LIN C C, KAO C H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regulation, 1996, 18(3):233-238. doi: 10.1007/BF00024387.
doi: 10.1007/BF00024387
[31] SINGH R P, SRIVASTAVA H S. Regulation of glutamate dehydrogenase activity by amino acids in maize seedlings. Physiologia Plantarum, 1983, 57(4):549-554. doi: 10.1111/j.1399-3054.1983.tb02784.x.
doi: 10.1111/j.1399-3054.1983.tb02784.x
[32] ALCÁZAR R, ALTABELLA T, MARCO F, BORTOLOTTI C, REYMOND M, KONCZ C, CARRASCO P, TIBURCIO A F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231(6):1237-1249. doi: 10.1007/s00425-010-1130-0.
doi: 10.1007/s00425-010-1130-0
[33] AGAMI R A, ALAMRI S A M, EL-MAGEED T A A, ABOUSEKKEN M S M, HASHEM M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agricultural Water Management, 2018, 210:261-270. doi: 10.1016/j.agwat.2018.08.034.
doi: 10.1016/j.agwat.2018.08.034
[34] GENISEL M, ERDAL S, KIZILKAYA M. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regulation, 2015, 75(1):187-197. doi: 10.1007/s10725-014-9943-7.
doi: 10.1007/s10725-014-9943-7
[35] FILIPPOU P, ANTONIOU C, FOTOPOULOS V. The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radical Biology and Medicine, 2013, 56:172-183. doi: 10.1016/j.freeradbiomed.2012.09.037.
doi: 10.1016/j.freeradbiomed.2012.09.037
[36] 田真, 李敬蕊, 王祥, 吴晓蕾, 宫彬彬, 高洪波. 生菜硝酸还原酶基因的克隆及高氮水平下外源γ-氨基丁酸对其表达和叶片硝酸盐含量的影响. 西北植物学报, 2015, 35(6):1098-1105. doi: 10.7606/j.issn.1000-4025.2015.06.1098.
doi: 10.7606/j.issn.1000-4025.2015.06.1098
TIAN Z, LI J R, WANG X, WU X L, GONG B B, GAO H B. Cloning of nitrate reductase gene of lettuce and effect of exogenous γ-aminobutyric acid on gene expression and nitrate content in leaves under high nitrogen level. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(6):1098-1105. doi: 10.7606/j.issn.1000-4025.2015.06.1098. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2015.06.1098
[37] HOAI N T T, SHIM I S, KOBAYASHI K, KENJI U. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164. doi: 10.1023/A:1027305522741.
doi: 10.1023/A:1027305522741
[38] ZHONG Y, YAN W M, CHEN J, SHANGGUAN Z P. Net ammonium and nitrate fluxes in wheat roots under different environmental conditions as assessed by scanning ion-selective electrode technique. Scientific Reports, 2014, 4:7223. doi: 10.1038/srep07223.
doi: 10.1038/srep07223
[39] HACHIYA T, TERASHIMA I, NOGUCHI K. Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia×hybrida petals. Plant, Cell & Environment, 2007, 30(10):1269-1283. doi: 10.1111/j.1365-3040.2007.01701.x.
doi: 10.1111/j.1365-3040.2007.01701.x
[40] MILLER A J, CRAMER M D. Root nitrogen acquisition and assimilation. Plant and Soil, 2005, 274(1/2):1-36. doi: 10.1007/s11104-004-0965-1.
doi: 10.1007/s11104-004-0965-1
[41] LIU J H, KITASHIBA H, WANG J, BAN Y, MORIGUCHI T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 2007, 24(1):117-126. doi: 10.5511/plantbiotechnology.24.117.
doi: 10.5511/plantbiotechnology.24.117
[42] KALAC̆ P, KRAUSOVÁ P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chemistry, 2005, 90(1/2):219-230. doi: 10.1016/j.foodchem.2004.03.044.
doi: 10.1016/j.foodchem.2004.03.044
[1] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[2] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[5] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[6] YAN TongJing,ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi. Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb [J]. Scientia Agricultura Sinica, 2022, 55(15): 3029-3041.
[7] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[8] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[9] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[10] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[11] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[12] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[13] SHAO JingYi,LI XiaoFan,YU WeiZhen,LIU Peng,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Combined Effects of High Temperature and Drought on Yield and Stem Microstructure of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631.
[14] LI Ming,LI YingChun,NIU XiaoGuang,MA Fen,WEI Na,HAO XingYu,DONG LiBing,GUO LiPing. Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering [J]. Scientia Agricultura Sinica, 2021, 54(17): 3647-3665.
[15] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!