Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1172-1188.doi: 10.3864/j.issn.0578-1752.2022.06.010


Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage

CHAO ChengSheng(),WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu(),LIAO Xing()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences /Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062
  • Received:2021-02-03 Accepted:2021-04-13 Online:2022-03-16 Published:2022-03-25
  • Contact: Lu QIN,Xing LIAO;;


【Objective】Nitrogen (N) uptake efficiency is one of the important factors affecting crop N efficiency, investigating characteristics of efficient N uptake and transport was the purpose to provide the theoretical basis for improving N efficiency and yield of rapeseed (Brassica napus L.) varieties.【Method】To explore the mechanisms underlying high N uptake and transport in rapeseed, two rapeseed germplasms with contrasting N efficiency (N efficient germplasm ‘498’ and N inefficient germplasm ‘428’) were used in this study under normal N (9.5 mmol·L-1) and low N (0.475 mmol·L-1) conditions at three different growth stages (Phenological growth stages 12, 14 and 16) in hydroponic culture. At the same time, the 15N isotope tracer technique was applied to study the uptake and transport capacity of NO3- and NH4+. Additionally, the expression level of genes (BnNPFs, BnNRT2s and BnAMTs)related to N uptake and transport in rapeseed germplasms with contrasting N efficiency were further analyzed by real-time quantitative PCR (RT-qPCR).【Result】Rapeseed germplasm ‘498’ showed superior advantages in plant growth and root development under different N concentrations, and the root morphological indexes (main root length, total root length, root surface area, root volume and lateral root number), biomass, N accumulation and N uptake efficiency were all significantly greater than those of germplasm ‘428’.15N isotope tracer test also showed that ‘498’ showed greater advantage in the uptake and accumulation of NO3 - and NH4+, especially for NH4+, as indicated by the significant differences in the accumulation of 15NH4+ between two germplasms. The RT-qPCR analysis further found that under normal N conditions, the relative expressions of BnNPF6.3a, BnNRT2.1e, BnNPF7.2a, BnNPF7.2c, BnNPF6.2c, BnAMT1;2a, BnAMT1;3c, BnAMT1;4a, BnAMT2;1a and BnAMT2;1b (involved in the uptake and transport of NO3 - and NH4+) was significantly higher in ‘498’ than that in ‘428’. While under low N stress, the relative expressions of BnNRT2.4a, BnNRT2.5a and BnNRT2.5b (involved in NO3 -uptake and transport) was significantly lower in the root of ‘498’ than that of ‘428’, but the expression level of BnNPF7.3a and BnNPF6.2c (referred to NO3 - transport and redistribution) was significantly higher in ‘498’ than that in ‘428’, as well as the expression level of BnAMT1;1a, BnAMT1;2a, BnAMT1;3c, BnAMT1;4a, BnAMT2;1a and BnAMT2;1b (involved in NH4 + uptake and transport).【Conclusion】Compared with N-inefficient germplasm ‘428’, N-efficient germplasm ‘498’ were superior in root length, root surface area (volume) and lateral root number, additionally with greater ability in N (especially NH4 +) uptake and accumulation. Under normal N application conditions, the expression of genes involved in NO3- and NH4+ absorption and transport were relatively higher in ‘498’, while the relative expression of genes involved in the NO3 - transport and redistribution as well as NH4+ absorption and transport were significantly higher in ‘498’ than that in ‘428’ under low N stress, illustrating the relative higher N uptake efficiency of ‘498’ possibly linked to the higher expressions of several BnNPFs sand BnAMTs.

Key words: rapeseed, high nitrogen efficiency, root morphology, uptake and transport, nitrogen transporter genes

Fig. 1

Effects of different N concentrations on the growth of rapeseed germplasms with contrasting N efficiency at seedling stage Definition of the phenological growth stages of rapeseed (Brassica napus L.) according to the BBCH-scale (the stage of N efficient germplasm ‘498’ under normal N supply as standard), (a) 12; (b) 14; (c) 16. 12: second leaf unfolded; 14: fourth leaf unfolded; 16: sixth leaf unfolded. The same as below Each picture from left to right is N efficient germplasm ‘498’ with normal N treatment, N inefficient germplasm ‘428’ with normal N treatment, N efficient germplasm ‘498’ with low N treatment, N inefficient germplasm ‘428’ with low N treatment"

Fig. 2

Effects of different N concentrations on biomass and root-shoot ratio of rapeseed germplasms with contrasting N efficiency at seedling stage CK: Normal N treatment; LN: Low N treatment; ‘498’: N efficient germplasm; ‘428’: N inefficient germplasm; Different lowercase letters indicated significant difference at the 0.05 level between treatments. The same as Fig. 3, Table 1 and Fig. 4"

Fig. 3

Effects of different N concentrations on root morphology-related parameters of rapeseed with contrasting N efficiency at seedling stage"

Table 1

Effects of different N concentrations on N concentration and N efficiency related indexes of rapeseed germplasms with contrasting N efficiency at seedling stage"

Phenological growth stages
N concentration (%)
N accumulation (mg/plant)
Shoot Root Shoot Root Total
12 CK 498 5.55a 4.74a 1.26ab 0.24b 1.50ab 84.03c 3.00c 18.5c
428 5.63a 4.65a 1.39a 0.18b 1.57ab 88.51a 3.15c 18.2d
LN 498 5.05b 4.40b 1.35ab 0.33a 1.68a 80.34d 67.45a 20.38b
428 4.93b 4.02c 1.12b 0.18b 1.30b 86.38b 51.96b 20.91a
14 CK 498 5.47a 4.90a 16.39a 2.35a 18.74a 87.39a 7.83c 18.55d
428 5.05b 5.05a 13.33b 2.15a 15.48a 86.04a 6.47c 19.80c
LN 498 3.45c 3.44b 7.81c 1.89ab 9.70b 80.55b 81.05a 28.96b
428 3.16d 3.44b 6.25c 1.46b 7.70b 81.03b 64.36b 31.11a
16 CK 498 5.06b 4.65a 52.48a 9.10a 61.58a 85.16a 14.88c 20.02c
428 5.34a 4.81a 40.61b 6.79b 47.41b 85.64a 11.46d 19.03d
LN 498 2.87c 2.22b 11.32c 4.60c 15.92c 71.02b 76.97a 37.78b
428 2.74c 2.26b 8.71d 3.22d 11.94d 72.93b 57.69b 38.56a

Fig. 4

Accumulation of 15N in different parts of rapeseed seedlings at BBCH16 stage"

Fig. 5

Response of N uptake and transport related genes in rapeseed germplasms with contrasting N efficiency to N starvation stress The samples (functional leaves and roots) used to detect the relative expression of genes involved in N uptake and transport were harvested at BBCH 16 stage, double arrows point to genes expressed both in leaves and roots, single arrows point to genes expressed only in leaves or roots, red indicates upregulation, blue indicates downregulation"

Fig. 6

Expression analysis of NO3- uptake related genes in rapeseed germplasms with contrasting N efficiency under different N concentrations The samples (functional leaves and roots) used to detect the relative expression of genes involved in NO3- uptake were harvested at BBCH 16 stage. Functional classification of rapeseed NPFs and NRT2s gene was conducted according to the previous studies of NPFs and NRT2s gene in Arabidopsis thaliana, including, a: Low-affinity NO3- uptake; b: High-affinity NO3- uptake; c: Mediating NO3- efflux. * Represents P<0.05; ** Represents P<0.01"

Fig. 7

Analysis of genes expression related to NO3- transport and redistribution in rapeseed germplasms with contrasting N efficiency under different N concentrations The samples (functional leaves and roots) used to detect the relative expression of genes involved in NO3- transport and redistribution were harvested at BBCH 16 stage. Functional classification of rapeseed NPFs gene was conducted according to the previous studies of NPFs gene in Arabidopsis thaliana, including, a: Regulation of NO3- transport in xylem; b: Regulating the accumulation of NO3- in leaves and petioles, and mediating the transfer of NO3- from xylem to phloem and the redistribution from source leaves to sink leaves. * Represents P<0.05; ** Represents P<0.01"

Fig. 8

Expression analysis of genes related to NH4+ uptake and transport in rapeseed germplasms with contrasting N efficiency under different N concentrations The samples (functional leaves and roots) used to detect the relative expression of genes involved in NH4+ uptake and transport were harvested at BBCH 16 stage. Functional classification of rapeseed NPFs gene was conducted according to the previous studies of NPFs gene in Arabidopsis thaliana, including: a: High-affinity NH4+ uptake; b: Regulating NH4+ transport in leaves; c: It has low-affinity NH4+ absorption function, mainly involved in the NH4+ transport from root to stem. *Represents P<0.05; ** Represents P<0.01"

Fig. 9

Possible mechanism of high N efficiency of rapeseed at seedlings stage The solid lines represent the absorption of N by roots, and the virtual lines indicate that the differential expressed N transporter genes in the root or leaf of rapeseed seedlings with contrasting N efficiency"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40(5):613-617. doi: 10.7505/j.issn.1007-9084.2018.05.001.
doi: 10.7505/j.issn.1007-9084.2018.05.001
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018,40(5):613-617. doi: 10.7505/j.issn.1007-9084.2018.05.001. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2018.05.001
[2] BOUCHET A S, LAPERCHE A, BISSUEL-BELAYGUE C, SNOWDON R, NESI N, STAHL A. Nitrogen use efficiency in rapeseed. A review. Agronomy for Sustainable Development, 2016,36(2):1-20. doi: 10.1007/s13593-016-0371-0.
doi: 10.1007/s13593-016-0371-0
[3] LASSALETTA L, BILLEN G, GRIZZETTI B, ANGLADE J, GARNIER J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014,9(10):105011. doi: 10.1088/1748-9326/9/10/105011.
doi: 10.1088/1748-9326/9/10/105011
[4] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013,19(2):259-273. doi: 10.11674/zwyf.2013.0201.
doi: 10.11674/zwyf.2013.0201
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013,19(2):259-273. doi: 10.11674/zwyf.2013.0201. (in Chinese)
doi: 10.11674/zwyf.2013.0201
[5] XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012,63:153-182. doi: 10.1146/annurev-arplant-042811-105532.
doi: 10.1146/annurev-arplant-042811-105532
[6] 康亮, 梁琼月, 姚一华, 蒋强, 董蒙蒙, 顾明华, 何冰. 不同氮效率木薯品种根系形态、构型及氮吸收动力学特征. 植物营养与肥料学报, 2019,25(11):1920-1928. doi: 10.11674/zwyf.19024.
doi: 10.11674/zwyf.19024
KANG L, LIANG Q Y, YAO Y H, JIANG Q, DONG M M, GU M H, HE B. Root morphology, configuration and nitrogen absorption kinetics of cassava cultivars with different nitrogen efficiencies. Journal of Plant Nutrition and Fertilizers, 2019,25(11):1920-1928. doi: 10.11674/zwyf.19024. (in Chinese)
doi: 10.11674/zwyf.19024
[7] 刘代平, 宋海星, 刘强, 荣湘民, 彭建伟, 谢桂先, 刘浩荣. 油菜根系形态和生理特性与其氮效率的关系. 土壤, 2008,40(5):765-769. doi: 10.3321/j.issn:0253-9829.2008.05.015.
doi: 10.3321/j.issn:0253-9829.2008.05.015
LIU D P, SONG H X, LIU Q, RONG X M, PENG J W, XIE G X, LIU H R. Relationship between root morphologic and physiological properties and nitrogen efficiency of oilseed rape cultivars. Soils, 2008,40(5):765-769. doi: 10.3321/j.issn:0253-9829.2008.05.015. (in Chinese)
doi: 10.3321/j.issn:0253-9829.2008.05.015
[8] 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49(12):2267-2279. doi: 10.3864/j.issn.0578-1752.2016.12.003.
doi: 10.3864/j.issn.0578-1752.2016.12.003
XIONG S P, WU K Y, WANG X C, ZHANG J, DU P, WU Y X, MA X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 2016,49(12):2267-2279. doi: 10.3864/j.issn.0578-1752.2016.12.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.12.003
[9] WANG G L, DING G D, LI L, CAI H M, YE X S, ZOU J, XU F S. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Annals of Botany, 2014,114(3):549-559. doi: 10.1093/aob/mcu135.
doi: 10.1093/aob/mcu135
[10] KAMH M, WIESLER F, ULAS A, HORST W J. Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. Journal of Plant Nutrition and Soil Science, 2005,168(1):130-137. doi: 10.1002/jpln.200421453.
doi: 10.1002/jpln.200421453
[11] 刘强, 宋海星, 荣湘民, 彭建伟, 谢桂先. 不同品种油菜氮效率差异及其生理基础研究. 植物营养与肥料学报, 2008,14(1):113-119. doi: 10.3321/j.issn:1008-505X.2008.01.018.
doi: 10.3321/j.issn:1008-505X.2008.01.018
LIU Q, SONG H X, RONG X M, PENG J W, XIE G X. Differences in nitrogen use efficiency among different rape varieties and their physiological basis. Plant Nutrition and Fertilizer Science, 2008,14(1):113-119. doi: 10.3321/j.issn:1008-505X.2008.01.018. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2008.01.018
[12] 洪娟. 油菜氮高效种质的筛选及其生理机制的初步研究[D]. 武汉: 华中农业大学, 2007.
HONG J. Screening of nitrogen efficient germplasm and preliminary study on its phsiological mechanism in rapeseed[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese)
[13] TENG W, HE X, TONG Y P. Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. Journal of Integrative Agriculture, 2017,16(12):2657-2673. doi: 10.1016/S2095-3119(17)61709-X.
doi: 10.1016/S2095-3119(17)61709-X
[14] FAN X R, NAZ M, FAN X R, XUAN W, MILLER A J, XU G H. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany, 2017,68(10):2463-2475. doi: 10.1093/jxb/erx011.
doi: 10.1093/jxb/erx011
[15] TSAY Y F, CHIU C C, TSAI C B, HO C H, HSU P K. Nitrate transporters and peptide transporters. FEBS Letters, 2007,581(12):2290-2300. doi: 10.1016/j.febslet.2007.04.047.
doi: 10.1016/j.febslet.2007.04.047
[16] LIU K H, TSAY Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. The EMBO Journal, 2003,22(5):1005-1013. doi: 10.1093/emboj/cdg118.
doi: 10.1093/emboj/cdg118
[17] LÉRAN S, VARALA K, BOYER J C, CHIURAZZI M, CRAWFORD N, DANIEL-VEDELE F, DAVID L, DICKSTEIN R, FERNANDEZ E, FORDE B, GASSMANN W, GEIGER D, GOJON A, GONG J M, HALKIER B A, HARRIS J M, HEDRICH R, LIMAMI A M, LACOMBE B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014,19(1):5-9. doi: 10.1016/j.tplants.2013.08.008.
doi: 10.1016/j.tplants.2013.08.008
[18] LUDEWIG U, NEUHÄUSER B, DYNOWSKI M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Letters, 2007,581(12):2301-2308. doi: 10.1016/j.febslet.2007.03.034.
doi: 10.1016/j.febslet.2007.03.034
[19] HAN Y L, SONG H X, LIAO Q, YU Y, JIAN S F, LEPO J E, LIU Q, RONG X M, TIAN C, ZENG J, GUAN C Y, ISMAIL A M, ZHANG Z H. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 2016,170(3):1684-1698. doi: 10.1104/pp.15.01377.
doi: 10.1104/pp.15.01377
[20] 张玉莹. 不同氮效率油菜NRT基因的表达差异研究[D]. 杨凌: 西北农林科技大学, 2013.
ZHANG Y Y. The expression differences study on the NRT rape genes of different nitrogen efficiency[D]. Yangling: Northwest A & F University, 2013. (in Chinese)
[21] 徐子先. 甘蓝型油菜氮效率评价及其差异的生理机制探究[D]. 北京: 中国农业科学院, 2017.
XU Z X. Researches on nitrogen efficiency evaluation in rapeseed (Brassica napus L.) germplasm and its physiological mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[22] MEIER U. Growth stages of mono-and dicotyledonous plants. 2001.
[23] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[24] 顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018,40(6):851-860. doi: 10.7505/j.issn.1007-9084.2018.06.015.
doi: 10.7505/j.issn.1007-9084.2018.06.015
GU C M, HAN P P, HU Q, LI Y S, LIAO X S, ZHANG Z H, XIE L H, HU X J, QIN L, LIAO X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chinese Journal of Oil Crop Sciences, 2018,40(6):851-860. doi: 10.7505/j.issn.1007-9084.2018.06.015. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2018.06.015
[25] 王改丽. 新型甘蓝型油菜氮高效种质的筛选及其氮高效机制的研究[D]. 武汉: 华中农业大学, 2014.
WANG G L. Screening of high nitrogen efficient germplasms and its mechanism in new-type Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[26] 晏娟, 沈其荣, 尹斌, 万新军. 应用15N示踪技术研究水稻对氮肥的吸收和分配. 核农学报, 2009,23(3):487-491, 496.
YAN J, SHEN Q R, YIN B, WAN X J. Fertilizer-n uptake and distribution in rice plants using 15n tracer technique. Journal of Nuclear Agricultural Sciences, 2009,23(3):487-491, 496. (in Chinese)
[27] O'BRIEN J A, VEGA A, BOUGUYON E, KROUK G, GOJON A, CORUZZI G, GUTIÉRREZ R A. Nitrate transport, sensing, and responses in plants. Molecular Plant, 2016,9(6):837-856. doi: 10.1016/j.molp.2016.05.004.
doi: 10.1016/j.molp.2016.05.004
[28] LU K, LI T, HE J, CHANG W, ZHANG R, LIU M, YU M N, FAN Y H, MA J Q, SUN W, QU C M, LIU L Z, LI N N, LIANG Y, WANG R, QIAN W, TANG Z L, XU X F, LEI B, ZHANG K, LI J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Research, 2017,46(D1):D1229-D1236. doi: 10.1093/nar/gkx725.
doi: 10.1093/nar/gkx725
[29] TONG J F, WALK T C, HAN P P, CHEN L Y, SHEN X J, LI Y S, GU C M, XIE L H, HU X J, LIAO X, QIN L. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC Plant Biology, 2020,20(1):464. doi: 10.1186/s12870-020-02648-1.
doi: 10.1186/s12870-020-02648-1
[30] HU J H, ZHANG F G, GAO G Z, LI H, WU X M. Auxin-related genes associated with leaf petiole angle at the seedling stage are involved in adaptation to low temperature in Brassica napus. Environmental and Experimental Botany, 2021,182:104308. doi: 10.1016/j.envexpbot.2020.104308.
doi: 10.1016/j.envexpbot.2020.104308
[31] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408. doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
[32] TEGEDER M, MASCLAUX-DAUBRESSE C. Source and sink mechanisms of nitrogen transport and use. New Phytologist, 2018,217(1):35-53. doi: 10.1111/nph.14876.
doi: 10.1111/nph.14876
[33] LIN S H, KUO H F, CANIVENC G, LIN C S, LEPETIT M, HSU P K, TILLARD P, LIN H L, WANG Y Y, TSAI C B, GOJON A, TSAY Y F. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell, 2008,20(9):2514-2528. doi: 10.1105/tpc.108.060244.
doi: 10.1105/tpc.108.060244
[34] LI J Y, FU Y L, PIKE S M, BAO J, TIAN W, ZHANG Y, CHEN C Z, ZHANG Y, LI H M, HUANG J, LI L G, SCHROEDER J I, GASSMANN W, GONG J M. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell, 2010,22(5):1633-1646. doi: 10.1105/tpc.110.075242.
doi: 10.1105/tpc.110.075242
[35] 吴宇. 低氮诱导的水稻根系形态解剖结构变化及其对氮素吸收分配的影响[D]. 武汉: 华中农业大学, 2020.
WU Y. Low nitrogen induced changes of morphological and anatomical characterics and its effects on nitrogen uptake and distribution in rice[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[36] 岳慧芳, 任永哲, 李乐, 王新博, 吕伟增, 龚璞, 王志强, 辛泽毓, 林同保. 不同基因型小麦品种根系形态对低氮胁迫的响应. 河南农业大学学报, 2017,51(4):447-452. doi: 10.16445/j.cnki.1000-2340.2017.04.001.
doi: 10.16445/j.cnki.1000-2340.2017.04.001
YUE H F, REN Y Z, LI L, WANG X B, LÜ W Z, GONG P, WANG Z Q, XIN Z Y, LIN T B. The response of root morphological traits to low nitrogen stress in different genotypic wheat cultivars. Journal of Henan Agricultural University, 2017,51(4):447-452. doi: 10.16445/j.cnki.1000-2340.2017.04.001. (in Chinese)
doi: 10.16445/j.cnki.1000-2340.2017.04.001
[37] 魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008,34(3):429-436. doi: 10.3321/j.issn:0496-3490.2008.03.013.
doi: 10.3321/j.issn:0496-3490.2008.03.013
WEI H Y, ZHANG H C, ZHANG S F, HANG J, DAI Q G, HUO Z Y, XU K, MA Q, ZHANG Q, LIU Y Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. Acta Agronomica Sinica, 2008,34(3):429-436. doi: 10.3321/j.issn:0496-3490.2008.03.013. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2008.03.013
[38] 唐伟杰, 官春云, 林良斌, 李丽萍, 张振华, 王峰, 肖钢, 李博, 刘屹湘. 不同硝铵比对油菜生长、生理与产量的影响. 植物营养与肥料学报, 2018,24(5):1338-1348. doi: 10.11674/zwyf.17495.
doi: 10.11674/zwyf.17495
TANG W J, GUAN C Y, LIN L B, LI L P, ZHANG Z H, WANG F, XIAO G, LI B, LIU Y X. Effects of nitrate and ammonium supply ratios on growth, physiology and yield of oilseed rape (Brassica napus L.). Journal of Plant Nutrition and Fertilizers, 2018,24(5):1338-1348. doi: 10.11674/zwyf.17495. (in Chinese)
doi: 10.11674/zwyf.17495
[39] 李生秀. 中国旱地土壤植物氮素. 北京: 科学出版社, 2008.
LI S X. Soil and Plant Nitrogen in Dryland Areas of China. Beijing: Science Press, 2008. (in Chinese)
[40] LI Q, DING G D, YANG N M, WHITE P J, YE X S, CAI H M, LU J W, SHI L, XU F S. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant, Cell & Environment, 2020,43(3):712-731. doi: 10.1111/pce.13689.
doi: 10.1111/pce.13689
[41] VERA J S, SPERANDIO M V L, FERNANDES M S, SANTOS L A. Overexpression of rice genes OsNRT1.1A and OsNRT1.1B restores chlorate uptake and NRT2.1/NAR2.1 expression in Arabidopsis thaliana chl1-5 mutant. Journal of Plant Growth Regulation, 2021,40(4):1701-1713. doi: 10.1007/s00344-020-10219-9.
doi: 10.1007/s00344-020-10219-9
[42] HU B, WANG W, OU S J, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LIANG Y, ZHANG L H, LI L G, CHU C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice sub species. Nature Genetics, 2015,47(7):834-838. doi: 10.1038/ng.3337.
doi: 10.1038/ng.3337
[43] HO C H, LIN S H, HU H C, TSAY Y F. CHL1 functions as a nitrate sensor in plants. Cell, 2009,138(6):1184-1194. doi: 10.1016/j.cell.2009.07.004.
doi: 10.1016/j.cell.2009.07.004
[44] ZHENG Y, DRECHSLER N, RAUSCH C, KUNZE R. The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation. Plant Signaling & Behavior, 2016,11(5):e1176819. doi: 10.1080/15592324.2016.1176819.
doi: 10.1080/15592324.2016.1176819
[45] ZHOU Y, BAI L, SONG C P. Ammonium homeostasis and signaling in plant cells. Science Bulletin, 2015,60(8):741-747. doi: 10.1007/s11434-015-0759-2.
doi: 10.1007/s11434-015-0759-2
[46] LOQUÉ D, YUAN L X, KOJIMA S, GOJON A, WIRTH J, GAZZARRINI S, ISHIYAMA K, TAKAHASHI H, VON WIRÉN N. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant Journal, 2006,48(4):522-534. doi: 10.1111/j.1365-313x.2006.02887.x.
doi: 10.1111/j.1365-313x.2006.02887.x
[47] YUAN L X, LOQUÉ D, KOJIMA S, RAUCH S, ISHIYAMA K, INOUE E, TAKAHASHI H, VON WIRÉN N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell, 2007,19(8):2636-2652. doi: 10.1105/tpc.107.052134.
doi: 10.1105/tpc.107.052134
[48] GIEHL R F H, LAGINHA A M, DUAN F Y, RENTSCH D, YUAN L X, VON WIRÉN N. A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis. Molecular Plant, 2017,10(11):1449-1460. doi: 10.1016/j.molp.2017.10.001.
doi: 10.1016/j.molp.2017.10.001
[49] LIMA J E, KOJIMA S, TAKAHASHI H, VON WIRÉN N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. The Plant Cell, 2010,22(11):3621-3633. doi: 10.1105/tpc.110.076216.
doi: 10.1105/tpc.110.076216
[50] YUAN L X, GRAFF L, LOQUÉ D, KOJIMA S, TSUCHIYA Y N, TAKAHASHI H, VON WIRÉN N. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant and Cell Physiology, 2008,50(1):13-25. doi: 10.1093/pcp/pcn186.
doi: 10.1093/pcp/pcn186
[51] ZHONG L H, HUANG X M, ZHU Y N, KOU E F, LIU H C, SUN G W, CHEN R Y, SONG S W. Characterization and expression analysis of BcAMT1;4, an ammonium transporter gene in flowering Chinese cabbage. Horticulture, Environment, and Biotechnology, 2019,60(4):563-572. doi: 10.1007/s13580-019-00155-3.
doi: 10.1007/s13580-019-00155-3
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[3] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[4] BAI Fei,BAI GuiPing,WANG ChunYun,LI Zhen,GONG DePing,HUANG Wei,CHENG YuGui,WANG Bo,WANG Jing,XU ZhengHua,KUAI Jie,ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[5] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[6] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[7] HU JiJie,ZHONG Chu,HU ZhiHua,ZHANG JunHua,CAO XiaoChuang,LIU ShouKan,JIN QianYu,ZHU LianFeng. Effects of Dissolved Oxygen Concentration on Root Growth at Tillering Stage and Nitrogen Utilization Characteristics of Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536.
[8] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[9] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[10] BAI ChenYang,HE HanZi,JIA CaiHua,LI XiaoHua,REN YiLin,YE Jun,WANG Bo,KUAI jie,ZHOU GuangSheng. Effect of the Mechanical Harvesting Methods on the Key Traits of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(14): 2991-3003.
[11] KUAI Jie,LI Zhen,WANG Bo,LIU Fang,YE Jun,ZHOU GuangSheng. Effects of Density and Row Spacing on Seedling Traits of Rapeseed and Seed Yield [J]. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.
[12] Bo LI,Jun SUN,XinGuang WEI,SiYu ZHENG,Dong GE,ShiNing FU. Effects of Lower Limit of Drip Irrigation on Growth, Yield and Root Distribution of Greenhouse Grapes [J]. Scientia Agricultura Sinica, 2020, 53(7): 1432-1443.
[13] Jun LI,Xia-ying LI,Jing-qian WANG,Shanshan Zhai,Zi-yan CHEN,Hong-fei GAO,YunJing LI,Gang WU,Xiu-jie ZHANG,Yu-hua WU. Development and Application of Plasmid Reference Molecule for Genetically Modified Rapeseed Screening [J]. Scientia Agricultura Sinica, 2020, 53(7): 1322-1337.
[14] WANG Qun,ZHAO XiangYang,LIU DongYao,YAN ZhenHua,LI HongPing,DONG PengFei,LI Chaohai. Root Morphological, Physiological Traits and Yield of Maize Under Waterlogging and Low Light Stress [J]. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495.
[15] ZHANG ShunTao,LU JianWei,CONG RiHuan,REN Tao,LI XiaoKun,LIAO ShiPeng,ZHANG YueQiang,GUO ShiWei,ZHOU MingHua,HUANG YiGuo,CHENG Hui. Effect of Rapeseed Rotation on the Yield of Next-Stubble Crops [J]. Scientia Agricultura Sinica, 2020, 53(14): 2852-2858.
Full text



No Suggested Reading articles found!