Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 300-313.doi: 10.3864/j.issn.0578-1752.2023.02.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season

XU JiuKai(),YUAN Liang,WEN YanChen,ZHANG ShuiQin,LI YanTing,LI HaiYan,ZHAO BingQiang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2021-12-20 Accepted:2022-03-10 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】The nitrogen (N) fractions and release characteristics varied much among different types of organic manure. Study and estimation on N fertilizer replacement value of different livestock manures with chemical N as a reference could provide a theoretical basis for rational application of organic fertilizer and scientific combination application of organic and inorganic fertilizers. 【Method】In this study, composted pig manure, chicken manure, cattle manure and chemical fertilizer were selected as the research materials. There were six application rates of N set, i.e. 0, 40, 80, 120, 160 and 200 mg·kg-1 dry soil, respectively. A soil column experiment was conducted to investigate the effects of N derived from manure and chemical fertilizers on wheat yield and N uptake. Furthermore, the relative replacement equivalence of N in three kinds of manure was calculated by using the response between crop N uptake or yield and N application rate. 【Result】 (1) The grain yield and biomass of wheat were increased with the elevated N application rate. When 40-120 mg·kg-1 dry soil input, the increase of grain and biological yield of chemical fertilizer and pig manure was higher than that of chicken manure and cow manure, while there was no significant difference among grain yield treated with chemical fertilizer, pig manure and chicken manure, except being significantly higher than the cow manure, when N input at 160-200 mg·kg-1. (2) At the same N input rate, chemical fertilizer could significantly improve wheat grain N uptake and aboveground N uptake compared with manure treatment. For three kinds of manure treatment, the total aboveground N uptake associated with pig manure was the highest, that with chicken manure followed, and that with cow manure was the low. In this study, the N recovery rate under three kinds of manure treatments was firstly increased and then decreased with the elevated N application level, while the N recovery rate of chemical fertilizer showed a gradually decrease trend. (3) When N input at different application levels, the relative N replacement value of pig manure, chicken manure, and cow manure were 37.7%-84.2%, 23.1%-71.0% and 11.3%-34.2%, respectively, with wheat grain yield as a reference index; 49.2%-91.3%, 23.3%-78.3%, 7.4%-42.2% with aboveground biomass as a reference index; 31.1%-76.3%, 19.8%-67.1%, 6.0%-35.7% with grain N uptake as a reference index; 30.8%-97.1%, 19.8%-75.6%, 7.8%-43.8% with aboveground N uptake as a reference index. There was a positive correlation (P<0.01) between the N replacement value of organic manure and N application rate. 【Conclusion】In this study, the relative N replacement value of organic manure was affected by both organic fertilizer types and N application rate. Within a certain range of N application level, the N replacement value of livestock manure increased with the increase of N application level. The average relative equivalent of N replacement by pig manure, chicken manure, and cow manure were 59.6%, 46.2%, and 23.6%, respectively.

Key words: livestock manure, nitrogen, wheat yield, nitrogen uptake and utilization, relative replacement value

Fig. 1

Monthly mean temperature and precipitation from 2018 to 2019"

Table 1

The fertilizer rate of chemical fertilizer and organic manure treatment"

施氮量
N rate
(mg·kg-1dry soil)
猪粪 Pig manure
(mg·kg-1 dry soil)
鸡粪 Chicken manure
(mg·kg-1 dry soil)
牛粪 Cattle manure
(mg·kg-1 dry soil)
化肥 Chemical fertilizer
(mg·kg-1 dry soil)
P2O5 K2O P2O5 K2O P2O5 K2O P2O5 K2O
0 200 200 200 200 200 200 200 200
40 200 200 200 200 200 200 200 200
80 251 200 211 200 200 200 200 200
120 377 200 317 200 200 200 200 200
160 503 200 422 200 200 200 200 200
200 628 200 528 216 200 200 200 200

Table 2

The chemical composition of cattle manure, chicken manure and pig manure (air dried basis)"

有机肥
Organic manure
养分含量 Nutrient content (g·kg-1) 有机碳
Organic C
(g·kg-1)
C/N
半纤维素含量
Cellulose
content (g·kg-1)
中性洗涤纤维素含量
Neutral detergent
fiber content (g·kg-1)
木质素含量
Lignin content (g·kg-1)
全氮
Total N (N)
矿质氮
Mineral N
全磷
Total P (P)
全钾
Total K (K)
猪粪
Pig manure
22.32 1.82 31.31 15.12 235.03 10.54 94.01 358.11 93.61
鸡粪
Chicken manure
19.53 0.63 23.02 17.41 181.13 9.28 83.32 330.23 69.22
牛粪
Cattle manure
16.11 0.54 5.74 12.92 210.21 13.06 122.11 459.43 202.81

Table 3

Contents of organic nitrogen fractions in different types of manure (air dried basis)"

有机肥
Organic
manure
氨基酸氮
Amino acid N
铵态氮
Ammonium N
氨基糖氮
Amino sugar N
酸解未知态
Hydrolysable unidentified N
酸解总氮
Total hydrolysable N
非酸解氮
Non hydrolysable N
含量
Content
(g·kg-1)
占总氮比例
Proportion
(%)
含量
Content
(g·kg-1)
占总氮比例
Proportion
(%)
含量
Content
(g·kg-1)
占总氮比例
Proportion
(%)
含量
Content
(g·kg-1)
占总氮比例
Proportion
(%)
含量
Content
(g·kg-1)
占总氮比例
Proportion
(%)
含量
Content
(g·kg-1)
占总氮比例
Proportion
(%)
猪粪
Pig manure
6.96 31.21 1.75 7.85 2.07 9.28 6.08 27.26 16.86 75.60 5.44 24.40
鸡粪
Chicken manure
6.68 34.34 0.39 2.01 3.05 15.68 5.26 27.04 15.38 79.07 4.07 20.93
牛粪
Cattle manure
3.26 20.24 0.35 2.17 5.39 33.46 3.12 19.37 12.12 75.23 3.99 24.77

Table 4

Effects of different sources of nitrogen on wheat yield and biomass"

项目
Items
施氮量N rate
(mg·kg-1 dry soil)
猪粪
Pig manure
鸡粪
Chicken manure
牛粪
Cattle manure
化肥
Chemical fertilizer
籽粒产量
Grain yield
(g/pot)
0 72.3±6.7 d A 72.3±6.7 e A 72.3±6.7 c A 72.3±6.7 d A
40 78.7±4.9 cd B 76.6±7.5 de BC 75.0±4.9 c C 89.2±7.1 c A
80 86.7±6.8 bc AB 84.3±6.8 cd BC 76.9±5.7 bc C 95.3±5.2 bc A
120 93.9±9.3b AB 91.7±5.1 bc B 84.8±5.0 ab B 104.2±6.4 b A
160 106.7±9.3 a A 103.6±13.1 a AB 90.8±17.4 a B 109.4±5.5 a A
200 107.6±9.8 a A 98.5±8.7 ab A 88.1±5.1 a B 102.4±1.8 bc A
生物产量
Wheat biomass
(g/pot)
0 142.5±11.6 c A 142.5±11.6 d A 142.5±11.6 c A 142.5±11.6 d A
40 158.4±12.5 b B 151.7±16.6 cd B 147.4±12.8 bc B 174.2±15.7 c A
80 173.0±16.0 b AB 173.6±10.5 bc AB 154.3±16.0abc B 183.6±10.7 bc A
120 186.0±19.2 b AB 189.6±11.4 ab AB 170.4±7.9 ab B 193.3±9.8 ab A
160 204.2±12.0 a A 201.3±11.7 a AB 183.6±32.4 a B 207.4±11.1 a A
200 205.5±18.5 a A 193.5±18.1abc AB 175.1±13.6 a B 196.5±4.4 bc AB

Table 5

Effects of different sources of nitrogen on yield components of wheat"

项目
Items
施氮量
N rate (mg·kg-1 dry soil)
猪粪
Pig manure
鸡粪
Chicken manure
牛粪
Cattle manure
化肥
Chemical fertilizer
穗数
Number of ears (No./pot)
0 42±2 d A 42±2 e A 42±2 c A 42±2 c A
40 49±3 c AB 45±7 de BC 42±4 bc C 51±3 b A
80 51±6 bc A 47±3 cd AB 44±5 bc B 51±4 ab A
120 53±5 bc A 52±5 bc A 46±4 ab B 53±6 ab A
160 60±9 a A 59±9 a A 51±7 a B 57±6 a A
200 57±4 ab A 55±6 ab A 50±3 a B 53±3 ab A
穗粒数
Grain No.per ear (No./ear)
0 35±2 ab A 35±2 a A 35±2 ab A 35±2 a A
40 31±2 b B 33±1 a AB 35±3 ab AB 37±3 a A
80 33±1 ab C 35±1 aAB 34±3 b BC 37±1 a A
120 35±2 ab A 35±1 a A 36±6 a A 37±2 a A
160 35±5 ab A 35±2 a A 35±3 ab A 38±2 a A
200 37±1 a A 35±3 a A 35±2 a A 38±2 a A
千粒重
Thousand seed weight (g)
0 50.02±2.38 a A 50.02±2.38 a A 50.02±2.38 a A 50.02±2.38 a A
40 51.19±0.86 a A 51.37±1.24 a A 51.03±2.02 a A 50.98±1.20 a A
80 51.17±1.90 a A 51.05±0.95 a A 51.38±1.59 a A 50.62±1.09 a A
120 51.07±1.43 a A 51.45±1.25 a A 50.72±1.04 a A 50.86±0.99 a A
160 51.36±1.31 a A 50.79±1.11 a A 51.19±1.14 a A 50.82±1.79 a A
200 51.66±2.10 a A 50.52±0.48 a A 50.29±1.38 a A 50.94±1.37 a A

Table 6

Effect of different nitrogen sources on the uptake of nitrogen by different organs of wheat"

项目
Items
施氮量 N rate
(mg·kg-1 dry soil)
猪粪
Pig manure
鸡粪
Chicken manure
牛粪
Cattle manure
化肥
Chemical fertilizer
氮素吸收量
N uptake
(g/pot)
秸秆
Straw
0 0.23±0.02 d A 0.23±0.02 b A 0.23±0.02 b A 0.23±0.02 d A
40 0.23±0.03 d AB 0.23±0.03 b B 0.24±0.03 ab AB 0.25±0.05 cd A
80 0.26±0.03 cd A 0.24±0.04 b A 0.26±0.01 ab A 0.27±0.06 bc A
120 0.33±0.05 bc A 0.31±0.04 a A 0.27±0.06 ab A 0.30±0.01 bc A
160 0.43±0.04 ab AB 0.35±0.03 a B 0.32±0.11 a B 0.43±0.04 a A
200 0.45±0.09 a A 0.33±0.08 a BC 0.30±0.04 ab C 0.38±0.04 b AB
籽粒
Grain
0 1.27±0.12 c A 1.27±0.12 e A 1.27±0.12 c A 1.27±0.12 d A
40 1.40±0.09 b A 1.36±0.12 de B 1.31±0.09 c B 1.64±0.09 c A
80 1.59±0.08 b B 1.49±0.12 cd BC 1.43±0.19 bc C 1.86±0.10 bc A
120 1.80±0.20 b B 1.65±0.11 bc B 1.53±0.10 a B 1.98±0.11 b A
160 1.97±0.25 a B 1.93±0.30 a BC 1.72±0.30 a C 2.12±0.22 a A
200 1.96±0.09 a A 1.72±0.14 ab B 1.57±0.08 ab C 1.94±0.08 b AB
地上部
Aboveground
0 1.50±0.13 c A 1.50±0.08 d A 1.50±0.08 d A 1.50±0.08 d A
40 1.63±0.01 b B 1.59±0.14 cd C 1.55±0.09 d C 1.89±0.08 c A
80 1.84±0.10 b B 1.72±0.12 c BC 1.68±0.30 cd C 2.11±0.13 bc A
120 2.13±0.25 b B 1.96±0.25 b B 1.80±0.11 b B 2.28±0.12 b A
160 2.39±0.12 a B 2.28±0.13 a C 2.03±0.34 a C 2.55±0.tidia 23 a A
200 2.41±0.32 a A 2.05±0.23 ab B 1.87±0.02 bc C 2.32±0.07 ab A
氮素收获指数
NHI (%)
0 84.1±1.2 ab A 84.1±1.2 ab A 84.1±1.2 ab A 84.1±1.2ab A
40 85.9±1.9 ab A 87.5±0.7 a A 84.6±1.8 ab A 86.9±2.6 a A
80 86.1±1.2 a A 86.3±2.3 a A 85.0±2.2 ab A 87.2±6.2 a A
120 84.4±1.5 b A 84.0±0.8 ab A 85.3±2.8 a A 86.9±0.6 a A
160 82.2±2.7 b A 84.6±1.4 ab A 84.4±4.1 b A 83.0±1.9 b A
200 81.5±2.5 b A 83.8±0.8 b A 84.0±1.9 ab A 83.8±2.0 b A

Table 7

Effect of different fertilization treatments on nitrogen recovery rate"

施氮量
N rate (mg·kg-1 dry soil)
氮素回收率 Nitrogen recovery (%)
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure 化肥 Chemical fertilizer
40 21.11 b B 15.00 ab BC 8.23 b C 65.51 a A
80 28.74 ab B 18.53 b C 15.23 b C 53.16 b A
120 35.21 a B 25.64 ab B 16.69 ab B 43.17 c A
160 37.14 a AB 32.59 a AB 22.24 a B 43.75 bc A
200 30.37 ab A 18.30 b B 12.45 b C 27.27 d AB

Fig. 2

The response relation of chemical nitrogen application rate to wheat grain yield and other indicators"

Fig. 3

Nitrogen fertilizer replacement value of manures on basis of wheat grain yield and other indicators"

Fig. 4

Correlations relationship between N replacement value of different types of manure and N application rate"

[1] 牛新胜, 巨晓棠. 我国有机肥料资源及利用. 植物营养与肥料学报, 2017, 23(6): 1462-1479. doi:10.11674/zwyf.17430.
doi: 10.11674/zwyf.17430
NIU X S, JU X T. Organic fertilizer resources and utilization in China. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1462-1479. doi:10.11674/zwyf.17430. (in Chinese)
doi: 10.11674/zwyf.17430
[2] 姜茜, 王瑞波, 孙炜琳. 我国畜禽粪便资源化利用潜力分析及对策研究: 基于商品有机肥利用角度. 华中农业大学学报(社会科学版), 2018(4): 30-37, 166. doi:10.13300/j.cnki.hnwkxb.2018.04.004.
doi: 10.13300/j.cnki.hnwkxb.2018.04.004
JIANG Q, WANG R B, SUN W L. Potential evaluation and countermeasures on livestock manure resource utilization—based on perspective of commercial organic fertilizer utilization. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018(4): 30-37, 166. doi:10.13300/j.cnki.hnwkxb.2018.04.004. (in Chinese)
doi: 10.13300/j.cnki.hnwkxb.2018.04.004
[3] 李燕青, 温延臣, 林治安, 赵秉强. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响. 植物营养与肥料学报, 2019, 25(10): 1669-1678. doi:10.11674/zwyf.18417.
doi: 10.11674/zwyf.18417
LI Y Q, WEN Y C, LIN Z A, ZHAO B Q. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669-1678. doi:10.11674/zwyf.18417. (in Chinese)
doi: 10.11674/zwyf.18417
[4] MUÑOZ G R, KELLING K A, RYLANT K E, ZHU J. Field evaluation of nitrogen availability from fresh and composted manure. Journal of Environmental Quality, 2008, 37(3): 944-955. doi:10.2134/jeq2007.0219.
doi: 10.2134/jeq2007.0219 pmid: 18453417
[5] 杨蕊, 李裕元, 魏红安, 高茹, 石辉, 吴金水. 畜禽有机肥氮、磷在红壤中的矿化特征研究. 植物营养与肥料学报, 2011, 17(3): 600-607.
YANG R, LI Y Y, WEI H A, GAO R, SHI H, WU J S. Study on the nitrogen and phosphorus mineralization of livestock and chichken manure in red soil. Plant Nutrition and Fertilizer Science, 2011, 17(3): 600-607. (in Chinese)
[6] 赵明, 蔡葵, 赵征宇, 于秋华, 王文娇. 不同有机肥料中氮素的矿化特性研究. 农业环境科学学报, 2007, 26(S1): 146-149.
ZHAO M, CAI K, ZHAO Z Y, YU Q H, WANG W J. Characteristics of NO3--N and NH4+-N mineralization from different organic fertilizers. Journal of Agro-Environment Science, 2007, 26(S1): 146-149. (in Chinese)
[7] 李玲玲. 有机肥氮素有效性和替代化肥氮比例研究[D]. 北京: 中国农业科学院, 2011.
LI L L. Manure nitrogen availability and its substitution ratio for chemical fertilizer nitrogen[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[8] THOMSEN I K. Nitrogen use efficiency of 15N-labeled poultry manure. Soil Science Society of America Journal, 2004, 68(2): 538-544. doi:10.2136/sssaj2004.5380.
doi: 10.2136/sssaj2004.5380
[9] GALE E S, SULLIVAN D M, COGGER C G, BARY A I, HEMPHILL D D, MYHRE E A. Estimating plant-available nitrogen release from manures, composts, and specialty products. Journal of Environmental Quality, 2006, 35(6): 2321-2332. doi:10.2134/jeq2006.0062.
doi: 10.2134/jeq2006.0062 pmid: 17071903
[10] 刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 38-47.
LIU Z J, XIE J G, ZHANG K, WANG X F, HOU Y P, YIN C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin Province. Plant Nutrition and Fertilizer Science, 2011, 17(1): 38-47. (in Chinese)
[11] 李燕青. 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016.
LI Y Q. Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[12] 鲁如坤. 土壤-植物营养学原理和施肥. 北京: 化学工业出版社, 1998.
LU R K. Principles of Soil Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998. (in Chinese)
[13] 沈其荣, 沈振国, 史瑞和. 有机肥氮素的矿化特征及与其化学组成的关系. 南京农业大学学报, 1992(1): 59-64.
SHEN Q R, SHEN Z G, SHI R H. The characteristics of mineralization of nitrogen in organic manure and its relation to chemical composi tion of organic manure. Journal of Nanjing Agricultural University, 1992(1): 59-64. (in Chinese)
[14] 李玲玲, 李书田. 猪粪氮素有效性与替代化肥氮当量研究. 中国土壤与肥料, 2011(5): 60-64. doi:10.3969/j.issn.1673-6257.2011.05.012.
doi: 10.3969/j.issn.1673-6257.2011.05.012
LI L L, LI S T. Nitrogen availability of pig manure and its fertilizer equivalence. Soil and Fertilizer Sciences in China, 2011(5): 60-64. doi:10.3969/j.issn.1673-6257.2011.05.012. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2011.05.012
[15] MUÑOZ G R, KELLING K A, POWELL J M, SPETH P E. Comparison of estimates of first-year dairy manure nitrogen availability or recovery using nitrogen-15 and other techniques. Journal of Environmental Quality, 2004, 33(2): 719-727. doi:10.2134/jeq2004.7190.
doi: 10.2134/jeq2004.7190 pmid: 15074825
[16] SCHRÖDER J J, UENK D, HILHORST G J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant and Soil, 2007, 299(1/2): 83-99. doi:10.1007/s11104-007-9365-7.
doi: 10.1007/s11104-007-9365-7
[17] CAVALLI D, CABASSI G, BORRELLI L, GEROMEL G, BECHINI L, DEGANO L, MARINO GALLINA P. Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. European Journal of Agronomy, 2016, 73: 34-41. doi:10.1016/j.eja.2015.10.007.
doi: 10.1016/j.eja.2015.10.007
[18] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Analysis Methods of Soil and Agricultural Chemistry. Beijing: China Agriculture Scientech Press, 2000. (in Chinese)
[19] VAX SOEST P J. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of AOAC INTERNATIONAL, 1963, 46(5): 829-835. doi:10.1093/jaoac/46.5.829.
doi: 10.1093/jaoac/46.5.829
[20] MULVANEY R L, KHAN S A. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Science Society of America Journal, 2001, 65(4): 1284-1292. doi:10.2136/sssaj2001.6541284x.
doi: 10.2136/sssaj2001.6541284x
[21] 鲍艳宇, 周启星, 颜丽, 关连珠. 不同畜禽粪便堆肥过程中有机氮形态的动态变化. 环境科学学报, 2008, 28(5): 930-936. doi:10.13671/j.hjkxxb.2008.05.033.
doi: 10.13671/j.hjkxxb.2008.05.033
BAO Y Y, ZHOU Q X, YAN L, GUAN L Z. Dynamic changes of organic nitrogen forms during the composting of different manures. Acta Scientiae Circumstantiae, 2008, 28(5): 930-936. doi:10.13671/j.hjkxxb.2008.05.033. (in Chinese)
doi: 10.13671/j.hjkxxb.2008.05.033
[22] SØRENSEN P, JENSEN E S, NIELSEN N E. The fate of 15N-labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions. Plant and Soil, 1994, 162(1): 39-47. doi:10.1007/BF01416088.
doi: 10.1007/BF01416088
[23] GUTSER R, EBERTSEDER T, WEBER A, SCHRAML M, SCHMIDHALTER U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 439-446. doi:10.1002/jpln.200520510.
doi: 10.1002/jpln.200520510
[24] 唐继伟, 徐久凯, 温延臣, 田昌玉, 林治安, 赵秉强. 长期单施有机肥和化肥对土壤养分和小麦产量的影响. 植物营养与肥料学报, 2019, 25(11): 1827-1834.
TANG J W, XU J K, WEN Y C, TIAN C Y, LIN Z A, ZHAO B Q. Effects of organic fertilizer and inorganic fertilizer on the wheat yields and soil nutrients under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1827-1834. (in Chinese)
[25] 林治安, 赵秉强, 袁亮, Hwat Bing-So. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819. doi:10.3864/j.issn.0578-1752.2009.08.021.
doi: 10.3864/j.issn.0578-1752.2009.08.021
LIN Z A, ZHAO B Q, YUAN L, BING-SO H. Effects of organic manure and fertlizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. doi:10.3864/j.issn.0578-1752.2009.08.021. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2009.08.021
[26] ZHANG W J, XU M G, WANG B R, WANG X J. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystems, 2009, 84(1): 59-69. doi:10.1007/s10705-008-9226-7.
doi: 10.1007/s10705-008-9226-7
[27] 郭腾飞. 稻田秸秆分解的碳氮互作机理[D]. 北京: 中国农业科学院, 2019.
GUO T F. The mechanism of carbon and nitrogen interaction during rice straw decomposition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[28] 尚斌. 畜禽粪便热解特性试验研究[D]. 北京: 中国农业科学院, 2007.
SHANG B. Study on pyrolysis characteristics of animal manure[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[29] 李菊梅, 李生秀. 可矿化氮与各有机氮组分的关系. 植物营养与肥料学报, 2003, 9(2): 158-164. doi:10.3321/j.issn:1008-505X.2003.02.005.
doi: 10.3321/j.issn:1008-505X.2003.02.005
LI J M, LI S X. Relation of mineralizable N to organic N components. Plant Nutrition and Fertilizer Science, 2003, 9(2): 158-164. doi:10.3321/j.issn:1008-505X.2003.02.005. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2003.02.005
[30] 王媛, 周建斌, 杨学云. 长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响. 中国农业科学, 2010, 43(6): 1173-1180.
WANG Y, ZHOU J B, YANG X Y. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils. Scientia Agricultura Sinica, 2010, 43(6): 1173-1180. (in Chinese)
[31] 同延安, 赵营, 赵护兵, 樊红柱. 施氮量对冬小麦氮素吸收、转运及产量的影响. 植物营养与肥料学报, 2007, 13(1): 64-69. doi:10.3321/j.issn:1008-505X.2007.01.011.
doi: 10.3321/j.issn:1008-505X.2007.01.011
TONG Y A, ZHAO Y, ZHAO H B, FAN H Z. Effect of N rates on N uptake, transformation and the yield of winter wheat. Plant Nutrition and Fertilizer Science, 2007, 13(1): 64-69. doi:10.3321/j.issn:1008-505X.2007.01.011. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.01.011
[32] 张蓉. 有机栽培方式下不同基因型水稻氮素利用效率的协同与转变机理研究[D]. 扬州: 扬州大学, 2015.
ZHANG R. Synergy and transition mechanism of nitrogen use efficiency in various genotype rice under organic farming[D]. Yangzhou: Yangzhou University, 2015. (in Chinese)
[33] 韩晓日, 郑国砥, 刘晓燕, 孙振涛, 杨劲峰, 战秀梅. 有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征. 中国农业科学, 2007, 40(4): 765-772. doi:10.3321/j.issn:0578-1752.2007.04.016.
doi: 10.3321/j.issn:0578-1752.2007.04.016
HAN X R, ZHENG G D, LIU X Y, SUN Z T, YANG J F, ZHAN X M. Dynamics, sources and supply characteristic of microbial biomass nitrogen in soil applied with manure and fertilizer. Scientia Agricultura Sinica, 2007, 40(4): 765-772. doi:10.3321/j.issn:0578-1752.2007.04.016. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.04.016
[34] FRIEDEL J K, GABEL D. Microbial biomass and microbial C∶N ratio in bulk soil and buried bags for evaluating in situ net N mineralization in agricultural soils. Journal of Plant Nutrition and Soil Science, 2001, 164(6): 673-679. doi:10.1002/1522-2624(200112)164:6673:AID-JPLN673>3.0.CO;2-R.
doi: 10.1002/1522-2624(200112)164:6673:AID-JPLN673>3.0.CO;2-R
[35] 李浩然, 李雁鸣, 李瑞奇. 灌溉和施氮对小麦产量形成及土壤肥力影响的研究进展. 麦类作物学报, 2022(2): 1-15.
LI H R, LI Y M, LI R Q. Research progress on the effect of irrigation and nitrogen application on wheat yield formation and soil fertility. Journal of Triticeae Crops, 2022(2): 1-15. (in Chinese)
[36] HIJBEEK R, BERGE H F M, WHITMORE A P, BARKUSKY D, SCHRÖDER J J, ITTERSUM M K. Nitrogen fertiliser replacement values for organic amendments appear to increase with N application rates. Nutrient Cycling in Agroecosystems, 2018, 110(1): 105-115. doi:10.1007/s10705-017-9875-5.
doi: 10.1007/s10705-017-9875-5
[37] DELIN S, STENBERG B, NYBERG A, BROHEDE L. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use and Management, 2012, 28(3): 283-291. doi:10.1111/j.1475-2743.2012.00417.x.
doi: 10.1111/j.1475-2743.2012.00417.x
[38] MÖLLER K, MÜLLER T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences, 2012, 12(3): 242-257. doi:10.1002/elsc.201100085.
doi: 10.1002/elsc.201100085
[39] JENSEN L S. Animal manure fertiliser value, crop utilisation and soil quality impacts. //Animal Manure Recycling. Wiley, 2013: 295-328.
[40] 徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10): 3133-3139. doi:10.3864/j.issn.0578-1752.2008.10.029.
doi: 10.3864/j.issn.0578-1752.2008.10.029
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. doi:10.3864/j.issn.0578-1752.2008.10.029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.10.029
[41] 侯苗苗, 吕凤莲, 张弘弢, 周应田, 路国艳, Ayaz Muhammad, 黎青慧, 杨学云, 张树兰. 有机氮替代比例对冬小麦/夏玉米轮作体系作物产量及N2O排放的影响. 环境科学, 2018, 39(1): 321-330. doi:10.13227/j.hjkx.201707010.
doi: 10.13227/j.hjkx.201707010
HOU M M, LÜ F L, ZHANG H T, ZHOU Y T, LU G Y, MUHAMMAD A, LI Q H, YANG X Y, ZHANG S L. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in the winter wheat-summer maize rotation system. Environmental Science, 2018, 39(1): 321-330. doi:10.13227/j.hjkx.201707010. (in Chinese)
doi: 10.13227/j.hjkx.201707010
[42] XIA L L, LAM S K, YAN X Y, CHEN D L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environmental Science & Technology, 2017, 51(13): 7450-7457. doi:10.1021/acs.est.6b06470.
doi: 10.1021/acs.est.6b06470
[43] DEFRA, UK Farming Nutrient Management Fertilizer Recommendations for Agricultural and Horticultural Crops (RB209). Department for Environment, Food and Rural Affairs (Defra), 2010.
[44] 徐久凯, 袁亮, 温延臣, 张水勤, 林治安, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥磷素在冬小麦上替代化肥磷当量研究. 中国农业科学, 2021, 54(22): 4826-4839. doi:10.3864/j.issn.0578-1752.2021.22.010.
doi: 10.3864/j.issn.0578-1752.2021.22.010
XU J K, YUAN L, WEN Y C, ZHANG S Q, LIN Z A, LI Y T, LI H Y, ZHAO B Q. Phosphorus fertilizer replacement value of livestock manure in winter wheat. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839. doi:10.3864/j.issn.0578-1752.2021.22.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.22.010
[45] SIKORA L J, ENKIRI N K. Comparison of phosphorus uptake from poultry litter compost with triple superphosphate in codorus soil. Agronomy Journal, 2005, 97(3): 668-673. doi:10.2134/agronj2004.0008.
doi: 10.2134/agronj2004.0008
[1] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[2] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[9] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[10] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[11] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[14] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[15] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!