Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 438-450.doi: 10.3864/j.issn.0578-1752.2022.03.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and Application of Biomarkers Related to Maize Nitrogen Status

SHI Xi1,2(),NING LiHua2,GE Min2,WU Qi2,ZHAO Han1,2,*()   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210014
    2 Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/Provincial Key Laboratory of Agrobiology, Nanjing 210014
  • Received:2021-07-30 Accepted:2021-10-18 Online:2022-02-01 Published:2022-02-11
  • Contact: Han ZHAO E-mail:nancy1448374364@163.com;zhaohan@jaas.ac.cn

Abstract: 【Background】 The transcriptional levels of selected genes, referred as biomarkers, have been widely applied in clinical diagnosis processes. They were yet rarely used in agricultural cultivation for determining the nutrient statues in maize. 【Objective】 This study aims to explore the genes that can be used as biomarkers to reflect the nitrogen abundance in maize, so as to help the precise application of nitrogen fertilizer. 【Method】 Based on the data of gene chip and RNA-Seq under different nitrogen treatments, we chose the genes with high transcriptional abundance in response to N fluctuation as candidates. These genes were further screened by qRT-PCR and Kjeldahl methods using maize materials with different genotypes under different nitrogen treatments. The generalized linear models for predicting nitrogen status were constructed to accurately indicate the nitrogen nutrition status of maize. 【Result】 Firstly, we selected ten candidate genes with high expression level that are responsible for N fluctuation. Secondly, we found eight candidate genes that are differentially expressed under N treatment; Next, twenty-seven inbred and four hybrid lines covering a rich array of genetic diversity were selected to screen the candidate genes, and found that four genes stably expressed in different genotypes of maize. The expression abundance difference of these four genes were significantly correlated with total nitrogen content in panicle leaves through correlation analysis (R2 was greater than 0.6) with sufficient nitrogen and limited nitrogen treatment in thirty materials. According to the above results, these four genes can be used as nitrogen response biomarkers to indicate maize nitrogen status. The two-genes, three-genes and four-genes models were constructed by these four biomarker genes for predicting nitrogen status. The three-genes model was composed of Zm000011d024281 (X2), Zm000011d039049 (X3) and Zm000011d037680 (X4) were the most useful model for predicting the nitrogen status of maize plants, and the functional relationship was Y=1.143+0.017X2-0.302X3+0.017X4. Finally, the prediction function of the three-genes model was verified with six hybrids planted in the field. The results show that the three-genes model can accurately diagnose the nitrogen nutrition status of maize planted in the field environment. 【Conclusion】 We explored and verified four biomarker genes highly responsive to maize nitrogen status. The three-genes model works best in predicting the maize nitrogen nutrition status. The development of the biomarker can effectively and real-timely monitor the nitrogen status of maize plants, thus is helpful for optimizing the use of nitrogen fertilizer, thereby maximize the crop yield at the lowest cost.


Key words: Zea mays, biomarker, nitrogen, panicle leaf, determination of total nitrogen, generalized linear models

Table 1

The primer sequences used in this study"

基因编号 Gene No. 基因 ID Gene ID 正向引物序列 Forward primer sequence (5′-3′) 反向引物序列 Reverse primer sequence (5′-3′)
NM01 Zm00001d009599 TCAAGTCTGCCGAGGAGGTG CGGGTCCAGAATCCCTGTGTC
NM02 Zm00001d022630 ACACCGTACCGTCGTCTCTG TCGTTGGGCATCATATCACAGTG
NM03 Zm00001d024281 TGGTCCGACAGGTTCTACAAGG AGTGCTCGCTGGTGTGCTC
NM04 Zm00001d045519 GAAGAAGGGCACCACCAT TTCTCTGGATCGTCTCCCT
NM05 Zm00001d026696 TGGATGAAGCAGCTGATGTT GAAATTCTTGAAGGCGTGGATG
NM06 Zm00001d039049 CTACGGCGAGGGCACATCC GACAGACAGACAGAGGTCCATCC
NM07 Zm00001d037680 CGCACCGAGGACCAGAGG CAGCGCACCTCCTCAGCAG
NM08 Zm00001d042867 GCGACCAGTGCGGCATTTG ATCATCAGTACGACGGGTGCAG
NM09 Zm00001d003924 GTCGCCTACGTCGAGTTC GTTGCGTGTAGATGAAGTTGTC
NM10 Zm00001d002052 ATTGCCATCCACGGCGG TGCGCGAAGCGGAGGAGGA
NM11 Zm00001d006438 CACCCGGTTGGCTATGCTGTAC TGTGCTCCACCAGAAGGCTGAC

Table 2

Preliminary screening of candidate genes for nitrogen responsive biomarkers"

阶段
Phase
数据处理步骤
Data-processing step
输入探针数量
No. of input probe set
输出探针数量
No. of output probe set
数据过滤
Data filtering
(1)Log2强度值>9.0 Log2 intensity>9.0 84246 11891
(2)t-test P<0.01 11891 6632
(3)基因表达强度差异>10或<0.1
The fold difference of gene expression>10 or <0.1
6632 69
氮响应生物标记物候选基因筛选
Screened the candidate genes for nitrogen responsive biomarkers
(1)筛选在2组数据中均显著响应氮处理的候选基因
Screened the candidate genes that significantly responded to nitrogen treatment in both groups of data
63 25
(2)MAIZE GDB筛选叶片中表达的候选基因
Screened candidate genes expressed in leaves by MAIZE GDB
25 10

Fig. 1

B73 material responded to N1 and N0 nitrogen treatment A, B: Plant type difference of B73 under N1 and N0 nitrogen treatment; C: Difference in total nitrogen content of B73 under N1 and N0 nitrogen treatment; D: Expression of 10 candidate genes responded to N1 and N0 nitrogen treatment"

Fig. 2

Expression of four candidate genes in the test maize varieties"

Fig. 3

Determination of total nitrogen and correlation analysis A: Determination of total nitrogen in panicle leaf by Kjeldahl method; B-E: Correlation analysis between expression abundance of NM02, NM03, NM06, NM07 genes and total nitrogen content"

Table 3

Four biomarker candidate genes"

基因编号
Gene No.
基因ID
Gene ID
功能
Function
N0处理后基因表达丰度变化
Changes of gene expression abundance under N0 treatment
NM02 Zm00001d022630 编码KNOTTED INDUCED1蛋白 Coding KNOTTED INDUCED 1 protein 下调 Down-regulated
NM03 Zm00001d024281 编码多胺氧化酶1 Coding POLYAMINE OXIDASE 1 下调 Down-regulated
NM06 Zm00001d039049 编码MYB蛋白Coding MYB protein 上调 Up-regulated
NM07 Zm00001d037680 编码营养贮藏蛋白2 Coding VEGETATIVE STORAGE PROTEIN 2 下调 Down-regulated

Table 4

Model function relationship"

广义线性模型
Generalized linear models
函数关系
Function relationship
相关性
Correlation (R2)
P
P value
两基因模型 The two-genes model Y=1.152–0.306X3+0.020X4 0.51 7.283E-9
三基因模型 The three-genes model Y=1.143+0.017X2–0.302X3+0.017X4 0.53 1.870E-8
四基因模型 The four-genes model Y=1.142+0.020X2–0.303X3+0.017X4 0.53 8.411E-8

Fig. 4

The generalized linear model A: The two-genes model; B: The three-genes model; C: The four-genes model"

Fig. 5

Nitrogen content predicted by the three-genes model"

[1] YAN X, JIN J Y, LIANG M Z. Grain crop fertilization status and factors influencing farmers’ decision making on fertilizer use: China case study. Agricultural Science & Technology, 2016, 17(10):2394-2440.
[2] 赵英杰. 花生—春玉米轮作的肥料效应及减量优化施肥技术研究[D]. 保定: 河北农业大学, 2019.
ZHAO Y J. Study on fertilizer effect and reduction fertilization technology of peanut-spring maize rotation[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese)
[3] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570
[4] LIU X J, ZHANG Y, HAN W X, TANG A H, SHEN J L, CUI Z L, VITOUSEK P, ERISMAN J W, GOULDING K, CHRISTIE P, FANGMEIER A, ZHANG F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438):459-462.
doi: 10.1038/nature11917
[5] ELLIOTT D E, REUTER D J, GROWDEN B, SCHULTZ J E, MUHLHAN P H, HEANES J G. Improved strategies for diagnosing and correcting nitrogen deficiency in spring wheat. Journal of Plant Nutrition, 1987, 10(9):1761-1770.
doi: 10.1080/01904168709363716
[6] PATTON C J, TRUITT E P. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of the total phosphorus by a Kjeldahl digestion method and an automated colorimetric finish that includes dialysis. Journal of the American Medical Association, 1992, 15(39):92-146.
[7] 宋文冲, 胡春胜, 程一松, 代辉. 作物氮素营养诊断方法研究进展. 土壤通报, 2006(2):2369-2372.
SONG W C, HU C S, CHENG Y S, DAI H. Research progress on diagnostic methods of crop nitrogen nutrition. Chinese Journal of Soil Science, 2006(2):2369-2372. (in Chinese)
[8] WOOD C W, TRACY P W, REEVES D W, EDMISTEN K L. Determination of cotton nitrogen status with a hand-held chlorophyll meter. Journal of Plant Nutrition, 1992, 15(9):1435-1448.
doi: 10.1080/01904169209364409
[9] TURNER F T, JUND M F. Chlorophyll meter to predict nitrogen top dress requirement for semidwarf rice. Agronomy Journal, 1991, 83(5):926-928.
doi: 10.2134/agronj1991.00021962008300050029x
[10] FOLLETT R H, FOLLETT R F, HALVORSON A D. Use of a chlorophyll meter to evaluate the nitrogen status of dryland winter wheat. Communications in Soil Science & Plant Analysis, 1992, 23(7/8):687-697.
[11] CHAPMAN S C, BARRETO H J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal, 1997, 89(4):557-562.
doi: 10.2134/agronj1997.00021962008900040004x
[12] 唐延林, 王人潮, 张金恒, 王珂. 高光谱与叶绿素计快速测定大麦氮素营养状况研究. 麦类作物学报, 2003, 23(1):63-66.
TANG Y L, WANG R C, ZHANG J H, WANG K. Study on determining nitrogenous levels of barley by hyperspectral and chlorophyll meter. Journal of Triticeae Crops, 2003, 23(1):63-66. (in Chinese)
[13] TURNER F T, JUND M F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter method. Australian Journal of Experimental Agriculture, 1994, 34(7):1001-1005.
doi: 10.1071/EA9941001
[14] OLAV H B, SOLHAUG K A. Effect of irradiance on chlorophyll estimation with the minolta SPAD-502 leaf chlorophyll meter. Annals of Botany, 1998(3):389-392.
[15] SATHYABAARATHI R, USHASHI B, DEVI D G, ROOPARANI K, CHANDRANI T, DIPSHIKHA C, NARAYANASWAMY B K, AMIT S, NAGASUMA C. VB10, a new blood biomarker for differential diagnosis and recovery monitoring of acute viral and bacterial infections. EBioMedicine, 2021, 67(2):103352.
doi: 10.1016/j.ebiom.2021.103352
[16] GWENAELLE M, MAYJONADE B, DIDIER V. A biomarker based on gene expression indicates plant water status in controlled and natural environments. Plant Cell & Environment, 2013, 36(12):2175-2189.
[17] KENKEL C D, SHERIDAN C, LEAL M C, BHAGOOLI R, CASTILLO K D, KURATA N, MCGINTY E, GOULET T L, MATZ M V. Diagnostic gene expression biomarkers of coral thermal stress. Molecular Ecology Resources, 2014, 14(4):667-678.
doi: 10.1111/men.2014.14.issue-4
[18] YANG X F, WU J R, ZIEGLER T E, YANG X, ZAYED A, RAJANI M S, ZHOU D F, BASRA A S, SCHACHTMAN D P, PENG M S, ARMSTRONG C L, CALDO R A, MORRELL J A, LACY M, STAUB J M. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiology, 2011, 157(4):1841-1852.
doi: 10.1104/pp.111.187898
[19] 葛敏, 吕远大, 张体付, 周玲, 林峰, 赵涵. 玉米氮素敏感性差异自交系的表达谱分析. 作物学报, 2016, 42(10):1487-1494.
doi: 10.3724/SP.J.1006.2016.01487
GE M, LÜ Y D, ZHANG T F, ZHOU L, LIN F, ZHAO H. Global transcriptome analysis in high- and low-nitrogen responsive inbred lines of maize. Acta Agronomica Sinica, 2016, 42(10):1487-1494. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01487
[20] 何磊, 许利剑. 生物标记物在胃癌诊断及预后中作用的研究进展. 医学研究生学报, 2020, 33(9):1004-1008.
HE L, XU L J. Research progress on the role of biomarkers in the diagnosis and prognosis of gastric cancer. Journal of Medical Postgraduates, 2020, 33(9):1004-1008. (in Chinese)
[21] 潘晓晗, 郝春华, 陈芙蓉, 王维亭, 黄长江, 汤立达. 脑梗死生物标志物研究进展. 现代药物与临床, 2020, 35(1):189-196.
PAN X H, HAO C H, CHEN F R, WANG W T, HUANG C J, TANG L D. Research progress on biomarkers for cerebral infraction. Drugs & Clinic, 2020, 35(1):189-196. (in Chinese)
[22] 刘文娟, 常丽娟, 岳丽杰, 宋君, 张富丽, 王东, 吴佳蔚, 郭灵安, 雷绍荣. 两个玉米品种维管束鞘叶绿体的非光化学淬灭对干旱胁迫的响应. 中国农业科学, 2020, 53(8):1532-1544.
LIU W J, CHANG L J, YUE L J, SONG J, ZHANG F L, WANG D, WU J W, GUO L A, LEI S R. Response of non-photochemical quenching in bundle sheath chloroplasts of two maize hybrids to drought stress. Scientia Agricultura Sinica, 2020, 53(8):1532-1544. (in Chinese)
[23] 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017, 50(12):2294-2304.
BIAN D H, LIU M X, NIU H F, WEI Z B, DU X, CUI Y H. Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L.) in the Huang-huai-hai plain. Scientia Agricultura Sinica, 2017, 50(12):2294-2304. (in Chinese)
[24] 周琦, 张富仓, 李志军, 强生才, 田建柯, 李国栋, 范军亮. 施氮时期对夏玉米生长、干物质转运与产量的影响. 干旱地区农业研究, 2018, 36(1):76-82.
ZHOU Q, ZHANG F C, LI Z J, QIANG S C, TIAN J K, LI G D, FAN J L. Effects of nitrogen application at different stages on growth, yield, and dry matter transportation of summer maize. Agricultural Research in the Arid Areas, 2018, 36(1):76-82. (in Chinese)
[25] 常程, 刘晶, 隋阳辉, 张书萍, 史磊, 肖万欣, 王和君, 王金艳, 徐亮. 施氮时期对春玉米果穗不同粒位籽粒发育及产量的影响. 辽宁农业科学, 2021, 2(2):8-12.
CHANG C, LIU J, SUI Y H, ZHANG S P, SHI L, XIAO W X, WANG H J, WANG J Y, XU L. Effect of nitrogen application period on grain development in different ear positions and yield of spring maize. Liaoning Agricultural Sciences, 2021, 2(2):8-12. (in Chinese)
[26] 宋建民, 田纪春, 赵世杰. 植物光合碳和氮代谢之间的关系及其调节. 植物生理学通讯, 1998, 34(3):230-238.
SONG J M, TIAN J C, ZHAO S J. Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation. Plant Physiology Communications, 1998, 34(3):230-238. (in Chinese)
[27] 张凤路, 江亚丽, 赵国顺, 张俊花. 14C-同化物在玉米果穗上的分布与籽粒败育关系. 作物学报, 2006, 32(7):1104-1106.
ZHANG F L, JIANG Y L, ZHAO G S, ZHANG J H. Relationship between distribution of 14C-assimilates and kernel abortion in maize. Acta Agronomica Sinica, 2006, 32(7):1104-1106. (in Chinese)
[28] 汤继华, 谢惠玲, 黄绍敏, 胡彦民, 刘宗华, 季洪强, 寇志安. 缺氮条件下玉米自交系叶绿素含量与光合效率的变化. 华北农学报, 2005, 20(5):10-12.
TANG J H, XIE H L, HUANG S M, HU Y M, LIU Z H, JI H Q, KOU Z A. The changes of chlorophyll content and photosynthetic productivity in maize inbred lines under the low-nitrogen stress. Acta Agriculturae Boreali-Sinica, 2005, 20(5):10-12. (in Chinese)
[29] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9):2624-2632.
LÜ L H, ZHAO M, ZHAO J R, TAO H B, WANG P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9):2624-2632. (in Chinese)
[30] LIU T B, KIM D W, NIITSU M, BERBERICH M, KUSANO T. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of POLYAMINE OXIDASE 5. Plant Signaling & Behavior, 2014, 9(9):1559-2324.
[31] DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005
[32] STASWICK P E. Novel regulation of vegetative storage protein genes. The Plant Cell, 1990, 2(1):1-6.
doi: 10.2307/3869045
[33] GREENE B, WALKO R, HAKE S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics, 1994, 138(4):1275-1285.
doi: 10.1093/genetics/138.4.1275
[34] TSAI C Y, HUBER D M, GOVER D V. Relationship of N deposition to grain yield and N response of three maize hybrids. Crop Science, 1984, 24(2):277-281.
doi: 10.2135/cropsci1984.0011183X002400020016x
[35] 向春阳, 常强, 马兴林, 关义新, 凌碧莹, 张宝石. 玉米不同基因型对氮营养胁迫的反应. 黑龙江八一农垦大学学报, 2002, 14(4):5-7.
XIANG C Y, CHANG Q, MA X L, GUAN Y X, LING B Y, ZHANG B S. Response to nitrogen stress on maize genotypes. Journal of Heilongjiang Bayi Agricultural University, 2002, 14(4):5-7. (in Chinese)
[1] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[2] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[3] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[11] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[12] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[13] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[14] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[15] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!