Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4552-4561.doi: 10.3864/j.issn.0578-1752.2021.21.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages

GU BoWen1(),YANG JinFeng1,*(),LU XiaoLing2,WU YiHui1,LI Na1,LIU Ning1,AN Ning1,HAN XiaoRi1,*()   

  1. 1College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources/Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture and Rural Affairs, Shenyang 110866;
    2Marine College, Shandong University, Weihai 264209, Shandong
  • Received:2020-11-25 Accepted:2021-01-04 Online:2021-11-01 Published:2021-11-09
  • Contact: JinFeng YANG,XiaoRi HAN E-mail:2019220426@stu.syau.edu.cn;yangjinfeng7672@syau.edu.cn;hanxr@syau.edu.cn

Abstract:

【Objective】By measuring the photosynthetic performance indexes of functional leaves of peanut at different growth stages, the effects of different amounts of biochar on electron transport, light energy absorption and redox properties of peanut leaves photosome II were studied for 9 years in a row. Meanwhile, the change trend of leaf oxygen evolution complex (OEC) damage degree was observed to provide the theoretical support for guiding peanut fertilization. 【Method】 A field experiment was conducted in 2011 with three treatments: CK (no fertilization), C15 (biochar 225 kg·hm-2), and C50 ( biochar 750 kg·hm-2). In 2019, the peanut functional leaves at different growth stages were collected, and the photosynthetic indexes of leaves after dark treatment were measured by M-PEA-2 instrument.【Result】By analyzing the chlorophyll fluorescence parameters of peanut functional leaves at different growth stages, it was found that continuous application of biochar had a significant effect on the rapid chlorophyll fluorescence kinetic curve (OJIP curve). The relative variable fluorescence intensity difference (ΔVt) of K point treated with C15 was -0.002 and -0.020 at seedling stage and flowering and needle setting stage, and -0.024 and -0.053 at pod setting stage and maturity stage. Compared with CK treatment, the relative variable fluorescence intensity of K point in functional leaves of peanut at different growth stages was significantly decreased; with the increase of biochar dosage, the decrease range of K point at flowering, needling and mature stages increased in varying degrees. The chlorophyll fluorescence parameters of peanut functional leaves had a positive response to the continuous application of biochar at the flowering, needling and maturity stages. Compared with CK treatment, the relative variable fluorescence intensity at the J-step (VJ) under C15 treatment decreased by 23.9%, the approximated initial slope of the fluorescence transient (MO) decreased by 32.1%, and the rate at which trapped excitons transfer electrons to other electron receptors downstream of QA in the electron transport chain (ΨO) increased by 25.0%.The performance index on absorption basis (PIABS ) increased by 154.6%, which alleviated the damage of oxygen releasing complex (OEC) in peanut functional leaves and improved the ability of electron transfer from primary quinone receptor (QA) to other electron receptors downstream of electron transport chain, and its effect on chlorophyll fluorescence performance increased. With the increase of biochar dosage, the effect was more obvious. At the mature stage, the effects of biochar application on chlorophyll fluorescence characteristics of peanut leaves were basically consistent with those at flowering and needling stage. The specific performance was as follows: the relative variable fluorescence intensity at the J-step (VJ) and the approximated initial slope of the fluorescence transient (MO) under C15 treatment were significantly lower than those under CK treatment 12.5% and 16.0%, respectively, and the trapped excitons transferred electrons into the electron transfer chain (QA).Compared with CK treatment, the relative variable fluorescence intensity at the J-step (VJ) decreased by 13.2%, and the approximated initial slope of the fluorescence transient (MO) decreased by 19.4%. The probability that a trapped exciton moved an electron into the electron transport chain beyond QA (ΨO) was 8.2%, and the performance index on absorption basis (PIABS) increased by 79.7%.【Conclusion】Continuous application of biochar could increase the electron transfer efficiency of photosystem II in functional leaves of peanut at the time of flowering and maturity, and improve the photosynthetic performance of functional leaves of peanut during this period.

Key words: biochar, peanut, chlorophyll fluorescence, chlorophyll a fluorescence (OJIP) transient

Fig. 1

The curve of relative variable fluorescence intensity difference (ΔVt) of peanut functional leaves applied with different amounts of biochar at different growth stages (a. Seedling stage; b. Flowering and needling stage; c. Podding stage; d. Maturation stage)"

Fig. 2

Relative variable fluorescence intensity at the J-step (VJ) of peanut functional leaves in different growth stages and treatments Different small letters within a column indicate significantly different at the 0.05 level"

Fig. 3

Approximated initial slope of the fluorescence transient (MO) of peanut functional leaves in different growth stages and treatments Different small letters within a column indicate significantly different at the 0.05 level"

Fig. 4

Performance index on absorption basis (PIABS) of peanut functional leaves in different growth stages and treatments Different small letters within a column indicate significantly different at the 0.05 level"

Fig. 5

Probability that a trapped exciton moves an electron into the electron transport chain beyond QA (ψo) of peanut functional leaves in different growth stages and treatments Different small letters within a column indicate significantly different at the 0.05 level"

[1] 秦立琴, 张悦丽, 郭峰, 万书波, 孟庆伟, 李新国. 强光下高温与干旱胁迫对花生光系统的伤害机制. 生态学报, 2011, 31(7):1835-1843.
QIN L Q, ZHANG Y L, GUO F, WAN S B, MENG Q W, LI X G. Damaging mechanisms of peanut(Arachis hypogaea L.)photosystems caused by high-temperature and drought under high irradiance. Acta Ecologica Sinica, 2011, 31(7):1835-1843. (in Chinese)
[2] 万素梅, 贾志宽, 杨宝平. 苜蓿光合速率日变化及其与环境因子的关系. 草地学报, 2009, 17(1):27-31. doi: 10.3969/j.issn.1007-0435.2009.01.006.
doi: 10.3969/j.issn.1007-0435.2009.01.006
WAN S M, JIA Z K, YANG B P. Relationship between diurnal changes of alfalfa net photosynthetic rate and environmental factors. Acta Agrectir Sinica, 2009, 17(1):27-31. doi: 10.3969/j.issn.1007-0435.2009.01.006. (in Chinese)
doi: 10.3969/j.issn.1007-0435.2009.01.006
[3] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26(10):2186-2196. doi: 10.3321/j.issn:1000-4025.2006.10.037.
doi: 10.3321/j.issn:1000-4025.2006.10.037
LI X, FENG W, ZENG X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10):2186-2196. doi: 10.3321/j.issn:1000-4025.2006.10.037. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2006.10.037
[4] 战秀梅, 彭靖, 王月, 刘轶飞, 陈坤, 韩晓日, 王恒飞, 蔺文成, 李喜研. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用. 植物营养与肥料学报, 2015, 21(6):1633-1641. doi: 10.11674/zwyf.2015.0631.
doi: 10.11674/zwyf.2015.0631
ZHAN X M, PENG J, WANG Y, LIU Y F, CHEN K, HAN X R, WANG H F, LIN W C, LI X Y. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields. Plant Nutrition and Fertilizer Science, 2015, 21(6):1633-1641. doi: 10.11674/zwyf.2015.0631. (in Chinese)
doi: 10.11674/zwyf.2015.0631
[5] 宋婷, 张谧, 高吉喜, 韩永伟. 快速叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 生物学杂志, 2011, 28(6):81-86. doi: 10.3969/j.issn.2095-1736.2011.06.081.
doi: 10.3969/j.issn.2095-1736.2011.06.081
SONG T, ZHANG M, GAO J X, HAN Y W. Fast chlorophyll fluorescence kinetics and its application in plant physiology research. Journal of Biology, 2011, 28(6):81-86. doi: 10.3969/j.issn.2095-1736.2011.06.081. (in Chinese)
doi: 10.3969/j.issn.2095-1736.2011.06.081
[6] 赵丽娟, 李欢, 张洪, 王创云. 土壤中残留氯吡嘧磺隆对红芸豆幼苗光合作用的影响. 山西农业科学, 2019, 47(1):75-77. doi: 10.3969/j.issn.1002-2481.2019.01.19.
doi: 10.3969/j.issn.1002-2481.2019.01.19
ZHAO L J, LI H, ZHANG H, WANG C Y. Effects of halosulfuron-methyl residues in soil on photosynthesis of red kidney bean seedlings. Journal of Shanxi Agricultural Sciences, 2019, 47(1):75-77. doi: 10.3969/j.issn.1002-2481.2019.01.19. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2019.01.19
[7] KALTRINA R, KRISTI B, DEA Z, LULEZIM S, RENÉ H S, JAKOB S, REINHARD B. Alpine ecology, plant biodiversity and photosynthetic performance of marker plants in a nitrogen gradient induced by Alnus bushes. BMC Ecology, 2020, 20(1):23. doi: 10.1186/s12898-020-00292-9.
doi: 10.1186/s12898-020-00292-9
[8] 尹赜鹏, 王珍琪, 齐明芳, 孟思达, 李天来. 外施褪黑素对盐胁迫下番茄幼苗光合功能的影响. 生态学杂志, 2019, 38(2):467-475. doi: 10.13292/j.1000-4890.201902.023.
doi: 10.13292/j.1000-4890.201902.023
YIN Z P, WANG Z Q, QI M F, MENG S D, LI T L. Effects of melatonin application on photosynthetic function in tomato seedlings under salt stress. Chinese Journal of Ecology, 2019, 38(2):467-475. doi: 10.13292/j.1000-4890.201902.023. (in Chinese)
doi: 10.13292/j.1000-4890.201902.023
[9] 刘超, 袁野, 盖树鹏, 张玉喜, 刘春英, 郑国生. 强光高温交叉胁迫对牡丹叶片PSⅡ和PSⅠ之间能量传递的影响. 园艺学报, 2014, 41(2):311-318. doi: 10.16420/j.issn.0513-353x.2014.02.006.
doi: 10.16420/j.issn.0513-353x.2014.02.006
LIU C, YUAN Y, GAI S P, ZHANG Y X, LIU C Y, ZHENG G S. Effects of strong light coupled with high temperature treatment on energy transfer between PSⅡ and PSⅠ in tree peony leaves. Acta Horticulturae Sinica, 2014, 41(2):311-318. doi: 10.16420/j.issn.0513-353x.2014.02.006. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014.02.006
[10] 李冬梅, 葛云花. 淹水胁迫对紫丁香幼苗叶片PSⅡ光化学活性的影响. 安徽农业科学, 2014, 42(13):3787-3790. doi: 10.13989/j.cnki.0517-6611.2014.13.098.
doi: 10.13989/j.cnki.0517-6611.2014.13.098
LI D M, GE Y H. Effects of flooding stress on PSⅡ photochemistry activity in leaves of Syringa oblata seedlings. Journal of Anhui Agricultural Sciences, 2014, 42(13):3787-3790. doi: 10.13989/j.cnki.0517-6611.2014.13.098. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2014.13.098
[11] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16):3324-3333.
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013, 46(16):3324-3333. (in Chinese)
[12] GLASER B, HAUMAIER L, GUGGENBERGER G, ZECH W. Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Organic Geochemistry, 1998, 29(4):811-819. doi: 10.1016/S0146-6380(98)00194-6.
doi: 10.1016/S0146-6380(98)00194-6
[13] 张阿凤, 潘根兴, 李恋卿. 生物黑炭及其增汇减排与改良土壤意义. 农业环境科学学报, 2009, 28(12):2459-2463. doi: 10.3321/j.issn:1672-2043.2009.12.004.
doi: 10.3321/j.issn:1672-2043.2009.12.004
ZHANG A/E/E F, PAN G X, LI L Q. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimafion. Journal of Agro-Environment Science, 2009, 28(12):2459-2463. doi: 10.3321/j.issn:1672-2043.2009.12.004. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2009.12.004
[14] GERARD C, ZOFIA K, STAVROS K, KIMON C, ORJAN G. Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environmental Science & Technology, 2004, 38(13):3632-3640. (in Chinese)
doi: 10.1021/es0498742
[15] CHENG C H, LEHMANN J, THIES J E, BURTON S D, ENGELHARD M H. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022.
doi: 10.1016/j.orggeochem.2006.06.022
[16] 李明, 李忠佩, 刘明, 江春玉, 吴萌. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学, 2015, 48(7):1361-1369. doi: 10.3864/j.issn.0578-1752.2015.07.11.
doi: 10.3864/j.issn.0578-1752.2015.07.11
LI M, LI Z P, LIU M, JIANG C Y, WU M. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil. Scientia Agricultura Sinica, 2015, 48(7):1361-1369. doi: 10.3864/j.issn.0578-1752.2015.07.11. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.07.11
[17] 袁帅, 赵立欣, 孟海波, 沈玉君. 生物炭主要类型、理化性质及其研究展望. 植物营养与肥料学报, 2016, 22(5):1402-1417. doi: 10.11674/zwyf.14539.
doi: 10.11674/zwyf.14539
YUAN S, ZHAO L X, MENG H B, SHEN Y J. The main types of biochar and their properties and expectative researches. Journal of Plant Nutrition and Fertilizer, 2016, 22(5):1402-1417. doi: 10.11674/zwyf.14539. (in Chinese)
doi: 10.11674/zwyf.14539
[18] WANG Y, PAN F, WANG G, ZHANG G, WANG Y, CHEN X, MAO Z. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Elsevier, 2014, 175:9-15.doi: 10.1016/j.scienta.2014.05.029.
doi: 10.1016/j.scienta.2014.05.029
[19] 曾爱. 生物炭对塿土土壤理化性质及小麦生长的影响[D]. 杨凌: 西北农林科技大学, 2013.
ZENG A. Effects of biochar on soil physical and chemical properties and the growth of wheat in manural loessial soil[D]. Yangling: Northwest A & F University, 2013. (in Chinese)
[20] JEFFERY S, VERHEIJEN F G A, VELDE M V D, BASTOS A C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 2011, 144(1):175-187. doi: 10.1016/j.agee.2011.08.015.
doi: 10.1016/j.agee.2011.08.015
[21] 杨劲峰, 鲁豫, 刘小华, 王月, 李娜, 黄玉茜, 韩晓日. 施用炭基缓释肥对花生光合功能的影响. 植物营养与肥料学报, 2017, 23(2):408-415. doi: 10.11674/zwyf.16120.
doi: 10.11674/zwyf.16120
YANG J F, LU Y, LIU X H, WANG Y, LI N, HUANG Y Q, HAN X R. Effects of biochar-based slow-release fertilizer on photosynthetic characters of peanut functional leaves. Plant Nutrition and Fertilizer Science, 2017, 23(2):408-415. doi: 10.11674/zwyf.16120. (in Chinese)
doi: 10.11674/zwyf.16120
[22] 王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜. 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20(2):280-289. doi: 10.11674/zwyf.2014.0203.
doi: 10.11674/zwyf.2014.0203
WANG S, HAN X R, ZHAN X M, YANG J F, WANG Y, LIU Y F, LI N. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Plant Nutrition and Fertilizer Science, 2014, 20(2):280-289. doi: 10.11674/zwyf.2014.0203. (in Chinese)
doi: 10.11674/zwyf.2014.0203
[23] 李鹏民. 快速叶绿素荧光诱导动力学在植物逆境生理研究中的应用[D]. 泰安: 山东农业大学, 2007.
LI P M. Application of chlorophyll a fluorescence transient in study of plant physiology under stress conditions[D]. Taian: Shandong Agricultural University, 2007. (in Chinese)
[24] 张谧, 王慧娟, 于长青. 超旱生植物沙冬青高温胁迫下的快速叶绿素荧光动力学特征. 生态环境学报, 2009, 18(6):2272-2277. doi: 10.16258/j.cnki.1674-5906.2009.06.007.
doi: 10.16258/j.cnki.1674-5906.2009.06.007
ZHANG M, WANG H J, YU C Q. The examination of high temperature stress of Ammopiptanthus mongolicus by chlorophyll fluorescence induction parameters. Ecology and Environmental Sciences, 2009, 18(6):2272-2277. doi: 10.16258/j.cnki.1674-5906.2009.06.007. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2009.06.007
[25] 李鹏民, 高辉远, Reto J. Strasser. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6):559-566.
LI P M, GAO H Y, STRASSER R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiologica Sinica, 2005, 31(6):559-566. (in Chinese)
[26] 高晓宁, 韩晓日, 战秀梅, 孙振涛, 姜琳琳, 陈赫. 长期不同施肥处理对棕壤氮储量的影响. 植物营养与肥料学报, 2009, 15(3):567-572. doi: 10.3321/j.issn:1008-505X.2009.03.011
doi: 10.3321/j.issn:1008-505X.2009.03.011
GAO X N, HAN X R, ZHAN X M, SUN Z T, JIANG L L, CHEN H. Effect of long-term fertilization on total nitrogen storage in a brown soil. Plant Nutrition and Fertilizer Science, 2009, 15(3):567-572. doi: 10.3321/j.issn:1008-505X.2009.03.011 (in Chinese)
doi: 10.3321/j.issn:1008-505X.2009.03.011
[27] SRIVASTAVA A, STRASSER R J. Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 1996, 148(3/4):445-455. doi: 10.1016/S0176-1617(96)80278-1.
doi: 10.1016/S0176-1617(96)80278-1
[28] SRIVASTAVA A, GUISSÉ B, GREPPIN H, STRASSER R J. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1997, 1320(1):95-106. doi: 10.1016/S0005-2728(97)00017-0.
doi: 10.1016/S0005-2728(97)00017-0
[29] 刘倩倩, 马寿宾, 冯希环, 孙艳, 衣艳君, 刘维信. 嫁接对高温和低温胁迫下辣椒幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2016, 43(5):885-896. doi: 10.16420/j.issn.0513-353x.2015- 0970.
doi: 10.16420/j.issn.0513-353x.2015- 0970
LIU Q Q, MA S B, FENG X H, SUN Y, YI Y J, LIU W X. Effects of grafting on the fast chlorophyll fluorescence induction dynamics of pepper seedlings under temperature stress. Acta Horticulturae Sinica, 2016, 43(5):885-896. doi: 10.16420/j.issn.0513-353x.2015-0970. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015- 0970
[30] 张会慧, 龙静泓, 王均睿, 吴绪叶, 马松良, 宁强, 许楠. 不同种类盐胁迫对高粱幼苗生长及叶片光合机构功能的影响. 生态学杂志, 2019, 38(1):161-172. doi: 10.13292/j.1000-4890.201901.019.
doi: 10.13292/j.1000-4890.201901.019
ZHANG H H, LONG J H, WANG J R, WU X Y, MA S L, NING Q, XU N. Effects of different salt stress conditions on growth of Sorghum seedlings and function of leaf photosynthetic apparatus. Chinese Journal of Ecology, 2019, 38(1):161-172. doi: 10.13292/j.1000-4890.201901.019. (in Chinese)
doi: 10.13292/j.1000-4890.201901.019
[31] 赵和丽, 杨再强, 王明田, 韦婷婷, 王琳, 孙擎, 张旭然. 高温高湿胁迫及恢复对番茄快速荧光诱导动力学的影响. 生态学杂志, 2019, 38(8):2405-2413. doi: 10.13292/j.1000-4890.201908.029.
doi: 10.13292/j.1000-4890.201908.029
ZHAO H L, YANG Z Q, WANG M T, WEI T T, WANG L, SUN Q, ZHANG X R. Effects of high temperature and high humidity stress and restoration on the fast fluorescence induction dynamics of tomato leaves. Chinese Journal of Ecology, 2019, 38(8):2405-2413. doi: 10.13292/j.1000-4890.201908.029. (in Chinese)
doi: 10.13292/j.1000-4890.201908.029
[32] 李耕, 高辉远, 赵斌, 董树亭, 张吉旺, 杨吉顺, 王敬锋, 刘鹏. 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 2009, 35(10):1916-1922. doi: 10.3724/SP.J.1006.2009.01916.
doi: 10.3724/SP.J.1006.2009.01916
LI G, GAO H Y, ZHAO B, DONG S T, ZHANG J W, YANG J S, WANG J F, LIU P. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agronomica Sinica, 2009, 35(10):1916-1922. doi: 10.3724/SP.J.1006.2009.01916. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01916
[33] 李书鑫, 徐婷, 李慧, 杨文莹, 蔺吉祥, 朱先灿. 低温胁迫对玉米幼苗叶绿素荧光诱导动力学的影响. 土壤与作物, 2020, 9(3):221-230. doi: 10.11689/j.issn.2095-2961.2020.03.002.
doi: 10.11689/j.issn.2095-2961.2020.03.002
LI S X, XU T, LI H, YANG W Y, LIN J X, ZHU X C. Effects of low temperature on chlorophyll fluorescence kinetics of maize seedlings. Soil and Crop, 2020, 9(3):221-230. doi: 10.11689/j.issn.2095-2961.2020.03.002. (in Chinese)
doi: 10.11689/j.issn.2095-2961.2020.03.002
[34] 孙山, 王少敏, 王家喜, 高辉远. 黑暗中脱水对'金太阳'杏离体叶片PSⅠ和PSⅡ功能的影响. 园艺学报, 2008, 35(1):1-6. doi: 10.3321/j.issn:0513-353X.2008.01.001.
doi: 10.3321/j.issn:0513-353X.2008.01.001
SUN S, WANG S M, WANG J X, GAO H Y. Effects of dehydration in the dark on functions of PSⅠ and PSⅡ in apricot (Prunus armeniaca L. ‘Jin Taiyang’) leaves. Acta Horticulturae Sinica, 2008, 35(1):1-6. doi: 10.3321/j.issn:0513-353X.2008.01.001. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2008.01.001
[35] 原佳乐, 马超, 冯雅岚, 张均, 杨发强, 李友军. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018(6):1119-1129.
YUAN J L, MA C, FENG Y L, ZHANG J, YANG F Q, LI Y J. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration. Plant Physiology Journal, 2018(6):1119-1129. (in Chinese)
[1] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[2] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[3] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[4] SONG BoYing, GUO YanJie, WANG WenZan, LÜ ZeNan, ZHAO YuQing, LIU Lu, ZHANG LiJuan. Effects of Biochar Combined with Dicyandiamide on Greenhouse Gases Emissions from Facility Vegetable Soil [J]. Scientia Agricultura Sinica, 2023, 56(10): 1935-1948.
[5] WU Yue, SUI XinHua, DAI LiangXiang, ZHENG YongMei, ZHANG ZhiMeng, TIAN YunYun, YU TianYi, SUN XueWu, SUN QiQi, MA DengChao, WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[6] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[7] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[8] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[9] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[10] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[11] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[12] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[13] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[14] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[15] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!