Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4356-4372.doi: 10.3864/j.issn.0578-1752.2022.22.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut

WANG Juan1(),CHEN HaoNing1,2,SHI DaChuan3,YU TianYi1,YAN CaiXia1,SUN QuanXi1,YUAN CuiLing1,ZHAO XiaoBo1,MOU YiFei1,WANG Qi1,LI ChunJuan1(),SHAN ShiHua1()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong
    2College of Food Science and Engineering, Ocean University of China, Qingdao 266000, Shandong
    3Qingdao Academy of Agricultural Sciences, Qingdao 266100, Shandong
  • Received:2021-07-12 Accepted:2022-09-08 Online:2022-11-16 Published:2022-12-14
  • Contact: ChunJuan LI,ShiHua SHAN E-mail:wangjuan_1984@163.com;peanutlab@163.com;shansh1971@163.com

Abstract:

【Objective】 Nitrogen (N) plays a key role in determining biomass and yield in crop production. NRT2s, the high affinity nitrate transporter genes, are mainly activated under low nitrogen stress condition and have been implicated in nitrate absorption and remobilization. This study will screen NRT2 gene family responding to low-nitrogen condition (1/20 of the normal level) and conduct a preliminary functional analysis of AhNRT2.7a in order to provide target genes for breeding new peanut varieties with higher nitrogen utilization efficiency (NUE),which will help to achieve the goal of to improve crop production with less N fertilizer demand and environmental degradation. 【Method】The spatio-temporal expression patterns under normal and low-nitrogen conditions of five peanut NRT2 genes, AhNRT2.4, AhNRT2.5b, AhNRT2.5c, AhNRT2.7a and AhNRT2.7b, were investigated. Using the cDNA of Huayu6309 as template, full length of AhNRT2.7a CDS was cloned and bioinformatic analyzed. Subcellular localization of AhNRT2.7a was conducted by construction of transient expression vector and transformation of Arabidopsis protoplasts. In order to explore the gene function of AhNRT2.7a, heterologous overexpression of the AhNRT2.7a gene in Arabidopsis were performed. Transgenic plants were used to determine chlorophyll content, nitrogen accumulation and the enzymatic activities of glutamine synthetase (GS), glutamate synthetase (GOGAT), nitrate reductase (NR), nitrite reductase (NiR) and glutamate dehydrogenase (GDH) under normal and low-nitrogen conditions. 【Result】Four NRT2 genes of peanut were highly expressed in response to low nitrogen stress, and AhNRT2.7a was highly expressed in the stems and leaves. The total length of 1 380 bp was obtained, encoding a 459-amino acid protein with a molecular weight of 49.35 kD. The total of 12 typical transmembrane protein domains with hydrophobic regions was predicted. Bioinformatics analysis showed that the amino acid sequence had 99.56% sequence similarity with the cultivated peanut (Arachis hypogaea L.), followed by the wild-parents AA (A. duranensis) and BB (A. ipaensis). Subcellular localization analysis revealed that AhNRT2.7a was located in the cell membrane. Transgenic Arabidopsis plants for over-expressing AhNRT2.7a were conducted. Relative content of chlorophyll in mature and young leaves was significantly higher than that in wild-type Arabidopsis under different nitrogen supply. Meanwhile, the activity of five enzymes involved in nitrogen metabolism were examined. Furthermore, uptake, assimilation and re-mobilization of N, concentration of phosphorus and potassium were determined. The results have revealed that the activity of the two nitrogen metabolizing enzymes (NR and GS) and nitrogen accumulation in transgenic plants were significantly higher than in wild-type Arabidopsis. 【Conclusion】 These results indicated that AhNRT2.7a could enhance the nitrogen use efficiency (NUE) in plants, and also improve carbon metabolism. AhNRT2.7a seems promising as a candidate gene in breeding new peanut varieties with higher NUE.

Key words: peanut, NRT2, AhNRT2.7a, nitrogen efficiency, enzymes related to nitrogen metabolism

Table 1

Five NRT2 genes and primer sequences"

基因名称 Gene name 正向引物序列 F-primer (5′-3′) 反向引物序列 R-primer (5′-3′)
AhNRT2.4 TGCCCTTTTGTATGCAACATTT CTCATACCAAACAACCGGGC
AhNRT2.5b TCTGTGTTTGTTCAAGCTGC CCTCCTCCTGTCATTCCTGA
AhNRT2.5c CTCTGTGTTTGTTCAAGCTG TCCTCCTGTCATTCCTGATA
AhNRT2.7a ACGGTCAAGATCTCCCTTCT CACGCACCACAACAACAAAT
AhNRT2.7b GGTTCTGGGACTGCTGTATG ACCCCGAACCTGTCATAGAA
Actin TTGGAATGGGTCAGAAGGATGC AGTGGTGCCTCAGTAAGAAGC

Fig. 1

Changes of physiological indexes of peanut under normal and low nitrogen supply a: Dry weight of upperground part; b: Dry weight of underground part; c: Chlorophyll content; d: Root length; e: Root area; f: Root volume. W1-W8: Week1-week8 (after low nitrogen treatment). *: Significant difference at 0.05 level; **: Significant difference at 0.01 level. The same as below"

Fig. 2

Changes in temporal and spatial expression of five NRT2 genes under normal and low nitrogen supply"

Fig. 3

AhNRT2.7a gene structure"

Fig. 4

Phylogenetic tree analysis of AhNRT2.7a homologous proteins from other species CcNRT2.7: Capsicum chinense, XP_006446558.1; CsNRT2.7: Cucumis sativus, XP_006470276.1;PvNRT2.7: Pistacia vera, XP_031286542.1; CfNRT2.7-like: Cylindrotheca fusiformis, XP_025606205.1; RcNRT2.7: Rosa chinensis, XP_002524664.1; JrNRT2.7: Juglans regia, XP_002524664.1; QsNRT2.7: Quercus suber, XP_023902820.1; PaNRT2.7: Prosopis alba, XP_028772303.1; AhNRT2.7a: Arachis hypogaea, XP_025658933.1; AiNRT2.7a: Arachis ipaensis, XP_016207043.1; AtNRT2.7: Arabidopsis thaliana, NP_196961.1; NsNRT2.7: Nicotiana sylvestris, XP_009757883.1; StNRT2.7: Solanum tuberosum, XP_006357155.1; StNRT2.7: Solanum tuberosum, XP_006357155.1; SpNRT2.7: Solanum pennellii, XP_015064439.1; SlNRT2.7: Solanum lycopersicum, XP_004233327.2; FvNRT2.7: Fragaria vesca, XP_004306358.1; XP_004306358.1; PaNRT2.7-like: Prosopis alba, PON41596.1"

Fig. 5

Amino acid sequence alignment between AhNRT2.7a and NRT2 gene family of Arabidopsis thaliana"

Fig. 6

Prediction of protein transmembrane region of AhNRT2.7a"

Fig. 7

Prediction of protein secondary structure and 3D Protein modeling a, b: Secondary structure prediction of AhNRT2.7a and AtNRT2.7; c, d: 3D modeling of AhNRT2.7a and AtNRT2.7"

Fig. 8

AhNRT2.7a subcellular localization"

Fig. 9

AhNRT2.7a screening of Arabidopsis heterologous expression lines a: Identification of T0 generation positive seedlings; b: Identification of T1 generation positive seedlings; c: Hygromycin screening of T2 generation positive seedlings"

Fig. 10

Expression level of AhNRT2.7a of transgenic Arabidopsis thaliana"

Fig. 11

Effects of allogeneic expression of AhNRT2.7a on the growth of Arabidopsis thaliana a: Growth of transgenic lines of Arabidopsis thaliana under different nitrogen supply conditions; b: Determination of SPAD values related to chlorophyll content in mature and young leaves of transgenic Arabidopsis lines. N: Normal N; A: Low N. 1, 2, 6: Transgenic lines; WT: Wild type. The same as below"

Fig. 12

Changes of shoot dry weight of transgenic Arabidopsis thaliana lines under normal and low nitrogen condition"

Fig. 13

Determination of five key enzymes related with nitrogen metabolism NR: Nitrate reductase; NiR: Nitrite reductase; GS: Glutamine synthetase; GOGAT: Glutamate synthase; GDH: Glutamate dehydrogenase"

Fig. 14

Determination of nitrogen (N), phosphorus (P) and potassium (K) accumulation in transgenic lines under different nitrogen supply conditions"

[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42(2): 161-166.
LIAO B S. Analysis on development status and potential of peanut production in China. Chinese Journal of Oil Crops Sciences, 2020, 42(2): 161-166. (in Chinese)
[2] 李向东, 万勇善, 张高英, 吴爱荣, 马晓东. 夏花生覆膜对根瘤中固氮酶和叶片硝酸还原酶活性影响的研究. 作物学报, 1996, 22(1): 96-100.
LI X D, WAN Y S, ZHANG G Y, WU A R, MA X D. Effects of film mulching on nitrogenase and nitrate reductase activities in root nodules of peanut in summer. Acta Agronomica Sinica, 1996, 22(1): 96-100. (in Chinese)
[3] 李向东, 王晓云, 张高英, 万勇善, 李军. 花生衰老的氮素调控. 中国农业科学, 2000, 33(5): 1-7.
LI X D, WANG X Y, ZHANG G Y, WAN Y S, LI J. Regulation of nitrogen in peanut senescence. Scientia Agricultura Sinica, 2000, 33(5): 1-7. (in Chinese)
[4] ROY S, LIU W, NANDETY R S, CROOK A, MYSORE K S, LISLARIU C I, FRUGOLI J, DICKSTEIN R, UDVARDI M K. Celebrating 20 years of genetic discoveries in Legume nodulation and symbiotic nitrogen fixation. The Plant Cell, 2019, 32(1): 15-41.
doi: 10.1105/tpc.19.00279
[5] WANG Y Y, CHENG Y H, CHEN K E, TSAY Y F. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology, 2018, 69: 85-122.
doi: 10.1146/annurev-arplant-042817-040056
[6] 刘颖, 张佳蕾, 李新国, 张正, 万书波. 豆科作物氮素高效利用机制研究进展. 中国油料作物学报, 2022, 44(3): 476-482.
LIU Y, ZHANG J L, LI X G, ZHANG Z, WAN S B. Research progress on nitrogen efficient utilization mechanism of leguminous crops. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 476-482. (in Chinese)
[7] CHEN C Z, LU X F, LI J Y, YI H Y, GONG J M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiology, 2012, 159: 1582-1590.
doi: 10.1104/pp.112.199257
[8] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析. 土壤学报, 2015, 52(6): 1311-1324.
YU F, SHI W M. Analysis of nitrogen use efficiency of main grain crops in mainland China in recent 10 years. Acta Pedologica Sinica, 2015, 52(6): 1311-1324. (in Chinese)
[9] WEST P C, GERBER J S, ENGSTROM P M, ENGSTROM P M, MUELLER N D, BRAUMAN K A, CARLSON K M, CASSIDY E S, JOHNSTON M, MACDONALD G K, RAY D K. Leverage points for improving global food security and the environment. Science, 2014, 345(6194): 325-328.
doi: 10.1126/science.1246067 pmid: 25035492
[10] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171.
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S. Nitrogen fertilizer development, contribution and challenge in China. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. (in Chinese)
[11] LERAN S, VARALA K, BOYER J C, CHIURAZZI M, CRAWFORD N, DANIEL-VEDELE F, DAVID L, DICKSTEIN R, FERNANDEZ E. A unified nomenclature of NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008
[12] GALVAN A, FERNANDEZ E. Eukaryotic nitrate and nitrite transporter. Cellular and Molecular Life Science, 2001, 58: 225-233.
doi: 10.1007/PL00000850
[13] 张合琼, 张汉马, 梁永书, 南文斌. 植物硝酸盐转运蛋白研究进展. 植物生理学报, 2016, 52(336): 4-12.
ZHANG H Q, ZHANG H M, LIANG Y S, NAN W B. Research progress of nitrate transporter in plants. Plant Physiology Journal, 2016, 52(336): 4-12. (in Chinese)
[14] OKAMOT M, KUMAR A, LI W B, WANG Y, SIDDIQI M Y, CRAWFORD N M, GLASS A D M. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiology, 2006, 140: 1036-1046.
doi: 10.1104/pp.105.074385
[15] FORDE B G. Nitrate transporters in plants: Structure, function and regulation. Biochimica et Biophysica Acta-Biomembranes, 2000, 1465(1/2): 219-235.
doi: 10.1016/S0005-2736(00)00140-1
[16] ORSEL M, CHOPIN F, LELEU O, SMITH S H, KRAPP A, DANIEL-VEDELE F, MILLER A J. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiology, 2006, 142: 1304-1317.
doi: 10.1104/pp.106.085209
[17] LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, LAFOUGE F, BUOTET-MERCEY S, ZOUFAN P, SAKAKIBARA H, DANIEL-VEDELE F, KRAPP A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant Journal for Cell and Molecular Biology, 2014, 80(2): 230-241.
doi: 10.1111/tpj.12626
[18] PENUELAS J, SARDANS J. The global nitrogen-phosphorus imbalance. Science, 2022, 375: 6578.
[19] LIU J, CHEN F, OLOKHNUUD C, GLASS A D M, TONG Y, ZHANG F, MI G. Root size and nitrogen uptake activity in two maize (Zea mays) inbred lines differing in nitrogen use efficiency. Journal of Plant Nutrition and Soil Science, 2009, 172(2): 230-236.
doi: 10.1002/jpln.200800028
[20] TANG Z, FAN X, LI Q, FENG H, MILLER A J, SHEN Q, XU G. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiology, 2012, 160(4): 2052-2063.
doi: 10.1104/pp.112.204461 pmid: 23093362
[21] FAN X, TANG Z, TAN Y, ZHANG Y, LUO B, YANG M, XU, G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences of the USA, 2016, 113(26): 7118-7123.
[22] PELLIZZARO A, CLOCHARD T, PLANCHT E, LIMAMI A M, MORERLEORER-LE PAVEN M C. Identification and molecular characterization of Medicago truncatula NRT2 and NAR2 families. Physiologia Plantarum, 2015, 154(2): 256-269.
doi: 10.1111/ppl.12314
[23] VON WITTGENSTEIN N J, LE C H, HAWKINS B J, EHLTING J. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evolutionary Biology, 2014, 14: 11.
doi: 10.1186/1471-2148-14-11 pmid: 24438197
[24] 宋田丽, 周建建, 徐晨曦, 蔡晓峰, 戴绍军, 王全华, 王小丽. 植物硝酸盐转运蛋白功能及表达调控研究进展. 上海师范大学学报(自然科学版), 2017, 46(5): 740-750.
SONG T L, ZHOU J J, XU C X, CAI X F, DAI S J, WANG Q H, WANG X L. Research progress on function and expression regulation of Nitrate transporter in plants. Journal of Shanghai Normal University (Nature Sciences), 2017, 46(5): 740-750. (in Chinese)
[25] CHEN J, ZHANG Y, TAN Y, ZHANG M, ZHU L, XU G, FAN X. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT 2.1 expression with the OsNAR 2.1 promoter. Plant Biotechnology Journal, 2016, 14(8): 1705-1715.
doi: 10.1111/pbi.12531
[26] ZHUANG W J, CHEN H, YANG M, WANG J P, PANDEY M K, ZHANG C, CHANG W C, ZHANG L S, ZHANG X T. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51(5): 865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[27] BERTIOLI D J, JENKINS J, CLEVENGER J, DUDCHENKO O, GAO D Y, SEIJO G, LEAL-BERTIOLI S C M, REN L H, FARMER A D, PANDEY M K, SAMOLUK S S, ABERNATHY B, AGARWA G, BALLÉN-TABORDA C, CAMERON C, CAMPBELL J, CHAVARRO C, CHITIKINENI A, CHU Y, DASH S, BAIDOURI M E, GUO B Z, HUANG W, KIM K D, KORANI W, LANCIANO S, LUI C G, MIROUZE M, MORETZSOHN M C, PHAM M, SHIN J H, SHIRASAWA K, SINHAROY S, SREEDASYAM A, WEEKS N T, ZHANG X Y, ZHENG Z, SUN Z Q, FROENICKE L, AIDEN E L, MICHELMORE R I, VARSHNEY R K, HOLBROOK C C, CANNON E K S, SCHEFFLER B E, GRIMWOOD J, OZIAS-AKINS P, CANNON S B, JACKSON S A, SCHMUTZ J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea L. Nature Genetics, 2019, 51(5): 877-884.
doi: 10.1038/s41588-019-0405-z
[28] CLEVENGERl J, CHU Y, SCHEFFLER B, OZIAS-AKINS P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science, 2016, 7: 1446.
[29] ZHAO Y H, MA J J, LI M, DENG L, LI G H, XIA H, ZHAO S Z, HOU L, LI P C, MA C L, YUAN M, REN L, GU J Z, GUO B Z, ZHAO C Z, WANG X J. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour. Plant Biotechnology Journal, 2020, 18: 96-105.
doi: 10.1111/pbi.13175
[30] 王娟, 石大川, 陈皓宁, 吴丽青, 闫彩霞, 陈静, 赵小波, 孙全喜, 苑翠玲, 牟艺菲, 单世华, 李春娟. 花生高亲和硝酸盐转运蛋白基因家族生物信息学分析. 中国油料作物学报, 2022, 44(2): 316-323.
WANG J, SHI D C, CHEN H N, WU L Q, YAN C X, CHEN J, ZHAO X B, SUN Q X, YUAN C L, MU Y F, SHAN S H, LI C J. Bioinformatics analysis of high affinity nitrate transporter gene family in Peanut. Chinese Journal of Oil Crop Sciences, 2022, 44(2): 316-323. (in Chinese)
[31] LERAN S, VARALA K, BOYER J C, CHIURAZZI M, LACOMBE B. A unified nomenclature of NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008
[32] WANG J, YAN C X, LI Y, LI C J, ZHAO X B, YUAN C L, SUN Q X, SHAN S H. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies. Genes, 2019, 10(10): 803.
doi: 10.3390/genes10100803
[33] TANG W J, YE J, YAO X M, ZHAO P Z, XUAN W, TIAN T L, ZHANG Y Y, XU S, AN H Z, CHEN G M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10(1): 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[34] 武姣娜, 魏晓东, 李霞, 张金飞, 谢寅峰. 植物氮素利用率的研究进展. 植物生理学报, 2018, 54(9): 1401-1408.
WU J N, WEI X D, LI X, ZHANG J F, XIE Y F. Research progress of nitrogen use efficiency in plants. Plant Physiology Journal, 2018, 54(9): 1401-1408. (in Chinese)
[35] TENG W, HE X, TONG Y. Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. Journal of Integrative Agriculture, 2017, 16(12): 2657-2673.
doi: 10.1016/S2095-3119(17)61709-X
[36] LI H, HU B, CHU C. Nitrogen use efficiency in crops: Lessons from Arabidopsis and rice. Journal of Experimental Botany, 2017, 68(10): 2477-2488.
doi: 10.1093/jxb/erx101
[37] GABRIEL K, NIGEL M C, GLORIA M C, TSAY Y F. Nitrate signaling: Adaptation to fluctuating environments. Current Opinion in Plant Biology, 2015, 13(3): 265-272.
doi: 10.1016/j.pbi.2009.12.003
[38] KECHID M, DESBROSSES G, ROKHSI W, VAROQUAN F, DJEKOUN A, TOURAINE B. The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth- promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM 196. New Phytologist, 2013, 198(2): 514-524.
doi: 10.1111/nph.12158
[39] 轩红梅, 王永华, 魏利婷, 杨莹莹, 王利娜, 康国章, 郭天财. 小麦幼苗叶片中硝酸盐转运蛋白NRT1NRT2家族基因对氮饥饿响应的表达分析. 麦类作物学报, 2014, 34(8): 1019-1028.
XUAN H M, WANG Y H, WEI L T, YANG Y Y, WANG L N, KANG G Z, GUO T C. Expression analysis of nitrate transporter NRT1and NRT2 family genes in response to nitrogen starvation in wheat seedling leaves. Journal of Triticeae Crops, 2014, 34(8): 1019-1028. (in Chinese)
[40] WEI J, ZHANG Y, FENG H, QU H, FAN X, YAMAJI N, XU G. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 2018, 69(5): 1095-1107.
doi: 10.1093/jxb/erx486
[41] LIU Y Y, SHAO L B, ZHOU J, LI R C, PANDEY M K, HAN Y, CUI F, ZHANG J L, GUO F, CHEN J, SHAN S H, FAN G Y, ZHANG H, SEIM I, LIU X, LI X G, VARSHNEY R K, LI G W, WAN S B. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. Journal of Advanced Research, 2022, https://doi.org/10.1016/j.jare.2022.01.016
[42] 郑永美, 周丽梅, 郑亚萍, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 花生主要碳代谢指标与根瘤固氮能力的关系. 植物营养与肥料学报, 2021, 27(1): 75-86.
ZHENG Y M, ZHOU L M, ZHENG Y P, WU Z F, SUN X W, YU T Y, SHEN P, WANG C B. Relationship between carbon metabolism and nitrogen fixation ability of peanut nodule. Journal of Plant Nutrition and Fertilizer, 2021, 27(1): 75-86. (in Chinese)
[43] CAMPBELL W H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annual Review of Plant Biology, 1999, 50(1): 277-303.
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[7] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[8] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[9] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[10] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[11] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[12] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[13] HUANG QiuHong,LIU ZhiLei,LI PengFei,CHE JunJie,YU CaiLian,PENG XianLong. Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition [J]. Scientia Agricultura Sinica, 2021, 54(19): 4143-4154.
[14] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[15] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!