Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3426-3436.doi: 10.3864/j.issn.0578-1752.2022.17.013
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
GUO Can1,4(),YUE XiaoFeng1,3,4(),BAI YiZhen1,3,4,5,ZHANG LiangXiao1,2,3,4,ZHANG Qi1,2,3,4,5(),LI PeiWu1,2,3,4,5()
[1] | 李培武, 丁小霞, 白艺珍, 周海燕, 印南日. 农产品黄曲霉毒素风险评估研究进展. 中国农业科学, 2013, 46(12): 2534-2542. |
LI P W, DING X X, BAI Y Z, ZHOU H Y, YIN N R. Advance in research on risk assessment of aflatoxin in agricultural products. Scientia Agricultura Sinica, 2013, 46(12): 2534-2542. (in Chinese) | |
[2] | HELL K, FANDOHAN P, BANDYOPADHYAY R, KIEWNICK S, SIKORA R, COTTY P J, LESLIE J F, BANDYOPADHYAY R. Pre- and postharvest management of aflatoxin in maize: An african perspective. Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade, 2008: 219-229. |
[3] |
HILL R A, BLANKENSHIP P D, COLE R J, SANDERS T H. Effects of soil moisture and temperature on preharvest invasion of peanuts by the Aspergillus flavus group and subsequent aflatoxin development. Schizophrenia Research, 1983, 45(2): 628-633. doi: 10.1128/aem.45.2.628-633.1983.
doi: 10.1128/aem.45.2.628-633.1983 |
[4] |
DORNER J W, COLE R J, SANDERS T H, BLANKENSHIP P D. Interrelationship of kernel water activity, soil temperature, maturity, and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia, 1989, 105(2): 117-128. doi: 10.1007/BF00444034.
doi: 10.1007/BF00444034 |
[5] |
CHAUHAN Y S, WRIGHT G C, RACHAPUTI R C N, HOLZWORTH D, BROOME A, KROSCH S, ROBERTSON M J. Application of a model to assess aflatoxin risk in peanuts. The Journal of Agricultural Science, 2010, 148(3): 341-351.
doi: 10.1017/S002185961000002X |
[6] |
CHAUHAN Y, TATNELL J, KROSCH S, KARANJA J, GNONLONFIN B. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Field Crops Research, 2015, 178: 91-99.
doi: 10.1016/j.fcr.2015.03.024 |
[7] |
THAI C N, BLANKENSHIP P D, COLE R J, SANDERS T H, DORNER J W. Relationship between aflatoxin production and soil temperature for peanuts under drought stress. Transactions of the ASAE, 1990, 33(1): 324-329.
doi: 10.13031/2013.31333 |
[8] |
CHAUHAN Y S, WRIGHT G C, RACHAPUTI N C. Modeling climatic risks of aflatoxin contamination in maize. Australian Journal of Experimental Agriculture, 2008, 48(3): 358-366.
doi: 10.1071/EA06101 |
[9] | HELL K, MUTEGI C. Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa. African Journal of Microbiology Research, 2010, 5(5): 459-466. |
[10] | PAYNE G A, CASSEL D K, ADKINS C R. Reduction of aflatoxin contamination in corn by irrigation and tillage. Phytopathology, 1986, 76(7): 697-684. |
[11] |
MCCOWN R L, HAMMER G L, HARGREAVES J N G, HOLZWORTH D P, FREEBAIRN D M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 1996, 50(3): 255-271.
doi: 10.1016/0308-521X(94)00055-V |
[12] | PARMAR R, MCCLENDON R W, BLANKENSHIP P D, COLE R J, DORNER J W. Estimation of aflatoxin contamination in preharvest peanuts using neural networks. Transactions of the ASAE, 1997, 40: 809-813. |
[13] | BREIMAN L. Bagging predictors. Machine Learning, 1996, 24(2): 123-140. |
[14] | ADELE C. Neural networks. Technometrics, 2012, 42(4): 432. |
[15] | 武琳霞. 中国花生黄曲霉毒素污染风险预警模型研究[D]. 北京: 中国农业科学院, 2019. |
WU L X. Researches on risk prediction model of aflatoxin contamination in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[16] | 马良, 李培武, 张文. 高效液相色谱法对农产品中黄曲霉毒素的测定研究. 分析测试学报, 2007, 26(6): 774-778. |
MA L, LI P W, ZHANG W. Determination of aflatoxins in agricultural products by high performance liquid chromatography. Journal of Instrumental Analysis, 2007, 26(6): 774-778. (in Chinese) | |
[17] | 国家气象信息中心. [2021-07-28] http://data.cma.cn. |
National Meteorological Information Center. [2021-07-28] http://data.cma.cn. (in Chinese) | |
[18] | WEBMASTER Climate Prediction Center. [2021-07-28] https://www.cpc.ncep.noaa.gov. |
[19] | 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中真菌毒素限量: GB 2761—2017[S]. 北京: 中国标准出版社, 2017. |
National Health and Family Planning Commission of the People’s Republic of China and State Food and Drug Administration. National standards for food safety limit of mycotoxins in foods: GB 2761-2017[S]. Beijing: Standards Press of China, 2017. (in Chinese) | |
[20] |
DENG X Y, LIU Q, DENG Y, MAHADEVAN S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 2016, 340/341: 250-261.
doi: 10.1016/j.ins.2016.01.033 |
[21] | 张安定. 遥感原理与应用题解. 北京: 科学出版社, 2016. |
ZHANG A D. Remote Sensing Principle and Application Problem Solution. Beijing: Science Press, 2016. (in Chinese) | |
[22] | 王云飞, 庞勇, 舒清态. 基于随机森林算法的橡胶林地上生物量遥感反演研究: 以景洪市为例. 西南林业大学学报, 2013, 33(6): 38-45, 111. |
WANG Y F, PANG Y, SHU Q T. Counter-estimation on aboveground biomass of Hevea brasiliensis plantation by remote sensing with random forest algorithm-A case study of Jinghong. Journal of Southwest Forestry University, 2013, 33(6): 38-45, 111. (in Chinese) | |
[23] | 李贞子, 张涛, 武晓岩, 李康. 随机森林回归分析及在代谢调控关系研究中的应用. 中国卫生统计, 2012, 29(2): 158-160, 163. |
LI Z Z, ZHANG T, WU X Y, LI K. Methodology of regression by random forest and its application on metabolomics. Chinese Journal of Health Statistics, 2012, 29(2): 158-160, 163. (in Chinese) | |
[24] |
曹振, 崔路瑶, 雷斌, 王婧旖, 曹双胜. 城轨列车滚动轴承智能诊断的特征降维与随机森林方法. 吉林大学学报(工学版), 2021: 1-7. doi: 10.13229/j.cnki.jdxbgxb20210312.
doi: 10.13229/j.cnki.jdxbgxb20210312 |
CAO Z, CUI L Y, LEI B, WANG J Y, CAO S S. Feature dimensionality reduction and random forest method in intelligent diagnosis of rolling bearings for urban rail trains. Journal of Jilin University (Engineering ang Technology Edition), 2021: 1-7. doi: 10.13229/j.cnki.jdxbgxb20210312. (in Chinese)
doi: 10.13229/j.cnki.jdxbgxb20210312 |
|
[25] |
傅质馨, 孙宁新, 朱俊澎, 袁越. 基于输出功率预测的风电机组运行风险度评估. 电力信息与通信技术, 2021, 19(5): 14-22. doi: 10.16543/j.2095-641x.electric.power.ict.2021.05.003.
doi: 10.16543/j.2095-641x.electric.power.ict.2021.05.003 |
FU Z X, SUN N X, ZHU J P, YUAN Y. Risk assessment of wind turbine operation based on wind power output prediction. Electric Power Information and Communication Technology, 2021, 19(5): 14-22. doi: 10.16543/j.2095-641x.electric.power.ict.2021.05.003. (in Chinese)
doi: 10.16543/j.2095-641x.electric.power.ict.2021.05.003 |
|
[26] |
方匡南, 吴见彬, 谢邦昌. 基于随机森林的保险客户利润贡献度研究. 数理统计与管理, 2014, 33(6): 1122-1131. doi: 10.13860/j.cnki.sltj-20141122-063.
doi: 10.13860/j.cnki.sltj-20141122-063 |
FANG K N, WU J B, XIE B C. Measurement of customer profitability of insurance company in China based on random forest. Journal of Applied Statistics and Management, 2014, 33(6): 1122-1131. doi: 10.13860/j.cnki.sltj-20141122-063. (in Chinese)
doi: 10.13860/j.cnki.sltj-20141122-063 |
|
[27] | 方匡南, 吴见彬, 朱建平, 谢邦昌. 随机森林方法研究综述. 统计与信息论坛, 2011, 26(3): 32-38. |
FANG K N, WU J B, ZHU J P, XIE B C. A review of technologies on random forests. Statistics & Information Forum, 2011, 26(3): 32-38. (in Chinese) | |
[28] |
WU L X, DING X X, LI P W, DU X H, ZHOU H Y, BAI Y Z, ZHANG L X. Aflatoxin contamination of peanuts at harvest in China from 2010 to 2013 and its relationship with climatic conditions. Food Control, 2016, 60: 117-123.
doi: 10.1016/j.foodcont.2015.06.029 |
[29] | 丁小霞. 中国产后花生黄曲霉毒素污染与风险评估方法研究[D]. 北京: 中国农业科学院, 2011. |
DING X X. Study on post-harvest peanut aflatoxins contamination and risk assessment in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[30] |
BATTILANI P, TOSCANO P, VAN DER FELS-KLERX H J, MORETTI A, CAMARDO LEGGIERI M, BRERA C, RORTAIS A, GOUMPERIS T, ROBINSON T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 2016, 6: 24328. doi: 10.1038/srep24328.
doi: 10.1038/srep24328 |
[31] |
DING X, WU L, LI P, ZHANG Z, ZHOU H, BAI Y, CHEN X, JIANG J. Risk assessment on dietary exposure to aflatoxin B1 in post-harvest peanuts in the Yangtze River ecological region. Toxins, 2015, 7(10): 4157-4174. doi: 10.3390/toxins7104157.
doi: 10.3390/toxins7104157 |
[32] |
COLE R J, SANDERS T H, HILL R A, BLANKENSHIP P D. Mean geocarposphere temperatures that induce preharvest aflatoxin contamination of peanuts under drought stress. Mycopathologia, 1985, 91(1): 41-46. doi: 10.1007/BF00437286.
doi: 10.1007/BF00437286 |
[33] |
王海鸥, 陈守江, 胡志超, 谢焕雄. 花生黄曲霉毒素污染与控制. 江苏农业科学, 2015, 43(1): 270-273. doi: 10.15889/j.issn.1002-1302.2015.01.091.
doi: 10.15889/j.issn.1002-1302.2015.01.091 |
WANG H O, CHEN S J, HU Z C, XIE H X. Peanut aflatoxin contamination and control. Jiangsu Agricultural Sciences, 2015, 43(1): 270-273. doi: 10.15889/j.issn.1002-1302.2015.01.091. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2015.01.091 |
|
[34] |
KLICH M A. Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 2007, 8(6): 713-722. doi: 10.1111/j.1364-3703.2007.00436.x.
doi: 10.1111/j.1364-3703.2007.00436.x |
[35] | 戴显红, 丁小霞, 李培武, 陈琳, 姜俊, 贾明明. 土壤交换性钙含量对花生黄曲霉毒素污染影响的研究. 农产品质量与安全, 2017(4): 11-17. |
DAI X H, DING X X, LI P W, CHEN L, JIANG J, JIA M M. Effect of exchangeable calcium concentration in soil on aflatoxin pollution in peanuts. Quality and Safety of Agro-Products, 2017(4): 11-17. (in Chinese) | |
[36] | 唐秀梅, 罗赛云, 钟瑞春, 唐荣华. 南方花生黄曲霉毒素污染防控栽培技术. 现代农业科技, 2016(22): 35-36. |
TANG X M, LUO S Y, ZHONG R C, TANG R H. Cultivation techniques for the prevention and reduction of aflatoxin contamination of peanut in South China. Modern Agricultural Science and Technology, 2016(22): 35-36. (in Chinese) |
[1] | WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528. |
[2] | BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652. |
[3] | WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372. |
[4] | SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937. |
[5] | HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508. |
[6] | FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73. |
[7] | MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612. |
[8] | JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020. |
[9] | GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561. |
[10] | XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725. |
[11] | ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930. |
[12] | TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153. |
[13] | ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706. |
[14] | HaiChao CAO,QingShun LIU,HaiXiu BAI,Jun HAN,ShiLing YANG,Ming XUE,Feng LIU. Development of 30% Clothianidin·Pyraclostrobin·Difenoconazole Flowable Concentrate for Seed-Coating and Its Application Effect in Peanut Field [J]. Scientia Agricultura Sinica, 2019, 52(20): 3595-3604. |
[15] | LIU Peng,TIAN YingZhe,ZHONG YongJia,LIAO Hong. Isolation and Application of Effective Rhizobium Strains in Peanut on Acidic Soils [J]. Scientia Agricultura Sinica, 2019, 52(19): 3393-3403. |
|