Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 641-652.doi: 10.3864/j.issn.0578-1752.2022.04.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening

BIAN NengFei(),SUN DongLei,GONG JiaLi,WANG Xing,XING XingHua,JIN XiaHong,WANG XiaoJun()   

  1. Xuzhou Institute of Agricultural Sciences of the Xuhuai District, Xuzhou 221131, Jiangsu
  • Received:2021-08-20 Accepted:2021-10-15 Online:2022-02-16 Published:2022-02-23
  • Contact: XiaoJun WANG E-mail:biannf@163.com;wangxj0516@126.com

Abstract:

【Objective】The objective of this study was to explore the evaluation methods of edible quality of roasted peanuts, screen identification indexes, establish prediction model, and provide basis for peanut edible quality breeding. 【Method】The kernels of 51 peanut varieties (lines) with different quality types were used as experimental materials. A total of 27 edible quality indexes related to tastes, appearances, textures and nutrition of roasted kernels were measured. Correlation analysis and principal component analysis were used to comprehensively evaluate the edible quality of roasted peanut kernels. Cluster analysis was used to classify edible quality of 51 peanut varieties (lines). Regression analysis were used to establish predictive model and index screening. 【Result】27 indexes had different ranges of variation in 51 peanut varieties (lines), with coefficients of variation ranging from 5.86% to 39.65%. There were significant or extremely significant related indexes for each individual index. The correlation coefficients of 175 groups reached significant level, and the 140 groups reached extremely significant level. The 27 individual indexes were converted into 5 independent comprehensive indexes through principal component analysis, and their contribution rates respectively were 35.70%, 20.63%, 10.07%, 8.19% and 6.38%, representing the information of 80.97% of all data. The comprehensive evaluation analysis showed that the average F value of the roasted edible quality of 51 peanut varieties (lines) was 0.76. Xuhuatian 29 had the highest F value (F=1.51) and the best roasting edible quality. Xuhua 15 had the lowest F value (F=0.03) and the worst roasting edible quality. The correlation analysis showed that 21 indexes were significantly correlated with F value. Cluster analysis was performed on the comprehensive value F of peanut roasting edible quality, and 51 varieties (lines) were divided into 3 categories. The first category was of good edible quality, including 4 varieties of Xuhuatian 29, Jihuatian 1, Linhua 16 and Xuhuatian 30. The second category was of general edible quality and contained 33 varieties (lines). The third category was of poor edible quality and contained 14 varieties (lines). Using stepwise regression analysis method, the prediction model of roasting edible quality was established as: Y=0.979+ 0.021X7+0.081X21+0.009X20-0.034X19-0.074X27 (R2=0.953). Then, 5 identification indexes were screened, which were the hundred kernel weight, sucrose content, protein content, fat content and behenic acid content. The analysis of characteristics showed that the four varieties with good roasting edible quality had medium to high hundred kernel weight, high sucrose content, medium protein content, low fat content, and low to medium behenic acid content. According to the prediction model, this category varieties still need to be improved to increase protein content and reduce behenic acid content. 【Conclusion】Hundred kernel weight, sucrose content, protein content, fat content and behenic acid content could be used to identify the edible quality of roasted peanuts. It is determined that high-quality roasted peanut varieties should have the characteristics of medium to large kernels, high oleic acid content, high sucrose content, high protein content, low fat content and low behenic acid content.

Key words: peanut, roast, edible quality, comprehensive evaluation, index screening

Table 1

Variation of 27 indexes for 51 peanut varieties (lines)"

指标 Index 极小值 Min 极大值 Max 均值 Mean 标准差 SD 变异系数 CV (%)
X1 3.00 4.22 3.60 0.26 7.34
X2 2.67 3.89 3.44 0.27 7.71
X3 1.78 4.44 2.44 0.68 27.78
X4 2.00 3.89 2.93 0.40 13.80
X5 1.11 3.00 1.79 0.43 24.32
X6 1.00 3.22 1.69 0.43 25.27
X7 30.86 80.73 58.61 11.03 18.82
X8 69.97 145.83 109.89 17.45 15.88
X9 33.97 50.13 42.50 3.99 9.39
X10 12.08 19.27 15.91 1.82 11.46
X11 7.12 10.04 8.89 0.67 7.52
X12 1.49 2.24 1.81 0.20 10.94
X13 31.35 69.50 48.91 8.05 16.46
X14 105.64 258.63 158.94 30.77 19.36
X15 7.66 39.44 17.09 6.78 39.65
X16 17.38 38.50 23.29 4.28 18.37
X17 88.53 201.62 128.13 26.69 20.83
X18 7.41 29.04 14.35 4.82 33.59
X19 42.02 56.50 52.15 3.05 5.86
X20 18.05 27.04 22.50 1.99 8.84
X21 1.88 7.41 3.56 1.23 34.64
X22 28.07 80.83 42.97 15.31 35.63
X23 5.13 52.76 37.24 12.97 34.84
X24 5.16 13.38 10.82 1.96 18.15
X25 1.89 4.73 3.06 0.72 23.53
X26 1.12 1.94 1.52 0.22 14.22
X27 0.89 3.96 2.08 0.71 33.97

Table 2

Correlative coefficients of 27 indexes"

指标
Index
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26
X2 -0.14
X3 0.62** -0.45**
X4 0.59** -0.26 0.66**
X5 -0.33* 0.17 -0.46** -0.51**
X6 -0.23 -0.07 -0.31* -0.47** 0.67**
X7 0.32* 0.03 0.15 0.09 -0.03 0.24
X8 0.27 0.03 0.16 0.07 -0.01 0.22 0.96**
X9 0.28* -0.04 0.21 0.07 -0.04 0.19 0.90** 0.98**
X10 0.25 -0.08 0.22 0.06 -0.03 0.18 0.80** 0.91** 0.98**
X11 0.22 0.15 0.01 0.06 0.01 0.19 0.85** 0.76** 0.61** 0.44**
X12 0.15 -0.19 0.27 0.05 -0.07 0.05 0.28* 0.46** 0.62** 0.77** -0.22
X13 0.34* -0.14 0.43** 0.37** -0.31* -0.17 0.25 0.12 0.06 -0.03 0.36** -0.25
X14 0.41** -0.42** 0.60** 0.38** -0.20 0.06 0.59** 0.53** 0.55** 0.53** 0.33* 0.37** 0.55**
X15 0.40** -0.55** 0.65** 0.38** -0.17 0.10 0.51** 0.48** 0.52** 0.52** 0.23 0.42** 0.43** 0.95**
X16 0.30* -0.10 0.35* 0.22 -0.03 -0.06 0.08 0.00 -0.04 -0.09 0.18 -0.24 0.56** 0.36** 0.31*
X17 0.42** -0.55** 0.70** 0.35* -0.28* 0.01 0.44** 0.45** 0.52** 0.54** 0.17 0.46** 0.37** 0.82** 0.85** 0.40**
X18 0.35* -0.66** 0.72** 0.34* -0.30* -0.01 0.34* 0.36** 0.44** 0.47** 0.07 0.47** 0.31* 0.79** 0.85** 0.24 0.93**
X19 -0.46** 0.63** -0.73** -0.43** 0.35* 0.08 -0.01 0.03 -0.03 -0.06 0.13 -0.18 -0.41** -.64** -0.73** -0.25 -0.710** -0.75**
X20 0.06 -0.14 -0.10 0.02 -0.09 0.11 0.20 0.18 0.19 0.18 0.16 0.10 0.15 0.25 0.20 -0.09 0.14 0.16 -0.26
X21 0.50** -0.53** 0.87** 0.54** -0.37** -0.18 0.02 0.05 0.13 0.19 -0.18 0.36** 0.35* 0.59** 0.68** 0.25 0.68** 0.73** -0.81** -0.11
X22 -0.41** 0.39** -0.32* -0.34* 0.50** 0.21 0.07 0.13 0.07 0.05 0.18 -0.11 0.02 -0.18 -0.23 0.09 -0.26 -0.35* 0.49** -0.26 -0.34*
X23 0.42** -0.41** 0.35* 0.37** -0.49** -0.21 -0.07 -0.11 -0.05 -0.01 -0.20 0.17 -0.01 0.20 0.26 -0.09 0.29* 0.38** -0.50** 0.30* 0.37** -0.99**
X24 0.37** -0.30* 0.24 0.30* -0.46** -0.20 -0.07 -0.15 -0.10 -0.08 -0.17 0.07 -0.06 0.12 0.16 -0.12 0.15 0.24 -0.39** 0.19 0.25 -0.97** 0.95**
X25 0.51** -0.36** 0.59** 0.36** -0.45** -0.13 0.18 0.11 0.12 0.10 0.11 0.06 0.29* 0.47** 0.49** 0.05 0.52** 0.55** -0.75** 0.27 0.59** -0.60** 0.57** 0.52**
X26 0.51** -0.32* 0.53** 0.41** -0.45** -0.13 0.29* 0.27 0.29* 0.29* 0.18 0.21 0.24 0.46** 0.46** -0.03 0.52** 0.53** -0.63** 0.46** 0.51** -0.55** 0.57** 0.44** 0.91**
X27 -0.17 0.044 -0.06 -0.13 0.06 -0.15 -0.77** -0.83** -0.82** -0.79** -0.60** -0.44** -0.16 -0.38** -0.32* 0.00 -0.32* -0.25 -0.14 -0.23 -0.02 -0.10 0.07 0.12 0.07 -0.18

Table 3

Eigenvectors and percentage of accumulated contribution of principal components"

主成分
Principle factor
指标
Index
主成分1
Principle factor 1
主成分2
Principle factor 2
主成分3
Principle factor 3
主成分4
Principle factor 4
主成分5
Principle factor 5
特征向量Eigenvector X1 0.21 -0.05 0.02 0.24 -0.11
X2 -0.17 0.12 -0.04 0.29 -0.14
X3 0.25 -0.11 0.20 -0.01 -0.20
X4 0.18 -0.12 0.10 0.24 -0.26
X5 -0.15 0.16 0.08 -0.29 0.28
X6 -0.04 0.18 -0.03 -0.29 0.45
X7 0.17 0.32 -0.07 0.18 0.08
X8 0.16 0.35 -0.10 0.09 -0.04
X9 0.18 0.33 -0.14 0.00 -0.11
X10 0.18 0.31 -0.16 -0.10 -0.18
X11 0.08 0.28 0.03 0.38 0.22
X12 0.14 0.13 -0.20 -0.36 -0.34
X13 0.14 -0.01 0.35 0.29 0.17
X14 0.27 0.09 0.15 -0.06 0.11
X15 0.28 0.06 0.14 -0.16 0.10
X16 0.08 -0.01 0.42 0.14 0.11
X17 0.28 0.04 0.13 -0.16 0.01
X18 0.28 -0.01 0.08 -0.23 0.02
X19 -0.25 0.18 -0.11 0.14 -0.16
X20 0.09 0.02 -0.22 0.07 0.40
X21 0.24 -0.14 0.17 -0.17 -0.17
X22 -0.16 0.25 0.33 -0.06 -0.09
X23 0.17 -0.24 -0.33 0.04 0.06
X24 0.13 -0.24 -0.35 0.09 0.07
X25 0.23 -0.15 -0.08 0.09 0.19
X26 0.24 -0.08 -0.17 0.12 0.14
X27 -0.13 -0.31 0.12 -0.11 0.10
特征值Eigenvalue 9.64 5.57 2.72 2.212 1.72
贡献率Contribution rate 35.70 20.63 10.07 8.19 6.38
累计贡献率Cumulative contribution rate 35.70 56.32 66.40 74.59 80.97

Table 4

Comprehensive value (F) of 51 peanut varieties (lines)"

编号
No.
综合值F
Comprehensive value (F)
编号
No.
综合值F
Comprehensive value (F)
编号
No.
综合值F
Comprehensive value (F)
1 0.72 18 1.17 35 0.80
2 0.86 19 0.83 36 1.06
3 1.08 20 0.46 37 0.56
4 0.89 21 0.61 38 0.48
5 0.89 22 0.79 39 0.34
6 1.07 23 0.92 40 1.18
7 0.90 24 1.09 41 0.89
8 1.11 25 0.37 42 1.49
9 0.67 26 0.53 43 0.84
10 0.70 27 0.73 44 0.16
11 0.63 28 0.86 45 0.35
12 0.44 29 0.66 46 0.10
13 1.11 30 0.36 47 0.27
14 1.01 31 0.66 48 0.20
15 0.03 32 1.37 49 1.04
16 0.81 33 0.68 50 1.51
17 0.79 34 0.69 51 1.25

Table 5

Correlation coefficients between 27 indexes and comprehensive value (F)"

指标
Index
相关系数
Correlation coefficients
指标
Index
相关系数
Correlation coefficients
指标
Index
相关系数
Correlation coefficients
X1 0.55** X10 0.73** X19 -0.54**
X2 -0.35* X11 0.58** X20 0.27
X3 0.63** X12 0.41** X21 0.54**
X4 0.41** X13 0.51** X22 -0.15
X5 -0.26 X14 0.88** X23 0.17
X6 0.06 X15 0.84** X24 0.07
X7 0.80** X16 0.32* X25 0.51**
X8 0.78** X17 0.83** X26 0.58**
X9 0.78** X18 0.76** X27 -0.63**

Fig. 1

The dendrogram of clusters for 51 peanut varieties (lines)"

Fig. 2

Comprehensive value (F) and predictive value(Y) of 51 peanut varieties (lines)"

Table 6

Description of different types to edible quality of roasted peanuts"

类别
Cluster
X7 X21 X20 X19 X27
均值
Mean
范围
Range
均值
Mean
范围
Range
均值
Mean
范围
Range
均值
Mean
范围
Range
均值
Mean
范围
Range
第一类First cluster 64.21 55.44-74.56 6.86 6.24-7.41 22.19 20.84-23.38 44.84 42.02-46.62 2.13 1.78-2.77
第二类Second cluster 63.90 52.92-80.73 3.32 1.88-5.45 22.95 19.56-27.04 52.69 47.49-56.5 1.73 0.89-2.53
第三类Third cluster 44.54 30.86-55.02 3.20 2.25-3.93 21.53 18.05-24.7 52.95 49.96-54.61 2.90 1.59-3.96
[1] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51(9):1641-1652.
ZHANG Z H, WANG Z H, HUAI D X, TAN J Z, CHEN J H, YAN L Y, WANG X J, WAN L Y, CHEN A, KANG Y P, JIANG H F, LEI Y, LIAO B S. Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Scientia Agricultura Sinica, 2018, 51(9):1641-1652. (in Chinese)
[2] WANG Q. Peanut Processing Characteristics and Quality Evaluation. Singapore: Springer Nature, 2018: 42-63.
[3] 林茂, 赵景芳, 郑秀艳, 孟繁博, 黄道梅, 李国林, 陈曦, 宋光艳, 蒋力. 不同种皮颜色花生生品的营养、感官和品质的分析. 分子植物育种, 2019, 17(5):1647-1657.
LIN M, ZHAO J F, ZHENG X Y, MENG F B, HUANG D M, LI G L, CHEN X, SONG G Y, JIANG L. Analysis of nutrition, sense and quality of peanut seed with different testa color. Molecular Plant Breeding, 2019, 17(5):1647-1657. (in Chinese)
[4] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47(2):332-341.
doi: 10.3724/SP.J.1006.2021.04106
LEI Y, WANG Z H, HUAI D X, GAO H Y, YAN L Y, LI J G, LI W T, CHEN Y N, KANG Y P, LIU H L, WANG X, XUE X M, JIANG H F, LIAO B S. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed. Acta Agronomica Sinica, 2021, 47(2):332-341. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04106
[5] WANG C T. Evaluation of groundnut genotypes from China for quality traits. Journal of SAT Agricultural Research, 2011, 12(9):1-5.
[6] 孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王幸, 王晓军, 王伟. 花生种质资源表型性状的综合评价及指标筛选. 植物遗传资源学报, 2018, 19(5):865-874.
SUN D L, BIAN N F, CHEN Z D, XING X H, XU Z J, QI Y J, WANG X, WANG X J, WANG W. Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources. Journal of Plant Genetic Resources, 2018, 19(5):865-874. (in Chinese)
[7] 鲁清, 梁炫强, 陈小平, 李少雄, 刘浩, 周桂元, 刘海燕, 李海芬, 洪彦彬. 花生落荚、裂荚和裂仁特性评鉴及优异种质筛选. 植物遗传资源学报, 2020, 21(5):1102-1111.
LU Q, LIANG X Q, CHEN X P, LI S X, LIU H, ZHOU G Y, LIU H Y, LI H F, HONG Y B. Evaluation on traits of pod abscission, dehiscence and kernel cracking of peanut and identification of elite germplasm. Journal of Plant Genetic Resources, 2020, 21(5):1102-1111. (in Chinese)
[8] 胡廷会, 成良强, 王军, 吕建伟, 饶庆琳. 不同基因型花生耐荫性评价及其鉴定指标的筛选. 中国农业科学, 2020, 53(6):1140-1153.
HU T H, CHENG L Q, WANG J, LÜ J W, RAO Q L. Evaluation of shade tolerance of peanut with different genotypes and screening of identification indexes. Scientia Agricultura Sinica, 2020, 53(6):1140-1153. (in Chinese)
[9] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选. 作物学报, 2021, 47(9):1753-1767.
doi: 10.3724/SP.J.1006.2021.04182
ZHANG H, JIANG C J, YIN D M, DONG J L, REN J Y, ZHAO X H, ZHONG C, WANG X G, YU H Q. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut. Acta Agronomica Sinica, 2021, 47(9):1753-1767. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04182
[10] 孙东雷, 卞能飞, 王幸, 邢兴华, 沈一, 徐泽俊, 齐玉军, 王晓军. 高油酸花生萌发期耐冷性综合评价及种质筛选. 核农学报, 2021, 35(6):1263-1272.
SUN D L, BIAN N F, WANG X, XING X H, SHEN Y, XU Z J, QI Y J, WANG X J. Comprehensive evaluation of cold tolerance and germplasm screening of high oleic acid peanut at germination stage. Journal of Nuclear Agricultural Sciences, 2021, 35(6):1263-1272. (in Chinese)
[11] 巩阿娜, 刘红芝, 刘丽, 石爱民, 王强. 原料特性与花生酱品质间关系模型的建立. 食品科学技术学报, 2016, 34(2):24-30.
GONG A N, LIU H Z, LIU L, SHI A M, WANG Q. Establishment of relationship model between peanut material characteristics and peanut butter quality. Journal of Food Science and Technology, 2016, 34(2):24-30. (in Chinese)
[12] 巩阿娜, 刘红芝, 刘丽, 石爱民, 林伟静, 王强. 原料特性对花生酱品质的影响. 中国食品学报, 2016, 16(11):253-262.
GONG A N, LIU H Z, LIU L, SHI A M, LIN W J, WANG Q. Influence of peanut material characteristics on peanut butter quality. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11):253-262. (in Chinese)
[13] YU H, LIU H, ERASMUS S W, ZHAO S, WANG Q, RUTH S M. An explorative study on the relationships between the quality traits of peanut varieties and their peanut butters. LWT-Food Science and Technology, 2021, 151:112068.
[14] 王丽, 王强, 刘红芝, 刘丽, 杜寅, 张建书. 不同品种花生分离蛋白凝胶性评价方法的研究. 中国油脂, 2012, 37(7):20-23.
WANG L, WANG Q, LIU H Z, LIU L, DU Y, ZHANG J S. Evaluation methods of gel property of peanut protein isolate with different varieties. China Oils and Fats, 2012, 37(7):20-23. (in Chinese)
[15] 王丽, 刘红芝, 刘丽, 石爱民, 胡晖, 杨颖, 王强. 油用花生品质评价模型的建立及其加工适宜性研究. 食品科学技术学报, 2016, 34(1):21-27.
WANG L, LIU H Z, LIU L, SHI A M, HU H, YANG Y, WANG Q, Research on evaluation model and processing suitability of oil-used peanut. Journal of Food Science and Technology, 2016, 34(1):21-27. (in Chinese)
[16] PATTEE H E, ISLEIB T G, GIESBRECHT F G. Variation in intensity of sweet and bitter sensory attributes across peanut genotypes. Peanut Science, 1998, 25:63-69.
doi: 10.3146/i0095-3679-25-2-2
[17] PATTEE H E, ISLEIB T G, GIESBRECHT F G, MCFEETERS R F. Investigations into genotypic variations of peanut carbohydrates. Journal of Agricultural and Food Chemistry, 2000, 48:750-756.
doi: 10.1021/jf9910739
[18] PATTEE H E, ISLEIB T G, GIESBRECHT F G, MCFEETERS R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. Journal of Agricultural and Food Chemistry, 2000, 48:757-763.
doi: 10.1021/jf9910741
[19] 王传堂, 张建成, 唐月异, 吴琪, 王志伟, 王秀贞, 穆树旗, 李平涛, 李滨. 花生生仁生化成分、生仁和烤仁感官品质的典型相关分析. 山东农业科学, 2020, 52(8):12-16.
WANG C T, ZHANG J C, TANG Y Y, WU Q, WANG Z W, WANG X Z, MU S Q, LI P T, LI B. Inter-relationships between peanut biochemical components of raw kernels, sensory quality of raw and roasted kernels revealed by canonical correlation analysis. Shandong Agricultural Sciences, 2020, 52(8):12-16. (in Chinese)
[20] 王志伟, 王秀贞, 唐月异, 吴琪, 孙全喜, 杜龙, 刘婷, 张欣, 王传堂. 31个花生品种(系)的生、熟花生感官品质评价研究. 山东农业科学, 2018(6):52-56.
WANG Z W, WANG X Z, TANG Y Y, WU Q, SUN Q X, DU L, LIU T, ZHANG X, WANG C T. Sensory evaluation for raw and roasted peanuts of 31 genotypes. Shandong Agricultural Sciences, 2018(6):52-56. (in Chinese)
[21] 王秀贞, 吴琪, 成波, 王志伟, 唐月异, 韩守萍, 王传堂. 基因型和成熟度对鲜食花生感官品质的影响. 花生学报, 2019, 48(3):51-54.
WANG X Z, WU Q, CHENG B, WANG Z W, TANG Y Y, HAN S P, WANG C T. Effect of genotype and maturity on sensory quality of fresh green peanuts. Journal of Peanut Science, 2019, 48(3):51-54. (in Chinese)
[22] 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用花生育种利用分析. 植物遗传资源学报, 2018, 19(5):875-886.
FANG Y J, SUN Z Q, MIAO L J, QI F Y, HUANG B Y, ZHENG Z, DONG W Z, TANG F S, ZHANG X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and its application for food-use peanut breeding. Journal of Plant Genetic Resources, 2018, 19(5):875-886. (in Chinese)
[23] BAGHERI H, KASHANINEJAD M, ZIAIIFAR A M, AALAMI M. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Information Processing in Agriculture, 2019, 6(2):255-264.
doi: 10.1016/j.inpa.2018.11.001
[24] 汤鹏宇, 孟繁博, 黄道梅, 郑秀艳, 林茂. 质构参数与花生物性测定的相关性. 现代食品科技, 2021, 37(7):294-301.
TANG P Y, MENG F B, HUANG D M, ZHENG X Y, LIN M. Correlation between texture-analyzer parameters and physical properties measurement of peanut. Modern Food Science and Technology, 2021, 37(7):294-301. (in Chinese)
[25] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷锋, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47(2):368-375.
doi: 10.3724/SP.J.1006.2021.04110
LI W T, GUO J B, YU B L, XU S L, CHEN H W, WU B, GONG T F, HUANG L, LUO H Y, CHEN Y N, ZHOU X J, LIU N, CHEN W G, JIANG H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agronomica Sinica, 2021, 47(2):368-375. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04110
[26] COLEMAN W M, WHITE J L, PERFETTI T A. Characteristics of heat-treated aqueous extracts of peanuts and cashews. Journal of Agricultural and Food Chemistry, 1994, 42(1):190-194.
doi: 10.1021/jf00037a034
[27] MISRA J B. A mathematical approach to comprehensive evaluation of quality in groundnut. Journal of Food Composition and Analysis, 2004, 17(1):69-79.
doi: 10.1016/S0889-1575(03)00102-9
[28] 王强, 石爱民, 盛晓静, 刘红芝, 刘丽, 胡晖. 一种适宜休闲花生加工的花生品质评价方法及装置: 中国, 107228809. 2017-10-03.
WANG Q, SHI A M, SHENG X J, LIU H Z, LIU L, HU H. Peanut quality evaluation method and device suitable for leisure peanut processing: China, 107228809. 2017-10-03. (in Chinese)
[29] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价. 作物学报, 2021, 47(9):1741-1752.
doi: 10.3724/SP.J.1006.2021.04149
SONG L J, NIE X Y, HE L L, KUAI J, YANG H, GUO A G, HUANG J S, FU T D, WANG B, ZHOU G S. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties. Acta Agronomica Sinica, 2021, 47(9):1741-1752. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04149
[30] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7):1397-1409.
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze river. Scientia Agricultura Sinica, 2021, 54(7):1397-1409. (in Chinese)
[31] 杨涛, 黄雅婕, 李生梅, 任丹, 崔进鑫, 庞博, 于爽, 高文伟. 海岛棉种质资源表型性状的遗传多样性分析及综合评价. 中国农业科学, 2021, 54(12):2499-2509.
YANG T, HUANG Y J, LI S M, REN D, CUI J X, PANG B, YU S, GAO W W. Genetic diversity and comprehensive evaluation of phenotypic traits in sea-island cotton germplasm resources. Scientia Agricultura Sinica, 2021, 54(12):2499-2509. (in Chinese)
[32] 孙珍珠, 李秋月, 王小柯, 赵婉彤, 薛杨, 冯锦英, 刘小丰, 刘梦雨, 江东. 宽皮柑橘种质资源表型多样性分析及综合评价. 中国农业科学, 2017, 50(22):4362-4372.
SUN Z Z, LI Q Y, WANG X K, ZHAO W T, XUE Y, FENG J Y, LIU X F, LIU M Y, JIANG D. Comprehensive evaluation and phenotypic diversity analysis of germplasm resources in mandarin. Scientia Agricultura Sinica, 2017, 50(22):4362-4372. (in Chinese)
[33] 李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019, 45(12):1891-1898.
doi: 10.3724/SP.J.1006.2019.94016
LI J G, XUE X M, ZHANG Z H, WANG Z H, YAN L Y, CHEN Y N, WAN L Y, KANG Y P, HUAI D X, JIANG H F, LEI Y, LIAO B S. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agronomica Sinica, 2019, 45(12):1891-1898. (in Chinese)
doi: 10.3724/SP.J.1006.2019.94016
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[3] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[8] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[9] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[12] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[13] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[14] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[15] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!