Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2929-2940.doi: 10.3864/j.issn.0578-1752.2023.15.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content

SUN Tao1,3(), FENG XiaoMin2,3, GAO XinHao1, DENG AiXing3, ZHENG ChengYan3, SONG ZhenWei3(), ZHANG WeiJian3   

  1. 1 State Key Laboratory of Nutrient Use and Management/Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan 250100
    2 Institute of Sorghum Research, Shanxi Agricultural University, Jinzhong 030600, Shanxi
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2022-08-13 Accepted:2022-12-06 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 In this study, the composition as well as carbon and nitrogen distribution characteristics of soil aggregates under diversified cropping system of poaceae and legumes in the black soil region of Northeast China were elucidated, which could provide the theoretical basis and technical guidance for promoting the optimization of cropping system of combined use and cultivation in black soil. 【Method】 Field experiment was conducted from 2016 to 2020 in Gongzhuling Experimental Station, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Four diversified cropping systems were considered, including maize-soybean intercropping (M/S), maize-soybean rotation (M-S), maize-peanut intercropping (M/P), and maize-peanut rotation (M-P), while the maize continuous cropping (CM) system was used as control. Soil samples of 0-20 cm and 20-40 cm layers were collected after harvesting in October 2020. Then, soil aggregates and their soil organic carbon (SOC) and total nitrogen (TN) content under diversified cropping system were analyzed. 【Result】 Diversified cropping was beneficial to increase the content of water-stable macro-aggregates in 0-20 cm and 20-40 cm soil (>0.25 mm), and to reduce the content of silt and clay (<0.053 mm), the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates under four diversified cropping systems were significantly higher than those of maize continuous cropping system (P<0.05). Soil aggregates ratios of >0.25 mm under M/S and M-S treatments were 17.5% and 13.4% higher than that under CM treatment in 0-20 cm soil layer, respectively. Soil aggregates ratios of >0.25 mm under M/S, M-S and M-P treatments was 10.4%, 8.3% and 10.5% higher than that under CM treatment in the 20-40 cm soil layer, respectively. Diversified cropping increased the SOC and TN content of soil aggregates. In 0-20 cm soil layer, the SOC of >2 mm soil aggregate under M/S, M-S, M/P and M-P treatments was 20.7%, 24.3%, 18.8% and 17.8% higher than that under CM treatment, respectively; the TN of >2 mm soil aggregate under M-S, M/P and M-P treatments was 13.0%, 16.8% and 14.8% higher than that under CM treatment, respectively. When compared with CM treatment, the contribution rates of >2 mm soil aggregate to SOC and TN under M-S and M/P treatments were higher in 0-20 cm soil layer, while the contribution rate of <0.053 mm soil aggregate to SOC and TN under M/S and M-S treatments were lower in 0-20 cm soil layer. 【Conclusion】 Diversified cropping increased the content of soil macroaggregates, decreased the content of clay particles, improved the soil aggregate stability, SOC and TN of soil aggregates, which was conducive to promoting the SOC and TN sequestration in black soil region of Northeast China.

Key words: black soil region of Northeast China, rotation, intercropping, maize, soybean, peanut, soil aggregate, soil organic carbon, soil total nitrogen

Fig. 1

Proportion of water-stable aggregates with different particle sizes CM: Continuous maize; M/S: Maize-soybean intercropping; M-S: Maize-soybean rotation; M/P: Maize-peanut intercropping; M-P: Maize-peanut rotation. Different lowercase letters indicate significant differences at the P<0.05 level. The same as below"

Fig. 2

Mean soil aggregate weight diameter and geometric mean diameter"

Fig. 3

Soil aggregates ratios of >0.25 mm"

Fig. 4

The organic carbon content of soil aggregates in different particle sizes"

Fig. 5

The total nitrogen content of soil aggregates in different particle sizes"

Table 1

Contribution rate of organic carbon in soil aggregates of different particle sizes"

土层
Soil layer (cm)
处理
Treatment
贡献率 Contribution rate (%)
>2 mm 0.25-2 mm 0.053-0.25 mm <0.053 mm
0-20 CM 3.22±0.43b 52.46±2.78b 18.33±2.44a 25.98±4.76a
M/S 6.70±0.99b 67.90±3.28a 15.57±2.44a 9.83±1.10b
M-S 13.19±1.43a 59.68±4.80ab 18.95±4.36a 8.19±1.39b
M/P 14.37±2.22a 57.02±1.61ab 13.35±2.02a 15.26±1.69ab
M-P 7.08±0.41b 60.18±1.05ab 16.16±2.37a 16.58±2.30ab
20-40 CM 2.93±0.37b 67.46±0.76b 12.08±0.79a 17.53±0.55a
M/S 8.31±1.79ab 71.82±2.10ab 8.19±0.24b 11.67±1.26a
M-S 11.18±1.79a 67.27±1.13b 8.70±1.30ab 12.86±1.56a
M/P 8.14±1.43ab 68.31±1.53ab 7.91±0.66b 15.64±0.86a
M-P 5.33±0.51ab 75.08±1.50a 6.48±0.75b 13.11±2.49a

Table 2

Contribution rate of total nitrogen in soil aggregates of different particle sizes"

土层
Soil layer (cm)
处理
Treatment
贡献率 Contribution rate (%)
>2 mm 0.25-2 mm 0.053-0.25 mm <0.053 mm
0-20 CM 3.40±0.47b 54.35±2.86b 16.68±2.39a 25.57±4.43a
M/S 5.55±0.46b 70.80±2.20a 14.13±1.59a 9.51±1.19b
M-S 12.59±1.20a 59.45±4.90ab 19.47±4.16a 8.49±1.57b
M/P 15.77±1.89a 54.27±1.28b 12.69±1.10a 17.27±1.84ab
M-P 7.09±0.38b 56.98±1.11b 18.48±2.36a 17.45±2.30ab
20-40 CM 2.57±0.41b 65.64±1.06c 14.48±0.54a 17.32±0.92a
M/S 7.36±1.32ab 72.69±1.72ab 8.29±0.14b 11.66±1.14a
M-S 9.69±1.66a 68.32±1.29bc 10.09±0.93b 11.90±1.95a
M/P 7.35±1.10ab 68.04±1.03bc 8.61±0.52b 16.00±1.19a
M-P 4.86±0.40ab 74.54±0.81a 7.80±0.90b 12.79±1.61a
[1]
TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. PNAS, 2011, 108(50): 20260-20264.

doi: 10.1073/pnas.1116437108 pmid: 22106295
[2]
MESSÉAN A, VIGUIER L, PARESYS L, AUBERTOT J N, CANALI S, IANNETTA P, JUSTES E, KARLEY A, KEILLOR B, KEMPER L, MUEL F, PANCINO B, STILMANT D, WATSON C, WILLER H, ZORNOZA R. Enabling crop diversification to support transitions toward more sustainable European agrifood systems. Frontiers of Agricultural Science and Engineering, 2021: 8(3): 474-480.
[3]
ZHAO J, YANG Y D, ZHANG K, JEONG J, ZENG Z H, ZANG H D. Does crop rotation yield more in China? A meta-analysis. Field Crops Research, 2020, 245: 107659.

doi: 10.1016/j.fcr.2019.107659
[4]
RENARD D, TILMAN D. National food production stabilized by crop diversity. Nature, 2019, 571(7764): 257-260.

doi: 10.1038/s41586-019-1316-y
[5]
CONG W F, HOFFLAND E, LI L, SIX J, SUN J H, BAO X G, ZHANG F S, VAN DER WERF W. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21(4): 1715-1726.

doi: 10.1111/gcb.12738
[6]
OELBERMANN M, ECHARTE L. Evaluating soil carbon and nitrogen dynamics in recently established maize-soybean inter- cropping systems. European Journal of Soil Science, 2011, 62(1): 35-41.

doi: 10.1111/ejs.2011.62.issue-1
[7]
LIU X, RAHMAN T, SONG C, YANG F, SU B Y, CUI L, BU W Z, YANG W Y. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 2018, 224: 91-101.

doi: 10.1016/j.fcr.2018.05.010
[8]
杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2022, 48(6): 1476-1487.

doi: 10.3724/SP.J.1006.2022.13017
YANG H, ZHOU Y, CHEN P, DU Q, ZHENG B C, PU T, WEN J, YANG W Y, YONG T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. (in Chinese)

doi: 10.3724/SP.J.1006.2022.13017
[9]
VIRK A L, LIN B J, KAN Z R, QI J Y, DANG Y P, LAL R, ZHAO X, ZHANG H L. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil. Advances in Agronomy. Amsterdam: Elsevier, 2022, 171: 75-110.
[10]
MIKHA M M, RICE C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Science Society of America Journal, 2004, 68(3): 809-816.

doi: 10.2136/sssaj2004.8090
[11]
LI X F, WANG Z G, BAO X G, SUN J H, YANG S C, WANG P, WANG C B, WU J P, LIU X R, TIAN X L, WANG Y, LI J P, WANG Y, XIA H Y, MEI P P, WANG X F, ZHAO J H, YU R P, ZHANG W P, CHE Z X, GUI L G, CALLAWAY R M, TILMAN D, LI L. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4(11): 943-950.

doi: 10.1038/s41893-021-00767-7
[12]
DIJKSTRA F A, HOBBIE S E, REICH P B, KNOPS J M H. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272(1): 41-52.

doi: 10.1007/s11104-004-3848-6
[13]
BRONICK C J, LAL R. Soil structure and management: A review. Geoderma, 2005, 124(1/2): 3-22.

doi: 10.1016/j.geoderma.2004.03.005
[14]
GUNINA A, KUZYAKOV Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biology and Biochemistry, 2014, 71: 95-104.

doi: 10.1016/j.soilbio.2014.01.011
[15]
XIE J, PENG B, WANG R, BATBAYAR J, HOOGMOED M, YANG Y, ZHANG S, YANG X, SUN B. Responses of crop productivity and physical protection of organic carbon by macroaggregates to long-term fertilization of an Anthrosol. European Journal of Soil Science, 2018, 69(3): 555-567.

doi: 10.1111/ejss.2018.69.issue-3
[16]
NYAWADE S O, KARANJA N N, GACHENE C K K, GITARI H I, SCHULTE-GELDERMANN E, PARKER M L. Short-term dynamics of soil organic matter fractions and microbial activity in smallholder potato-legume intercropping systems. Applied Soil Ecology, 2019, 142: 123-135.

doi: 10.1016/j.apsoil.2019.04.015
[17]
BIMÜLLER C, KREYLING O, KÖLBL A, VON LÜTZOW M, KÖGEL-KNABNER I. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil and Tillage Research, 2016, 160: 23-33.

doi: 10.1016/j.still.2015.12.011
[18]
张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007.

doi: 10.3864/j.issn.0578-1752.2020.02.007
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.02.007
[19]
SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.

doi: 10.1016/S0038-0717(00)00179-6
[20]
赵兰坡, 王鸿斌, 刘会青, 王艳玲, 刘淑霞, 王宇. 松辽平原玉米带黑土肥力退化机理研究. 土壤学报, 2006, 43(1): 79-84.
ZHAO L P, WANG H B, LIU H Q, WANG Y L, LIU S X, WANG Y. Mechanism of fertility degradation of black soil in corn belt of Songliao plain. Acta Pedologica Sinica, 2006, 43(1): 79-84. (in Chinese)
[21]
于磊, 张柏. 中国黑土退化现状与防治对策. 干旱区资源与环境, 2004, 18(1): 99-103.
YU L, ZHANG B. The degradation situations of black soil in China and its prevention and counter measures. Journal of Arid Land Resources & Environment, 2004, 18(1): 99-103. (in Chinese)
[22]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[23]
KEMPER W D, ROSENAU R C. Aggregate stability and size distribution//KLUTE A, CAMPBELL G S, JACKSON R D. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Madison: WI, 1986: 425-442.
[24]
WANG F, ZHANG X X, NEAL A L, CRAWFORD J W, MOONEY S J, BACQ-LABREUIL A. Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes. Soil and Tillage Research, 2022, 215: 105226.

doi: 10.1016/j.still.2021.105226
[25]
LIU Z X, CHEN X M, JING Y, LI Q X, ZHANG J B, HUANG Q R. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 2014, 123: 45-51.

doi: 10.1016/j.catena.2014.07.005
[26]
乔鑫鑫, 王艳芳, 李乾云, 包全发, 尹飞, 焦念元, 付国占, 刘领. 复种模式对豫西褐土团聚体稳定性及其碳、氮分布的影响. 植物营养与肥料学报, 2021, 27(3): 380-391.
QIAO X X, WANG Y F, LI Q Y, BAO Q F, YIN F, JIAO N Y, FU G Z, LIU L. Effects of multi-cropping systems on cinnamon soil aggregate stability, carbon and nitrogen distribution in western Henan Province. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 380-391. (in Chinese)
[27]
白录顺, 范茂攀, 王自林, 王婷, 邓超, 李永梅. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系. 水土保持研究, 2019, 26(1): 124-129.
BAI L S, FAN M P, WANG Z L, WANG T, DENG C, LI Y M. Relationship between root characteristics and aggregate stability in the field with maize and soybean intercropping. Research of Soil and Water Conservation, 2019, 26(1): 124-129. (in Chinese)
[28]
魏艳春, 马天娥, 魏孝荣, 王昌钊, 郝明德, 张萌. 黄土高原旱地不同种植系统对土壤水稳性团聚体及碳氮分布的影响. 农业环境科学学报, 2016, 35(2): 305-313.
WEI Y C, MA T E, WEI X R, WANG C Z, HAO M D, ZHANG M. Effects of cropping systems on distribution of water-stable aggregates and organic carbon and nitrogen in soils in semiarid farmland of the Loess Plateau. Journal of Agro-Environment Science, 2016, 35(2): 305-313. (in Chinese)
[29]
王婷, 李永梅, 王自林, 肖靖秀, 白录顺, 范茂攀. 间作对玉米根系分泌物及团聚体稳定性的影响. 水土保持学报, 2018, 32(3): 185-190.
WANG T, LI Y M, WANG Z L, XIAO J X, BAI L S, FAN M P. Effects of intercropping on maize root exudates and soil aggregate stability. Journal of Soil and Water Conservation, 2018, 32(3): 185-190. (in Chinese)
[30]
向蕊, 伊文博, 赵薇, 王顶, 赵平, 龙光强, 汤利. 间作对土壤团聚体有机碳储量的影响及其氮调控效应. 水土保持学报, 2019, 33(5): 303-308.
XIANG R, YI W B, ZHAO W, WANG D, ZHAO P, LONG G Q, TANG L. Effects of intercropping on soil aggregate-associated organic carbon storage and nitrogen regulation. Journal of Soil and Water Conservation, 2019, 33(5): 303-308. (in Chinese)
[31]
FREIXO A A, DE A MACHADO P L O, DOS SANTOS H P, SILVA C A, DE S FADIGAS F. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil and Tillage Research, 2002, 64(3/4): 221-230.

doi: 10.1016/S0167-1987(01)00262-8
[32]
WEI X R, SHAO M G, GALE W J, ZHANG X C, LI L H. Dynamics of aggregate-associated organic carbon following conversion of forest to cropland. Soil Biology and Biochemistry, 2013, 57: 876-883.

doi: 10.1016/j.soilbio.2012.10.020
[33]
TIAN X L, WANG C B, BAO X G, WANG P, LI X F, YANG S C, DING G C, CHRISTIE P, LI L. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 2019, 436(1): 173-192.

doi: 10.1007/s11104-018-03924-8
[34]
GUPTA V V S R, GERMIDA J J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biology and Biochemistry, 1988, 20(6): 777-786.

doi: 10.1016/0038-0717(88)90082-X
[35]
邱晓蕾, 宗良纲, 刘一凡, 杜霞飞, 罗敏, 汪润池. 不同种植模式对土壤团聚体及有机碳组分的影响. 环境科学, 2015, 36(3): 1045-1052.
QIU X L, ZONG L G, LIU Y F, DU X F, LUO M, WANG R C. Effects of different cultivation patterns on soil aggregates and organic carbon fractions. Environmental Science, 2015, 36(3): 1045-1052. (in Chinese)
[36]
李孝梅, 李永梅, 乌达木, 范茂攀. 玉米间作大豆、萝卜对红壤不同粒径水稳性团聚体碳氮分布的影响. 中国土壤与肥料, 2022(1): 104-111.
LI X M, LI Y M, WU D M, FAN M P. Effects of maize//soybean and maize//radish inter-cropping on the carbon and nitrogen distribution of water-stable aggregates in red soil. Soil and Fertilizer Sciences in China, 2022(1): 104-111. (in Chinese)
[37]
QUINN THOMAS R, CANHAM C D, WEATHERS K C, GOODALE C L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 2010, 3(1): 13-17.
[38]
JIA Y F, ZHAI G Q, ZHU S S, LIU X J, SCHMID B, WANG Z H, MA K P, FENG X J. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161: 108375.

doi: 10.1016/j.soilbio.2021.108375
[39]
LANGE M, EISENHAUER N, SIERRA C A, BESSLER H, ENGELS C, GRIFFITHS R I, MELLADO-VÁZQUEZ P G, MALIK A A, ROY J, SCHEU S, STEINBEISS S, THOMSON B C, TRUMBORE S E, GLEIXNER G. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6: 6707.

doi: 10.1038/ncomms7707 pmid: 25848862
[40]
MCDANIEL M D, TIEMANN L K, GRANDY A S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 2014, 24(3): 560-570.

pmid: 24834741
[41]
PROMMER J, WALKER T W N, WANEK W, BRAUN J, ZEZULA D, HU Y T, HOFHANSL F, RICHTER A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 2020, 26(2): 669-681.

doi: 10.1111/gcb.14777 pmid: 31344298
[42]
ZHANG K L, MALTAIS-LANDRY G, LIAO H L. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry, 2021, 156: 108219.

doi: 10.1016/j.soilbio.2021.108219
[43]
LAL R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security, 2010, 2(2): 169-177.

doi: 10.1007/s12571-010-0060-9
[44]
曹寒冰, 谢钧宇, 强久次仁, 郭璐, 洪坚平, 荆耀栋, 孟会生. 施肥措施对复垦土壤团聚体碳氮含量和作物产量的影响. 农业工程学报, 2020, 36(18): 135-143.
CAO H B, XIE J Y, QIANGJIU C R, GUO L, HONG J P, JING Y D, MENG H S. Effects of fertilization regimes on carbon and nitrogen contents of aggregates and maize yield in reclaimed soils. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 135-143. (in Chinese)
[45]
SUN T, FENG X M, LAL R, CAO T H, GUO J R, DENG A X, ZHENG C Y, ZHANG J, SONG Z W, ZHANG W J. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints. Agriculture, Ecosystems & Environment, 2021, 321: 107614.

doi: 10.1016/j.agee.2021.107614
[46]
JOSEPH U E, TOLUWASE A O, KEHINDE E O, OMASAN E E, TOLULOPE A Y, GEORGE O O, ZHAO C S, WANG H Y. Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Archives of Agronomy and Soil Science, 2020, 66(1): 1-12.

doi: 10.1080/03650340.2019.1587412
[47]
张贺, 杨静, 周吉祥, 李桂花, 张建峰. 连续施用土壤改良剂对砂质潮土团聚体及作物产量的影响. 植物营养与肥料学报, 2021, 27(5): 791-801.
ZHANG H, YANG J, ZHOU J X, LI G H, ZHANG J F. Effects of organic and inorganic amendments on aggregation and crop yields in sandy fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 791-801. (in Chinese)
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[4] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[5] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[6] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[7] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[10] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[11] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[12] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[15] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!