Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1729-1743.doi: 10.3864/j.issn.0578-1752.2023.09.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas

PANG JinWen1,2(), WANG YuHao1,2, TAO HongYang1, WEI Ting1,2, GAO Fei3, LIU EnKe4, JIA ZhiKuan1,2, ZHANG Peng1,2()   

  1. 1 College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi
    2 Key Laboratory of Crop Physiology, Ecology and Farming in Northwest Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    3 Gansu Cultivated Land Quality Construction and Protection Station, Lanzhou 730020
    4 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-04-12 Accepted:2022-06-10 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】The aim of this study was to investigate the effects of long-term plastic film mulching farmland combined with different biochar input rates on soil aggregate stability and organic carbon in northwest China, in order to provide a scientific basis for improving the soil fertility and maintaining the sustainability of crop production for film-mulching field in semiarid regions. 【Method】Based on continuous years of double ridge furrow film mulching (D), the full film double ridge furrow mulching planting and traditional flat without film mulching planting were set as the main treatment, and four biochar input rates (no returning (N), 3 t·hm-2 (L), 6 t·hm-2 (M), and 9 t·hm-2 (H) ) were set as the secondary treatment respectively to investigate the effects of different biochar input rates on soil aggregate distribution, aggregate stability, aggregate organic carbon and maize yield.【Result】The film mulching could significantly (P<0.05) increase the soil mechanical stable (6.1%-8.7%) and water-stable macro-aggregate contents (15.9%-83.6%) and maize yield (35.0%-41.8%). Under the film mulching planting, biochar inputs treatments could significantly (P<0.05) increase mechanical macro-aggregate and water macro-aggregate by 6.8% and 29.6% on average, respectively, and the effects gradually increased with the increase of biochar inputs rate. In addition, biochar inputs could also increase the soil organic carbon and aggregate organic carbon content in film mulching farmland, and the effects under DH (9 t·hm-2) were better than other treatments, with an average increased by 13.9% and 25.9%, respectively. Maize yield was significantly correlated with biochar addition rates ( λ=0.42, P<0.001 ), and DH had the highest yield with 12.8 t·hm-2. 【Conclusion】Biochar input could significantly improve soil aggregrate characteristics and organic carbon content in plastic film mulching farmland, thus increase the maize yield and promote soil carbon sequestration, especially with 9 t·hm-2.

Key words: film mulching, biochar, soil aggregate characteristic, soil organic carbon, dryland

Fig. 1

Daily precipitation and mean temperature at experimental station in maize growth period during 2019-2020"

Table 1

Physical and chemical properties of soil in 0-60 cm soil layer"

土层
Soil layer
(cm)
有机碳
Organic carbon
(g·kg-1)
碱解氮
Available nitrogen
(mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
全氮
Total nitrogen
(g·kg-1)
容重
Bulk density
(g·cm-3)
孔隙度
Porosity
(%)
田间持水量
Field capacity
(%)
酸碱度
pH
0-20 8.7 63.6 12.6 161.2 1.2 1.3 49.8 37.4 8.4
20-40 8.0 44.9 7.9 117.2 0.9 1.3 49.4 36.4 8.5
40-60 7.6 46.8 6.0 102.7 1.1 1.4 46.8 38.4 8.6

Fig. 2

The diagram of two planting methods"

Fig. 3

Distribution of mechanical stable aggregate under different biochar input treatments Different letters indicate significant differences at P<0.05. The same as Fig.4"

Fig. 4

Distribution of water-stable aggregate under different biochar input treatments"

Table 2

The aggregate stability under different biochar input treatments"

土层
Soil depth (cm)
处理
Treatment
干筛团聚体 Dry sieve aggregate 湿筛团聚体 Wet sieve aggregate (mm) 破坏率
PAD0.25 (%)
MMWD (mm) MR0.25 (%) WMWD (mm) WR0.25 (%)
0—10 DH 2.75±0.23a 87.48±0.29a 0.39±0.06a 13.43±0.84a 84.65±1.01e
DM 2.64±0.16ab 84.08±0.57b 0.36±0.02ab 11.27±0.64b 86.60±0.84d
DL 2.56±0.24ab 81.51±0.33c 0.34±0.03ab 8.70±0.49c 89.33±0.61c
DN 2.46±0.15ab 79.23±0.64d 0.33±0.03ab 7.84±0.36c 90.10±0.49c
FH 2.61±0.22ab 83.32±0.46b 0.35±0.01ab 8.28±0.30c 90.06±0.31c
FM 2.52±0.17ab 81.03±0.75c 0.33±0.05ab 6.24±0.40d 92.30±0.45b
FL 2.40±0.18ab 78.06±0.43e 0.32±0.04ab 5.31±0.46e 93.20±0.56ab
FN 2.36±0.18b 77.16±0.10f 0.31±0.04b 4.96±0.59e 93.57±0.75a
10—20 DH 2.95±0.21a 87.80±0.42a 0.41±0.02a 14.92±0.20a 83.01±0.20e
DM 2.84±0.22ab 84.75±0.49b 0.38±0.05ab 13.33±0.31b 84.27±0.29d
DL 2.65±0.20ab 80.20±0.39d 0.36±0.03ab 11.34±0.42c 85.86±0.58c
DN 2.49±0.18b 78.04±0.41f 0.35±0.06b 10.16±0.45d 86.98±0.64c
FH 2.76±0.26ab 85.07±0.13b 0.36±0.01ab 8.90±0.41e 89.54±0.49b
FM 2.67±0.14ab 82.15±0.40c 0.34±0.02b 7.40±0.84f 90.99±1.06a
FL 2.57±0.29ab 79.43±0.21e 0.33±0.03b 6.34±0.76g 92.02±0.98a
FN 2.45±0.19b 76.01±0.22g 0.32±0.04b 5.95±0.60g 92.17±0.77a
20—40 DH 3.59±0.12a 88.96±0.34a 0.44±0.05a 17.75±0.66a 80.05±0.81f
DM 3.48±0.18ab 86.40±0.15c 0.41±0.03ab 16.02±0.85b 81.46±1.01e
DL 3.44±0.20ab 84.84±0.37d 0.39±0.04ab 13.64±0.87c 83.92±0.95d
DN 3.30±0.22ab 80.85±0.26f 0.37±0.03ab 12.77±0.27c 84.21±0.29cd
FH 3.46±0.13ab 86.88±0.14b 0.40±0.03ab 12.88±0.40c 85.17±0.46c
FM 3.36±0.20ab 84.00±0.13e 0.37±0.05ab 10.86±0.37d 87.07±0.44b
FL 3.24±0.15b 80.68±0.29f 0.35±0.02b 8.91±0.31e 88.96±0.43a
FN 3.18±0.11b 78.95±0.10g 0.35±0.05b 7.86±0.53f 90.04±0.64a
40—60 DH 2.99±0.14a 84.13±0.40a 0.50±0.03a 23.79±0.84a 71.72±1.05d
DM 2.94±0.16ab 82.12±0.43b 0.46±0.03ab 21.98±0.88b 73.23±1.28d
DL 2.81±0.21ab 79.30±0.89c 0.42±0.03bc 17.96±0.42c 77.35±0.79c
DN 2.76±0.23ab 77.48±0.58d 0.42±0.04bc 17.32±0.43c 77.65±0.80c
FH 2.85±0.20ab 81.96±0.71b 0.45±0.02ab 17.64±0.92c 78.48±1.38c
FM 2.75±0.15ab 78.88±0.71c 0.42±0.04bc 14.87±0.75d 81.15±1.07b
FL 2.66±0.22ab 76.24±0.51e 0.39±0.03c 12.05±0.37e 84.19±0.85a
FN 2.61±0.14b 75.02±0.29f 0.38±0.03c 10.84±0.25f 85.55±0.80a
0—60 DH 3.07±0.14a 87.09±0.34a 0.44±0.01a 17.47±0.25a 79.94±0.34f
DM 2.98±0.16ab 84.34±0.33b 0.40±0.02b 15.65±0.42b 81.44±0.55e
DL 2.87±0.20abc 81.46±0.24c 0.38±0.01bcd 12.91±0.39c 84.15±0.51d
DN 2.75±0.14bc 78.90±0.31d 0.37±0.03cde 12.02±0.20d 84.76±0.24d
FH 2.92±0.15abc 84.31±0.19b 0.39±0.01bc 11.93±0.26d 85.86±0.32c
FM 2.83±0.10abc 81.52±0.35c 0.37±0.01cde 9.84±0.41e 87.93±0.52b
FL 2.72±0.13bc 78.60±0.29d 0.35±0.02de 8.15±0.46f 89.63±0.57a
FN 2.65±0.09c 76.79±0.14e 0.34±0.03e 7.40±0.48g 90.36±0.61a
ANOVA P-value P-value P-value P-value P-value
P 0.03* 0.0001*** 0.0001*** 0.0001*** 0.0001***
C 0.0149* 0.0001*** 0.0001*** 0.0001*** 0.0025**
P×C 0.9886 0.1037 0.8049 0.0331* 0.9362

Fig. 5

Content and distributions of organic carbon in water-stable aggregates under different biochar input treatments Different letters indicate significant differences at P<0.05. * represent significant effects: *, P<0.05; **, P<0.01; ***, P<0.001. Letter P represents the planting pattern, and letter C represents different biochar input rates. The same as Fig. 7"

Table 3

Soil organic carbon content (g·kg-1) in 0-60 cm soil layer under different biochar input treatments"

处理
Treatment
土层 Soil layer (cm)
0—10 10—20 20—40 40—60 0—60
DH 9.32±0.37ab 9.44±0.48ab 8.63±0.37ab 7.65±0.11a 8.76±0.07b
DM 8.98±0.22b 9.10±0.49bc 8.37±0.31bcd 7.55±0.19a 8.50±0.11c
DL 8.20±0.28c 8.35±0.42cd 7.90±0.28d 7.43±0.23a 7.97±0.10d
DN 7.93±0.12c 8.04±0.54d 7.43±0.20e 7.31±0.20a 7.68±0.12e
FH 9.78±0.13a 9.98±0.42a 9.07±0.33a 7.75±0.23a 9.15±0.12a
FM 9.27±0.22b 9.47±0.34ab 8.48±0.25bc 7.63±0.39a 8.71±0.10b
FL 8.40±0.28c 8.56±0.36cd 8.05±0.18cd 7.65±0.40a 8.16±0.16d
FN 8.08±0.41c 8.25±0.32d 7.99±0.15cd 7.54±0.41a 7.96±0.17d
ANOVA F-value P-value
P 29.587 0.0001***
C 106.518 0.0001***
P×C 0.738 0.5448

Fig. 6

Correlation between biochar input rates and soil organic carbon content"

Fig. 7

Maize yields under different biochar input treatments (A), and the correlation between biochar input rates and maize yields (B) ns: Represents the no significance"

Fig. 8

Results of structural equation model analysis on soil organic carbon and maize yield by planting patterns and biochar input rates The Structural Equation Modeling (SEM) illustrating the direct and indirect effects of planting pattern, biochar input rates, macro-aggregrate contents, soil aggregate stability, aggregrate organic carbon, SOC and maize yield. Soil aggregate stability is latent variable, which is expressed by MWD, R0.25 and PAD. The red and blue arrows indicate negative and positive flows of causality, respectively. Numbers on the arrowed lines and thickness of arrows indicate normalized path coefficient. The blue and red dotted arrows indicate positive and negative flows of causality, but non-significant. R2 beside the latent variables are the coefficients of determination. The GFI index represents the goodness of fit. * represent significant effects: *, P<0.05; **, P<0.01; ***, P<0.001"

[1]
ZHANG A F, BIAN R J, HUSSAIN Q, LI L Q, PAN G X, ZHENG J W, ZHANG X H, ZHENG J F. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, Ecosystems & Environment, 2013, 173: 37-45.

doi: 10.1016/j.agee.2013.04.001
[2]
ZHANG P, WEI T, HAN Q F, REN X L, JIA Z K. Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agricultural Water Management, 2020, 241: 106382.

doi: 10.1016/j.agwat.2020.106382
[3]
GU X B, CAI H J, FANG H, LI Y P, CHEN P P, LI Y N. Effects of degradable film mulching on crop yield and water use efficiency in China: A meta-analysis. Soil and Tillage Research, 2020, 202: 104676.

doi: 10.1016/j.still.2020.104676
[4]
付鑫, 王俊, 赵丹丹. 地膜覆盖对黄土高原旱作春玉米田土壤碳氮组分的影响. 水土保持学报, 2017, 31(3): 239-243.
FU X, WANG J, ZHAO D D. Effects of plastic film mulching on soil carbon and nitrogen fractions in a dryland spring maize field on the loess plateau. Journal of Soil and Water Conservation, 2017, 31(3): 239-243. (in Chinese)
[5]
LIU J L, LI S Q, YUE S C, TIAN J Q, CHEN H, JIANG H B, SIDDIQUE K H M, ZHAN A, FANG Q X, YU Q. Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma, 2021, 396: 115086.

doi: 10.1016/j.geoderma.2021.115086
[6]
吴媛媛, 杨明义, 张风宝, 张加琼, 赵恬茵, 刘淼. 添加生物炭对黄绵土耕层土壤可蚀性的影响. 土壤学报, 2016, 53(1): 81-92.
WU Y Y, YANG M Y, ZHANG F B, ZHANG J Q, ZHAO T Y, LIU M. Effect of biochar application on erodibility of plow layer soil on loess slopes. Acta Pedologica Sinica, 2016, 53(1): 81-92. (in Chinese)
[7]
LUO C Y, YANG J J, CHEN W, HAN F P. Effect of biochar on soil properties on the Loess Plateau: Results from field experiments. Geoderma, 2020, 369: 114323.

doi: 10.1016/j.geoderma.2020.114323
[8]
LI Y W, CHAI S X, CHAI Y W, LI R, LAN X M, MA J T, CHENG H B, CHANG L. Effects of mulching on soil temperature and yield of winter wheat in the semiarid rainfed area. Field Crops Research, 2021, 271: 108244.

doi: 10.1016/j.fcr.2021.108244
[9]
CHAPLOT V, COOPER M. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 2015, 243/244: 205-213.

doi: 10.1016/j.geoderma.2014.12.013
[10]
ZHU L X, ZHANG F L, LI L L, LIU T X. Soil C and aggregate stability were promoted by bio-fertilizer on the North China plain. Journal of Soil Science and Plant Nutrition, 2021, 21(3): 2355-2363.

doi: 10.1007/s42729-021-00527-8
[11]
刘振东, 李贵春, 周颖, 杨晓梅, 尹昌斌, 南云不二男. 无机肥配施粪肥对华北褐土团聚体分布及有机碳含量的影响. 农业环境科学学报, 2013, 32(11): 2239-2245.
LIU Z D, LI G C, ZHOU Y, YANG X M, YIN C B, FUJIO NAGUMO. The effect of fertilizer management practices on distribution of aggregates and SOC. Journal of Agro-Environment Science, 2013, 32(11): 2239-2245. (in Chinese)
[12]
李江舟, 代快, 张立猛, 计思贵, 乔志新, 焦永鸽, 孟军, 兰宇. 施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响. 环境科学学报, 2016, 36(6): 2114-2120.
LI J Z, DAI K, ZHANG L M, JI S G, QIAO Z X, JIAO Y G, MENG J, LAN Y. Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area. Acta Scientiae Circumstantiae, 2016, 36(6): 2114-2120. (in Chinese)
[13]
CUI T T, LI Z H, WANG S J. Effects of in situ straw decomposition on composition of humus and structure of humic acid at different soil depths. Journal of Soils and Sediments, 2017, 17(10): 2391-2399.

doi: 10.1007/s11368-017-1704-6
[14]
ZHANG J J, WEI Y X, LIU J Z, YUAN J C, LIANG Y, REN J, CAI H G. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil and Tillage Research, 2019, 190: 1-9.

doi: 10.1016/j.still.2019.02.014
[15]
魏永霞, 朱畑豫, 刘慧. 连年施加生物炭对黑土区土壤改良与玉米产量的影响. 农业机械学报, 2022, 53(1): 291-301.
WEI Y X, ZHU T Y, LIU H. Effects of successive application of biochar on soil improvement and maize yield of black soil region. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 291-301. (in Chinese)
[16]
DONG X L, GUAN T Y, LI G T, LIN Q M, ZHAO X R. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions. Journal of Soils and Sediments, 2016, 16(5): 1481-1497.

doi: 10.1007/s11368-015-1338-5
[17]
DONG X L, SINGH B P, LI G T, LIN Q M, ZHAO X R. Biochar increased field soil inorganic carbon content five years after application. Soil and Tillage Research, 2019, 186: 36-41.

doi: 10.1016/j.still.2018.09.013
[18]
王富华, 黄容, 高明, 王子芳, 田冬. 生物质炭与秸秆配施对紫色土团聚体中有机碳含量的影响. 土壤学报, 2019, 56(4): 929-939.
WANG F H, HUANG R, GAO M, WANG Z F, TIAN D. Effect of combined application of biochar and straw on organic carbon content in purple soil aggregates. Acta Pedologica Sinica, 2019, 56(4): 929-939. (in Chinese)
[19]
张星, 刘杏认, 张晴雯, 张庆忠, 任建强. 生物炭和秸秆还田对华北农田玉米生育期土壤微生物量的影响. 农业环境科学学报, 2015, 34(10): 1943-1950.
ZHANG X, LIU X R, ZHANG Q W, ZHANG Q Z, REN J Q. Effects of biochar and straw direct return on soil microbial biomass during maize growth season in North China plain. Journal of Agro- Environment Science, 2015, 34(10): 1943-1950. (in Chinese)
[20]
安宁, 李冬, 李娜, 吴正超, 任彬彬, 杨劲峰, 韩巍, 韩晓日. 长期不同量秸秆炭化还田下水稻土孔隙结构特征. 植物营养与肥料学报, 2020, 26(12): 2150-2157.
AN N, LI D, LI N, WU Z C, REN B B, YANG J F, HAN W, HAN X R. Characterization of soil pore structure of paddy soils under different long-term rice straw biochar incorporation. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2150-2157. (in Chinese)
[21]
SUI Y H, GAO J P, LIU C H, ZHANG W Z, LAN Y, LI S H, MENG J, XU Z J, TANG L. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. The Science of the Total Environment, 2016, 544: 203-210.

doi: 10.1016/j.scitotenv.2015.11.079 pmid: 26657366
[22]
SNYDER J D, TROFYMOW J A. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Communications in Soil Science and Plant Analysis, 1984, 15(5): 587-597.

doi: 10.1080/00103628409367499
[23]
涂纯, 王俊, 刘文兆. 不同覆盖条件下旱作农田土壤呼吸及其影响因素. 植物营养与肥料学报, 2012, 18(5): 1103-1110.
TU C, WANG J, LIU W Z. Variation in soil respiration and its driving factors in rainfed winter wheat fields with different mulching measures. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1103-1110. (in Chinese)
[24]
CAMBARDELLA C A, ELLIOTT E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 1993, 57(4): 1071-1076.

doi: 10.2136/sssaj1993.03615995005700040032x
[25]
WANG L, LI X G, LV J T, FU T, MA Q J, SONG W F, WANG Y, LI F M. Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China. Soil & Tillage Research, 2017, 167: 46-53.
[26]
刘艳, 马茂华, 吴胜军, 冉义国, 王小晓, 黄平. 干湿交替下土壤团聚体稳定性研究进展与展望. 土壤, 2018, 50(5): 853-865.
LIU Y, MA M H, WU S J, RAN Y G, WANG X X, HUANG P. Soil aggregates as affected by wetting-drying cycle: A review. Soils, 2018, 50(5): 853-865. (in Chinese)
[27]
BRAVO-GARZA M R, VORONEY P, BRYAN R B. Particulate organic matter in water stable aggregates formed after the addition of 14C-labeled maize residues and wetting and drying cycles in vertisols. Soil Biology and Biochemistry, 2010, 42(6): 953-959.

doi: 10.1016/j.soilbio.2010.02.012
[28]
王子龙, 胡斐南, 赵勇钢, 谭文峰, 赵世伟, 黄菁华, 张耀方, 杜璨, 尚应妮. 土壤胶结物质分布特征及其对黄土大团聚体稳定性的影响. 水土保持学报, 2016, 30(5): 331-336.
WANG Z L, HU F N, ZHAO Y G, TAN W F, ZHAO S W, HUANG J H, ZHANG Y F, DU C, SHANG Y N. Distribution characteristics of soil cementing material and its effect on loess macro-aggregate stability. Journal of Soil and Water Conservation, 2016, 30(5): 331-336. (in Chinese)
[29]
侯晓娜, 李慧, 朱刘兵, 韩燕来, 唐政, 李忠芳, 谭金芳, 张水清. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响. 中国农业科学, 2015, 48(4): 705-712. doi: 10.3864/j.issn.0578-1752.2015.04.08

doi: 10.3864/j.issn.0578-1752.2015.04.08
HOU X N, LI H, ZHU L B, HAN Y L, TANG Z, LI Z F, TAN J F, ZHANG S Q. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution. Scientia Agricultura Sinica, 2015, 48(4): 705-712. doi: 10.3864/j.issn.0578-1752.2015.04.08. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.04.08
[30]
ZHAO Z H, GAO S F, LU C Y, LI X Y, WANG T Y. Soil organic carbon fractions and its association with water-stable aggregates under different fertilization management practices. Soil Use and Management, 2022, 38(1): 478-486.

doi: 10.1111/sum.v38.1
[31]
SUN Z C, ZHANG Z C, ZHU K, WANG Z M, ZHAO X R, LIN Q M, LI G T. Biochar altered native soil organic carbon by changing soil aggregate size distribution and native SOC in aggregates based on an 8-year field experiment. Science of the Total Environment, 2020, 708: 134829.

doi: 10.1016/j.scitotenv.2019.134829
[32]
FAN R Q, DU J J, LIANG A Z, LOU J, LI J Y. Carbon sequestration in aggregates from native and cultivated soils as affected by soil stoichiometry. Biology and Fertility of Soils, 2020, 56(8): 1109-1120.

doi: 10.1007/s00374-020-01489-2
[33]
贾瑞琴, 李小红, 王淑颖, 徐香茹, 梅秀文, 安婷婷, 汪景宽. 覆膜栽培与施肥对秸秆碳氮在土壤团聚体中固持特征的影响. 土壤通报, 2022, 53(4): 839-846.
JIA R Q, LI X H, WANG S Y, XU X R, MEI X W, AN T T, WANG J K. Effects of plastic film mulching and fertilization on sequestration characteristics of straw-derived carbon and nitrogen in soil aggregates. Chinese Journal of Soil Science, 2022, 53(4): 839-846. (in Chinese)
[34]
TIAN J, PAUSCH J, YU G R, BLAGODATSKAYA E, KUZYAKOV Y. Aggregate size and glucose level affect priming sources: a three- source-partitioning study. Soil Biology and Biochemistry, 2016, 97: 199-210.

doi: 10.1016/j.soilbio.2016.03.013
[35]
韩贞贵, 周运超, 任娇娇, 白云星. 马尾松人工林土壤各粒径团聚体湿筛后的有机碳分配. 生态学报, 2021, 41(23): 9388-9398.
HAN Z G, ZHOU Y C, REN J J, BAI Y X. Distribution of organic carbon after wet sieving of soil aggregates of various particle sizes in Masson Pine plantation. Acta Ecologica Sinica, 2021, 41(23): 9388-9398. (in Chinese)
[36]
TONG L H, ZHU L, LV Y Z, ZHU K, LIU X Y, ZHAO R. Response of organic carbon fractions and microbial community composition of soil aggregates to long-term fertilizations in an intensive greenhouse system. Journal of Soils and Sediments, 2020, 20(2): 641-652.

doi: 10.1007/s11368-019-02436-x
[37]
乔丹丹, 吴名宇, 张倩, 韩燕来, 张毅博, 李培培, 李慧. 秸秆还田与生物炭施用对黄褐土团聚体稳定性及有机碳积累的影响. 中国土壤与肥料, 2018(3): 92-99.
QIAO D D, WU M Y, ZHANG Q, HAN Y L, ZHANG Y B, LI P P, LI H. Effect of boichar and straw with chemical fertilizers on soil aggregate distribution and organic carbon content in yellow cinnamon soil. Soil and Fertilizer Sciences in China, 2018(3): 92-99. (in Chinese)
[38]
李正鹏, 宋明丹, 韩梅, 蒋福祯, 叶广继. 覆膜与生物炭对青藏高原马铃薯水分利用效率和产量的影响. 农业工程学报, 2020, 36(15): 142-149.
LI Z P, SONG M D, HAN M, JIANG F Z, YE G J. Effects of film mulching and biochar interaction on yield and water use efficiency of potato in the eastern agricultural area of Qinghai-Tibetan Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 142-149. (in Chinese)
[39]
LIU S H, KONG F L, LI Y, JIANG Z X, XI M, WU J. Mineral-ions modified biochars enhance the stability of soil aggregate and soil carbon sequestration in a coastal wetland soil. Catena, 2020, 193: 104618.

doi: 10.1016/j.catena.2020.104618
[40]
ZHANG P, WEI T, CAI T, ALI S, HAN Q F, REN X L, JIA Z K. Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China. Frontiers in Plant Science, 2017, 8: 512.

doi: 10.3389/fpls.2017.00512 pmid: 28428798
[41]
ELDOMA I M, LI M, ZHANG F, LI F M. Alternate or equal ridge-furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China? Field Crops Research, 2016, 191: 131-138.

doi: 10.1016/j.fcr.2016.02.024
[42]
MEHMOOD I, QIAO L, CHEN H Q, TANG Q Y, WOOLF D, FAN M S. Biochar addition leads to more soil organic carbon sequestration under a maize-rice cropping system than continuous flooded rice. Agriculture, Ecosystems & Environment, 2020, 298: 106965.

doi: 10.1016/j.agee.2020.106965
[43]
XIAO Q, ZHU L X, SHEN Y F, LI S Q. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research, 2016, 196: 284-293.

doi: 10.1016/j.fcr.2016.07.014
[44]
YU H W, ZOU W X, CHEN J J, CHEN H, YU Z B, HUANG J, TANG H R, WEI X Y, GAO B. Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 2019, 232: 8-21.

doi: S0301-4797(18)31259-3 pmid: 30466010
[45]
李伟, 代镇, 张光鑫, 刘杨, 韩娟. 生物炭和氮肥配施提高塿土团聚体稳定性及作物产量. 植物营养与肥料学报, 2019, 25(5): 782-791.
LI W, DAI Z, ZHANG G X, LIU Y, HAN J. Combination of biochar and nitrogen fertilizer to improve soil aggregate stability and crop yield in Lou soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 782-791. (in Chinese)
[1] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[2] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[3] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[4] ZHAO KaiNan, WU JinZhi, HUANG Ming, LI YouJun, WANG HongTao, HUANG XiuLi, WU ShanWei, ZHANG Jun, ZHAO ZhiMing, ZHAO WenXin, LI ShuJing, LI Shuang, LI WenNa. Effects of Supplemental Irrigation After Regreening and Nitrogen Fertilizer Application Rates on Wheat Yield, Water and Nitrogen Use Efficiency in Dryland [J]. Scientia Agricultura Sinica, 2023, 56(17): 3383-3398.
[5] XU JuZhen, ZHANG MengLu, HE WenQing, SUI Peng, CHEN YuanQuan, CUI JiXiao. Yield-Increasing Effects Under Plastic Film Mulching of Potato in China Based on Meta-Analysis [J]. Scientia Agricultura Sinica, 2023, 56(15): 2895-2906.
[6] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[7] CAO YongGang, XU LongLong, CHAI Qiang, HU FaLong, YIN Wen, FAN ZhiLong, WANG QiMing, ZHAO Cai. Water Use Characteristics of Wheat Rotated After No Tillage Plastic Film Mulching Maize with Reduced Water and Nitrogen [J]. Scientia Agricultura Sinica, 2023, 56(14): 2660-2672.
[8] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[9] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[10] SONG BoYing, GUO YanJie, WANG WenZan, LÜ ZeNan, ZHAO YuQing, LIU Lu, ZHANG LiJuan. Effects of Biochar Combined with Dicyandiamide on Greenhouse Gases Emissions from Facility Vegetable Soil [J]. Scientia Agricultura Sinica, 2023, 56(10): 1935-1948.
[11] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[12] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[13] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[14] ZHANG JinRui,REN SiYang,DAI JiZhao,DING Fan,XIAO MouLiang,LIU XueJun,YAN ChangRong,GE TiDa,WANG JingKuan,LIU Qin,WANG Kai,ZHANG FuSuo. Influence of Plastic Film on Agricultural Production and Its Pollution Control [J]. Scientia Agricultura Sinica, 2022, 55(20): 3983-3996.
[15] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!