Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 635-648.doi: 10.3864/j.issn.0578-1752.2023.04.004

Previous Articles     Next Articles

Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut

LIU Na(), XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang()   

  1. College of Agronomy, Shenyang Agricultural University, Shenyang 110866
  • Received:2022-06-03 Accepted:2022-10-09 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】According to the current situation such as low content of available potassium and insufficient application of potassium fertilizer of peanut production in Liaoning province, this study explored the effects of different potassium levels on peanut root system, nodule characteristics, main nutrient absorption rate and yield, so as to determine the optimal application rate of potassium fertilizer and provide the theoretical basis and reference for local peanut production. 【Method】 This study was conducted in Shenyang Agricultural University from 2018 to 2019. Under the condition of normal application of nitrogen and phosphorus fertilizer needed for peanut field production, four potassium fertilizer (potassium sulfate) treatments of 0 (CK), 112.5 kg·hm-2 (T1), 225 kg·hm-2 (T2) and 337.5 kg·hm-2 (T3) were used to study the effects of different potassium application rates on root morphology of plough layer, nodule characteristics, nutrient absorption and yield of peanut. 【Result】Potassium application had little effect on root dry weight of peanut, and there was no significant indigenous difference in root dry matter accumulation treatments. Compared with CK, the total root length, total root surface area and total root volume in plough layer of peanut were significantly increased under T2. Root nodules were more sensitive to potassium concentration, and the number and dry weight of nodules reached the maximum at all stages when the amount of potassium application was 112.5 kg·hm-2. The increase of potassium application might also accelerate the formation and senescence of nodules. The application of potassium fertilizer increased the maximum accumulation rate, average accumulation rate and maximum accumulation of nitrogen, phosphorus and potassium, prolonged the active accumulation period of nitrogen and potassium. The yield components such as pods per plant and yield under T2 were higher than that under other treatments. 【Conclusion】 When the potassium application rate was 225 kg·hm-2 ( T2 ), it was most conducive to peanut root growth and nutrient absorption, and the yield increase effect was the best. When the potassium application rate was 112.5 kg·hm-2, the growth of nodules was the best, however, the yield increase effect was weaker than that of T2.

Key words: peanut, potassium, root characteristics, nodule characteristics, absorption of nourishment, yield

Table 1

Main physical and chemical parameters of soil in test field"

年份
Year
碱解氮
Alkaline hydrolysis nitrogen (mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
有机质
Organic matter
(g·kg-1)
pH
2018 105.7 25.1 115.3 15.4 6.5
2019 103.5 27.4 117.0 13.6 6.5

Table 2

Experimental treatment design"

处理
Treatment
硫酸钾
Potassium sulfate
(kg·hm-2)
尿素
Urea
(kg·hm-2)
过磷酸钙
Superphosphate
(kg·hm-2)
CK 0 135 600
T1 112.5 135 600
T2 225.0 135 600
T3 337.5 135 600

Table 3

Effects of potassium application on dry matter accumulation in peanut roots"

年份
Year
处理
Treatment
生育时期 Growth stage
苗期
Seedling stage (g/plant)
开花下针期
Pegging stage (g/plant)
结荚期
Pod-setting stage (g/plant)
成熟期
Maturity stage (g/plant)
2018 CK 0.20±0.04a 0.90±0.03a 0.53±0.04a 0.75±0.13a
T1 0.19±0.05a 0.83±0.19a 0.74±0.28a 0.75±0.28a
T2 0.19±0.03a 1.24±0.35a 0.99±0.27a 0.83±0.14a
T3 0.18±0.05a 0.96±0.06a 0.87±0.32a 0.90±0.17a
2019 CK 0.30±0.03a 0.87±0.32a 0.81±0.12a 0.75±0.07a
T1 0.32±0.01a 0.85±0.23a 0.74±0.05a 0.74±0.12a
T2 0.35±0.02a 1.07±0.12a 0.81±0.09a 0.79±0.17a
T3 0.33±0.06a 0.82±0.15a 0.77±0.14a 0.69±0.08a

Table 4

Effects of potassium application on root morphology of peanut"

形态指标
Morphological index
年份
Year
处理
Treatment
生育时期 Growth stage
苗期
Seeding stage
开花下针期
Pegging stage
结荚期
Pod-setting stage
成熟期
Mature stage
总根长
Total root length
(cm)
2018 CK 577.37±29.06b 797.88±56.89d 655.48±25.68b 664.38±21.99b
T1 586.44±24.97b 997.46±35.83c 664.70±39.85b 676.64±27.21ab
T2 634.16±27.19ab 1192.64±47.33a 736.82±38.82a 701.72±20.47a
T3 681.83±23.56a 1143.73±51.9b 715.14±29.85ab 703.95±10.30a
2019 CK 576.42±21.50c 762.42±28.74b 739.08±75.84b 669.04±109.31b
T1 690.27±47.49b 842.29±3.12ab 789.25±86.63b 882.29±92.76a
T2 779.67±50.46a 938.85±12.59a 921.72±91.13a 903.14±57.24a
T3 644.73±6.81bc 820.62±29.52ab 811.02±57.55b 718.63±55.03ab
总根表面积
Total root surface area
(cm2)
2018 CK 83.78±4.71b 182.13±3.29b 115.57±10.23b 125.93±18.20b
T1 87.93±3.58b 203.48±11.17a 155.24±18.30ab 148.93±12.89ab
T2 110.61±15.10a 216.70±9.22a 179.06±26.14a 161.95±11.54a
T3 101.65±9.98a 208.52±11.10a 136.84±29.68ab 138.72±10.14ab
2019 CK 82.20±2.90b 108.67±3.22b 122.61±11.42b 208.63±47.95b
T1 106.74±9.22a 120.84±12.31ab 145.43±12.35ab 261.43±11.31a
T2 116.59±7.76a 146.35±3.52a 165.25±23.08a 277.18±5.98a
T3 92.81±2.98b 113.22±12.43b 127.40±20.64b 199.01±27.21b
总根体积
Total root volume
(cm3)
2018 CK 1.19±0.12b 2.11±0.13b 1.87±0.25b 1.88±0.06b
T1 1.22±0.05b 2.42±0.11ab 2.06±0.12ab 1.92±0.07ab
T2 1.50±0.07a 2.69±0.31a 2.34±0.16a 2.05±0.13a
T3 1.45±0.10a 2.41±0.14ab 1.95±0.14b 1.89±0.05b
2019 CK 0.94±0.08b 1.05±0.28b 1.63±0.23ab 1.43±0.30c
T1 1.32±0.15a 1.37±0.16ab 2.15±0.33ab 2.00±0.20ab
T2 1.39±0.11a 1.82±0.13a 2.36±0.43a 2.18±0.24a
T3 1.07±0.08b 1.28±0.17b 1.60±0.40b 1.55±0.18bc

Table 5

Correlation analysis between dry matter accumulation and morphology of peanut root"

皮尔逊相关系数
Pearson correlation coefficient
根干重
Root dry weight
总根长
Total root length
总根表面积
Total root surface area
总根体积
Total root volume
根干重 Root dry weight 1
总根长 Total root length 0.784** 1
总根表面积 Total root surface area 0.774** 0.589* 1
总根体积 Total root volume 0.845** 0.705** 0.815** 1

Fig. 1

Effects of potassium application on nodule number and dry weight of peanut SS: Seeding stage; PS: Pegging stage; PSS: Pod-setting stage. Values followed by different letters mean significance at 5% level. The same as below"

Table 6

Effects of potassium application on bacteria cell and bacteroids of nodule in peanut (2018)"

处理 Treatment CW (um) MS (nm) IN ID (nm)
CK 0.220±0.031c 4.561±0.532c 56 72.851±5.134b
T1 0.282±0.034b 12.684±2.503b 0 0
T2 0.302±0.053b 14.129±2.856ab 0 0
T3 0.456±0.058a 15.639±2.083a 70 155.736±17.767a

Fig. 2

The effect of potassium application on nodule ultrastructure of peanut (2018) (1)-(4) is the rhizobium-containing cell region of four treatments, (5) - (8) is a single bacterial cell of four treatments, (9) - (12) is a single bacteroid of four treatments. B: Bacteria cell; b: Bacteroids; I: Inclusion particle; V: Vesicle; N: Nucleus; CW: Cell wall; CM: Cytomembrane; BM: Bacteroids membrane; PM: Bacteroids perimembrane; MS: Membrane space; #: Bacteroids perimembrane merge together"

Table 7

Effects of potassium application on equation and parameters of N, P and K accumulation dynamics of peanut"

养分
Nutrient
年份
Year
处理
Treatment
模拟方程
Simulation equation
Vmax
(mg·d-1)
Tmax
(d)
V
(mg·d-1)
Taas
(d)
Ymax
(mg)

Nitrogen
2018 CK W=917.98/(1+181.31e-0.10t) 23.43 50.93 15.62 58.77 917.98
T1 W=1404.28/(1+139.80e-0.08t) 28.93 59.95 19.29 72.82 1404.28
T2 W=1574.11/(1+121.43e-0.08t) 31.56 59.84 21.04 74.81 1574.11
T3 W=1297.40/(1+137.47e-0.08t) 26.66 59.90 17.77 72.99 1297.40
2019 CK W=1096.71/(1+263.33e-0.09t) 25.66 59.78 17.11 64.10 1096.71
T1 W=1142.15/(1+187.86e-0.09t) 24.44 61.16 16.29 70.09 1142.15
T2 W=1457.70/(1+103.53e-0.07t) 25.87 65.35 17.25 84.51 1457.70
T3 W=1379.85/(1+104.19e-0.07t) 22.80 70.29 15.20 90.77 1379.85

Phosphorus
2018 CK W=49.47/(1+46.08e-0.05t) 0.66 72.27 0.44 113.21 49.47
T1 W=58.75/(1+59.73e-0.06t) 0.81 73.96 0.54 108.50 58.75
T2 W=90.76/(1+102.49e-0.06t) 1.31 80.24 0.87 103.99 90.76
T3 W=67.74/(1+181.40e-0.07t) 1.18 74.51 0.79 85.96 67.74
2019 CK W=54.66/(1+156.12e-0.06t) 0.79 86.93 0.53 103.27 54.66
T1 W=55.26/(1+104.2e-0.06t) 0.84 76.31 0.56 98.52 55.26
T2 W=62.97/(1+78.44e-0.06t) 0.88 78.46 0.58 107.91 62.97
T3 W=62.02/(1+98.03e-0.05t) 0.84 85.07 0.56 111.32 62.02

Potassium
2018 CK W=280.42/(1+261.42e-0.12t) 8.06 46.76 5.37 52.17 280.42
T1 W=387.73/(1+137.06e-0.10t) 9.47 50.36 6.31 61.41 387.73
T2 W=535.92/(1+94.30e-0.08t) 10.69 56.97 7.13 75.19 535.92
T3 W=474.72/(1+103.62e-0.08t) 9.10 60.50 6.07 78.23 474.72
2019 CK W=311.06/(1+162.44e-0.10t) 7.51 52.69 5.01 62.11 311.06
T1 W=334.87/(1+173.73e-0.09t) 7.94 54.35 5.30 63.22 334.87
T2 W=348.27/(1+110.26e-0.09t) 8.10 50.57 5.40 64.52 348.27
T3 W=344.74/(1+149.98e-0.09t) 8.09 53.36 5.40 63.90 344.74

Fig. 3

Effects of potassium application on agronomic characteristics of peanut"

Table 8

Effects of potassium application on yield of peanut"

处理
Treatment
产量Yield( kg·hm-2)
2018 2019
CK 3294.84±52.72c 3015.69±67.33c
T1 3415.38±16.63b 3338.78±56.89a
T2 3537.79±51.21a 3393.91±94.82a
T3 3390.76±57.73bc 3172.24±95.75b
[46]
ZHANG P, BAO X L, ZHANG Y L, GAO N, ZOU H T, ZHANG Y L, YU N. Coupling effects of irrigation and potassium on soil nutrients of cinnamon soil and accumulation of nutrients by peanut. Journal of Soil and Water Conservation, 2017, 31(2): 272-278. (in Chinese)
[47]
周录英, 李向东, 王丽丽. 氮、 磷、钾、钙肥不同用量对花生光合性能及产量品质的影响. 花生学报, 2006, 35(2): 11-16.
ZHOU L Y, LI X D, WANG L L. Effects of different application rates of N, P, K, Ca fertilizer on photosynthesis properties, yield and kernel quality of peanut. Journal of Peanut Science, 2006, 35(2): 11-16. (in Chinese)
[48]
高飞, 翟志席, 王铭伦. 施钾量对夏直播花生光合特性及产量的影响. 花生学报, 2011, 40(1): 13-17.
GAO F, ZHAI Z X, WANG M L. Effects of potassium application rate on photosynthetic characteristics and yield of summer-planted peanut. Journal of Peanut Science, 2011, 40(1): 13-17. (in Chinese)
[49]
肖万欣, 赵海岩, 刘晶, 史磊, 常程, 张书萍, 汪经宏, 赵勐. 不同氮、 磷、钾肥料组合对玉米杂交种‘辽单527’产量和农艺性状的影响. 中国农学通报, 2011, 27(12): 196-200.
XIAO W X, ZHAO H Y, LIU J, SHI L, CHANG C, ZHANG S P, WANG J H, ZHAO M. Effects of different N, P and K fertilizer combinations on yield and agronomic characters of maize hybrid 'Liaodan 527'. Chinese Agricultural Science Bulletin, 2011, 27(12): 196-200. (in Chinese)
[50]
张丽, 王寅, 鲁剑巍, 任涛, 李小坤, 丛日环. 施钾对直播油菜产量及钾钙镁养分吸收的影响. 中国油料作物学报, 2015, 37(3): 336-343.
ZHANG L, WANG Y, LU J W, REN T, LI X K, CONG R H. Effect of potassium application on absorption of potassium, calcium and magnesium for direct-sowing winter rapeseed. Chinese Journal of Oil Crop Sciences, 2015, 37(3): 336-343. (in Chinese)
[51]
刘晓伟, 宋一蕾, 李珊珊, 张树华, 杨学举, 王殿武, 赵勇. 低钾胁迫对不同品种冬小麦植株元素累积和生物学性状的影响. 河北农业大学学报, 2019, 42(3): 14-21.
LIU X W, SONG Y L, LI S S, ZHANG S H, YANG X J, WANG D W, ZHAO Y. Effects of low potassium stress on element accumulation and biological traits of different winter wheat varieties. Journal of Hebei Agricultural University, 2019, 42(3): 14-21. (in Chinese)
[52]
张海平. 钙调控花生(Arachis hypogaea L. )生长发育的细胞生理机制研究[D]. 福州: 福建农林大学, 2003.
ZHANG H P. Study on physiology and cytology mechanism of peanut (Arachis hypogaea L.) growth and development regulated by calcium[D]. Fuzhou: Fujian Agriculture and Forestry University, 2003. (in Chinese)
[53]
WU W H, PETERS J, BERKOWITZ G A. Surface charge-mediated effects of Mg2+ on K+ flux across the chloroplast envelope are associated with regulation of stromal pH and photosynthesis. Plant Physiology, 1991, 97(2): 580-587.

doi: 10.1104/pp.97.2.580
[54]
杜广平. 植物与植物生理. 北京: 北京大学出版社, 2007.
DU G P. Plant and Plant Physiology. Beijing: Peking University Press, 2007. (in Chinese)
[1]
联合国粮食及农业组织数据库. 2022. https://www.fao.org/faostat/zh/#data/QCL/visualize
Database of the Food and Agriculture Organization of the United Nations. 2022. https://www.fao.org/faostat/zh/#data/QCL/visualize in Chinese)
[2]
中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[3]
中华人民共和国辽宁省统计局. 辽宁统计年鉴. 北京: 中国统计出版社, 2021.
Liaoning Provincial Bureau of Statistics of the People’s Republic of China. Liaoning Statistical Yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[4]
张满珍, 雷永振, 邱卫文, 赵凯, 王祥珍, 张保烈. 辽宁省主要耕地土壤速效钾含量及其区域分布状况. 辽宁农业科学, 2000(4): 12-14.
ZHANG M Z, LEI Y Z, QIU W W, ZHAO K, WANG X Z, ZHANG B L. Soil available potassium content and its regional distribution in main cultivated land in Liaoning province. Liaoning Agricultural Sciences, 2000(4): 12-14. (in Chinese)
[5]
赵秀娟, 宋燕燕, 岳现录, 张淑香, 武雪萍, 龙怀玉. 负压灌溉下不同钾水平对小油菜生长的影响. 中国农业科学, 2017, 50(4): 689-697.
ZHAO X J, SONG Y Y, YUE X L, ZHANG S X, WU X P, LONG H Y. Effect of different potassium levels on the growth of bok choy under negative pressure. Scientia Agricultura Sinica, 2017, 50(4): 689-697. (in Chinese)
[6]
LEIGH R A, WYN JONES R G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 1984, 97(1): 1-13.

doi: 10.1111/j.1469-8137.1984.tb04103.x
[7]
WANG M, ZHENG Q S, SHEN Q R, GUO S W. The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 2013, 14(4): 7370-7390.

doi: 10.3390/ijms14047370 pmid: 23549270
[8]
CHAKRABORTY K, BHADURI D, MEENA H N, KALARIYA K. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiology and Biochemistry, 2016, 103: 143-153.

doi: 10.1016/j.plaphy.2016.02.039
[9]
ZHANG X C, WU H H, CHEN J G, CHEN L M, WAN X C. Chloride and amino acids are associated with K+-alleviated drought stress in tea (Camellia sinesis). Functional Plant Biology, 2020, 47(5): 398-408.

doi: 10.1071/FP19221
[10]
WU Q, ZHU X F, ZHAO X S, SHEN R F. Potassium affects cadmium resistance in Arabidopsis through facilitating root cell wall Cd retention in a nitric oxide dependent manner. Environmental and Experimental Botany, 2020, 178: 104175.

doi: 10.1016/j.envexpbot.2020.104175
[11]
KUBO K, MARUYAMA H, FUJIMOTO H, SUZUKI M, KAN A, UNNO Y, SHINANO T. Comparative study of radioactive cesium transfer from soil to peanut and soybean. Soil Science and Plant Nutrition, 2021, 67(6): 707-715.

doi: 10.1080/00380768.2021.1988829
[12]
SORATTO R P, JOB A L G, FERNANDES A M, ASSUNÇÃO N S, FERNANDES F M. Biomass accumulation and nutritional requirements of potato as affected by potassium supply. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 1051-1066.

doi: 10.1007/s42729-020-00192-3
[13]
YANG Z J, WU X H, CHEN L H, HUANG L M, CHEN Y, WU J, El-KASSABY Y A, GROSSNICKLE S C, FENG J L. Fertilization regulates accumulation and allocation of biomass and nutrients in Phoebe bournei seedlings. Agriculture, 2021, 11(12): 1187.

doi: 10.3390/agriculture11121187
[14]
THORNBURG T E, LIU J, LI Q, XUE H Y, WANG G, LI L J, FONTANA J E, DAVIS K E, LIU W Y, ZHANG B H, ZHANG Z Y, LIU M J, PAN X P. Potassium deficiency significantly affected plant growth and development as well as microRNA-mediated mechanism in wheat (Triticum aestivum L. ). Frontiers in Plant Science, 2020, 11: 1219.

doi: 10.3389/fpls.2020.01219
[15]
FONTANA J E, WANG G, SUN R R, XUE H Y, LI Q, LIU J, DAVIS K E, THORNBURG T E, ZHANG B H, ZHANG Z Y, PAN X P. Impact of potassium deficiency on cotton growth, development and potential microRNA-mediated mechanism. Plant Physiology and Biochemistry, 2020, 153: 72-80.

doi: S0981-9428(20)30230-8 pmid: 32480238
[16]
HASANUZZAMAN M, BHUYAN M H M B, NAHAR K, HOSSAIN M S, MAHMUD J A, HOSSEN M S, MASUD A A C, MOUMITA, FUJITA M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 2018, 8(3): 31.

doi: 10.3390/agronomy8030031
[17]
周可金, 马成泽, 宋燕平, 牛运生. 过量施用钾肥对花生生长的抑制作用. 安徽农业大学学报, 2001, 28(3): 284-287.
ZHOU K J, MA C Z, SONG Y P, NIU Y S. Restraint of over-applied potassium on the growth of peanut. Journal of Anhui Agricultural University, 2001, 28(3): 284-287. (in Chinese)
[18]
万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003.
WAN S B. Peanut Cultivation in China. Shanghai: Shanghai Science and Technology Press, 2003. (in Chinese)
[19]
周可金, 马成泽, 许承保, 李定波. 施钾对花生养分吸收、产量与效益的影响. 应用生态学报, 2003, 14(11): 1917-1920.
ZHOU K J, MA C Z, XU C B, LI D B. Effects of potash fertilizer on nutrient absorption by peanut and its yield and benefit. Chinese Journal of Applied Ecology, 2003, 14(11): 1917-1920. (in Chinese)
[20]
黄海云. 低钾胁迫对花生生长发育和养分吸收利用的影响[D]. 沈阳: 沈阳农业大学, 2020.
HUANG H Y. Effects of low potassium stress on peanut growth and nutrient uptake & utilization in peanut[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[21]
康玉洁, 王月福, 赵长星, 王铭伦, 徐亮, 程曦. 不同施钾水平对花生衰老特性及产量的影响. 中国农学通报, 2010, 26(4): 117-122.
KANG Y J, WANG Y F, ZHAO C X, WANG M L, XU L, CHENG X. Effects of different potassium application on senescence and yield in peanut. Chinese Agricultural Science Bulletin, 2010, 26(4): 117-122. (in Chinese)
[22]
ALMEIDA H J, PANCELLI M A, PRADO R M, CAVALCANTE V S, CRUZ F J R. Effect of potassium on nutritional status and productivity of peanuts in succession with sugar cane. Journal of Soil Science and Plant Nutrition, 2015, 15(1): 1-10.
[23]
JANCZAREK M, RACHWAL K, MARZEC A, GRZADZIEL J, PALUSINSKA-SZYSZ M. Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions. Applied Soil Ecology, 2015, 85: 94-113.

doi: 10.1016/j.apsoil.2014.08.010
[24]
CHEN J, HU M, MA H, WANG Y S, WANG E T, ZHOU Z F, GU J. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong province. Systematic and Applied Microbiology, 2016, 39(6): 418-427.

doi: 10.1016/j.syapm.2016.06.002 pmid: 27499533
[25]
TZIPILEVICH E, BENFEY P N. Phage-resistant bacteria reveal a role for potassium in root colonization. mRio, 2021, 12(4): e01403-21.
[26]
DESBROSSES G, KOPKA C, OTT T, UDVARDI M K. Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Molecular Plant-Microbe Interactions, 2004, 17(7): 789-797.

doi: 10.1094/MPMI.2004.17.7.789 pmid: 15242173
[27]
何一, 蔡霞, 王卫卫. 白车轴草和紫花苜蓿根瘤的显微及超微结构. 西北植物学报, 2003, 23(3): 369-373.
HE Y, CAI X, WANG W W. The structure of root nodules in Trifolium repens and Medicago sativa. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(3): 369-373. (in Chinese)
[28]
付江鹏, 贺正, 贾彪, 刘志, 李振洲, 刘慧芳. 水肥一体化施氮水平对玉米籽粒灌浆和脱水过程的影响. 中国农业气象, 2019, 40(12): 772-782.
FU J P, HE Z, JIA B, LIU Z, LI Z Z, LIU H F. Effect of integrated fertilization level of water and fertilizer on maize grain filling and dehydration process. Chinese Journal of Agrometeorology, 2019, 40(12): 772-782. (in Chinese)
[29]
王启柏, 张高英, 万勇善, 李向东. 花生根系在土壤中垂直分布特性的研究. 中国油料, 1995, 17(4): 18-22.
WANG Q B, ZHANG G Y, WAN Y S, LI X D. Studies on distribution characteristics of root system in peanut along soil profile. Chinese Journal of Oil Crop Sciences, 1995, 17(4): 18-22. (in Chinese)
[30]
张鹏, 张玉龙, 邹洪涛, 张玉玲, 廖常建, 虞娜. 水钾耦合对花生根系形态及产量的影响. 干旱地区农业研究, 2016, 34(4): 170-174.
ZHANG P, ZHANG Y L, ZOU H T, ZHANG Y L, LIAO C J, YU N. Coupling effects of irrigation and potassium fertilization on root morphological characters and yield of peanut. Agricultural Research in the Arid Areas, 2016, 34(4): 170-174. (in Chinese)
[31]
赵晖, 聂红资. 钾肥种类及用量对烤烟根系生长发育的影响. 浙江农业科学, 2011(6): 1304-1306.
ZHAO H, NIE H Z. Effects of potassium fertilizer on root growth and development of flue-cured tobacco. Journal of Zhejiang Agricultural Sciences, 2011(6): 1304-1306. (in Chinese)
[32]
林昌华, 张士荣, 肖洲, 刘春玲, 李璐瑶, 王军, 丁效东. 不同供钾水平下烤烟生长及硝态氮吸收动力学特征. 热带作物学报, 2019, 40(9): 1677-1684.
LIN C H, ZHANG S R, XIAO Z, LIU C L, LI L Y, WANG J, DING X D.The absorption dynamic parameter of NO3- in flue-cured tobacco pretreated in different concentrations of KCl. Chinese Journal of Tropical Crops, 2019, 40(9): 1677-1684. (in Chinese)
[33]
万书波, 封海胜, 左学青, 张建成. 不同供氮水平花生的氮素利用效率. 山东农业科学, 2000(1): 31-33.
WAN S B, FENG H S, ZUO X Q, ZHANG J C. Nitrogen use efficiency of peanut under different nitrogen supply levels. Shandong Agricultural Sciences, 2000(1): 31-33. (in Chinese)
[34]
王月福, 康玉洁, 王铭伦, 赵长星. 施钾对花生积累氮素来源和产量的影响. 核农学报, 2013, 27(1): 126-131.

doi: 10.11869/hnxb.2013.01.0126
WANG Y F, KANG Y J, WANG M L, ZHAO C X. Effects of potassium application on the accumulated nitrogen source and yield of peanut. Journal of Nuclear Agricultural Sciences, 2013, 27(1): 126-131. (in Chinese)
[35]
张学斌, 孙克刚, 汪立刚, 刘纯敏, 王继印, 贾改花. 河南省夏大豆施用钾肥的效果研究. 土壤肥料, 2002(1): 23-25.
ZHANG X B, SUN K G, WANG L G, LIU C M, WANG J Y, JIA G H. The research on effect of potassium fertilizer application to summer-soybean in Henan province. Soil and Fertilizer Sciences in China, 2002(1): 23-25. (in Chinese)
[36]
DE LA PEÑA T C, PUEYO J J. Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agronomy for Sustainable Development, 2012, 32(1): 65-91.

doi: 10.1007/s13593-011-0024-2
[37]
BERTRAND A, BIPFUBUSA M, DHONT C, CHALIFOUR F P, DROUIN P, BEAUCHAMP C J. Rhizobial strains exert a major effect on the amino acid composition of alfalfa nodules under NaCl stress. Plant Physiology and Biochemistry, 2016, 108: 344-352.

doi: S0981-9428(16)30317-5 pmid: 27508354
[38]
VERDOY D, LUCAS M M, MANRIQUE E, COVARRUBIAS A A, DE FELIPE M R, PUEYO J J. Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus vulgaris). Plant, Cell and Environment, 2004, 27(6): 757-767.

doi: 10.1111/j.1365-3040.2004.01179.x
[39]
SHARMA V, BHATTACHARYYA S, KUMAR R, KUMAR A, IBAEZ F, WANG J P, GUO B Z, SUDINI H K, GOPALAKRISHNAN S, DASGUPTA M, VARSHNEY R K, PANDEY M K. Molecular basis of root nodule symbiosis between bradyrhizobium and 'crack-entry' legume groundnut (Arachis hypogaea L. ). Plants, 2020, 9(2): 267.

doi: 10.3390/plants9020267
[40]
艾云灿, 曹燕珍. 花生根瘤形态发生及其超微结构研究. 华中农业大学学报, 1991, 10(2): 169-176. 225.
AI Y C, CAO Y Z. Studies on morphogenesis and ultrastructure of peanut (Arachis hypogaea L. ) nodule. Journal of Huazhong Agricultural University, 1991, 10(2): 169-176, 225. (in Chinese)
[41]
AMTMANN A, ARMENGAUD P. Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Current Opinion in Plant Biology, 2009, 12(3): 275-283.

doi: 10.1016/j.pbi.2009.04.014
[42]
薛莲, 井彩巧, 张鹏, 宋学栋, 孙振荣, 王海鹏, 袁宁, 蒲明. 氮磷钾配比对甘蓝产量及养分吸收利用的影响. 水土保持通报, 2017, 37(6): 80-84, 91.
XUE L, JING C Q, ZHANG P, SONG X D, SUN Z R, WANG H P, YUAN N, PU M. Effects of different proportional N, P and K treatments on nutrients absorption & accumulation and yield of cabbage. Bulletin of Soil and Water Conservation, 2017, 37(6): 80-84, 91. (in Chinese)
[43]
侯云鹏, 杨建, 孔丽丽, 李前, 王立春, 谢佳贵. 水稻养分吸收和转运及产量对施钾的响应. 吉林农业大学学报, 2018, 40(1): 17-24.
HOU Y P, YANG J, KONG L L, LI Q, WANG L C, XIE J G. Response of nutrient absorption, translocation and yield of rice to potassium fertilizer application. Journal of Jilin Agricultural University, 2018, 40(1): 17-24. (in Chinese)
[44]
彭智平, 吴雪娜, 于俊红, 黄继川, 徐培智. 施钾量对花生养分吸收及产量品质的影响. 花生学报, 2013, 42(3): 27-31.
PENG Z P, WU X N, YU J H, HUANG J C, XU P Z. Effects of potassium application on nutrient absorption, yield and quality of peanut. Journal of Peanut Science, 2013, 42(3): 27-31. (in Chinese)
[45]
武庆慧, 汪洋, 赵亚南, 李瑞珂, 司玉坤, 黄玉芳, 叶优良, 张福锁. 氮磷钾配比对潮土区高产夏播花生产量、养分吸收和经济效益的影响. 中国土壤与肥料, 2019, 280(2): 98-104.
WU Q H, WANG Y, ZHAO Y N, LI R K, SI Y K, HUANG Y F, YE Y L, ZHANG F S. Effects of NPK ratio on yield, nutrient absorption and economic benefit of high-yielding summer peanut in a fluvo-aquic soil. Soil and Fertilizer Sciences in China, 2019, 280(2): 98-104. (in Chinese)
[46]
张鹏, 包雪莲, 张玉龙, 高娜, 邹洪涛, 张玉玲, 虞娜. 水钾耦合对褐土养分及花生养分累积的影响. 水土保持学报, 2017, 31(2): 272-278.
[1] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[2] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[3] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[4] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[5] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[6] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[7] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[8] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[9] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[10] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[11] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[12] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[13] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[14] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[15] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!