Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2500-2508.doi: 10.3864/j.issn.0578-1752.2022.13.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.)

HAO Jing(),LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng()   

  1. College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China for Crop Improvement and Regulation/Key Laboratory of Crop Germplasm Resources of Hebei Province, Baoding 071001, Hebei
  • Received:2022-02-07 Accepted:2022-04-08 Online:2022-07-01 Published:2022-07-08
  • Contact: LiFeng LIU E-mail:873993120@qq.com;liulifeng@hebau.edu.cn

Abstract:

【Objective】Peanut (Arachis hypogaea L.) is one of the important vegetable oil and cash crop. High yield is always the predominant objective in peanut breeding and determined by seed number per unit area and seed weight. Seed number per unit area is produced by planting density per unit area×number of pods per plant×number of seeds per pod. Therefore, the genetic dissection of the number of seeds per pod is helpful to explore the gene/locus related to this trait, which provides an important theoretical basis for the molecular breeding of yield in peanut.【Method】A RIL population, derived from Silihong×Jinonghei 3, were planted at Qingyuan experimental station of Hebei Agricultural University in Baoding city, Hebei province in 2018(E1) and 2020(E2). Phenotypic values of traits associated with the number of one seed pods per plant, two seeds pods per plant and multiple pods per plant were investigated at harvest stage. By using the genetic linkage map constructed by laboratory of Peanut innovation team, Hebei Agricultural University and software of QTL Icimapping V4.1(the Inclusive composite interval Mapping (ICIM)), QTL mapping for the number of seeds per pod was carried out under two environments.【Result】The results showed that the rates of one seed pods per plant and two seeds pods per plant were normal distribution, while the rate of multiple pods per plant was skewed normal distribution. A total of 11 QTLs were detected for the three traits, which could explain the phenotypic variation of 4.66%-22.34% and the additive effects of -9.35-9.42. Among of them, 5 QTLs for the rate of multiple pods per plant with explained 3.19% to 22.34% of phenotypic variation were obtained. The additive effect of one QTL from Jinonghei 3 was negative (-4.77), while the additive effect of the other four QTLs from Silihong was positive (3.59-9.42). Two QTLs for the rate of one seed pods per plant were mapped with explained 4.97%-6.43% of phenotypic variation. The additive effects of the two QTLs from Jinonghei 3 were negative (-4.45 and -4.54). Four QTLs for the rate of two seed pods per plant were located with explained 4.97%-6.43% of phenotypic variation. The additive effects of the four QTLs from Jinonghei 3 were negative (-9.35--3.84). Among of these QTLs, 6 QTLs were major QTLs, of which qRMSPA05 was repeatedly detected, and the heritable phenotypic variation was 16.58%-17.34%, and the additive effect was 7.69-8.12.【Conclusion】Six major QTLs and one major stable QTL for multiple pods per plant were identified, which will be helpful for improving the yield traits in peanut. The results can be used as important candidate segments for genetic improvement, and molecular marker assisted selection and fine mapping.

Key words: peanut, pod-related traits, the number of seeds per pod, QTL, RILs

Fig. 1

Seed and pods of parents Silihong (left) and Jinonghei 3 (right)"

Table 1

Descriptive statistical results of the RILs and their parents"

性状
Trait
年份
Year
四粒红
Silihong
冀农黑3号
Jinonghei 3
最小值
Minimum
最大值
Maximum
均值
Mean
方差
Variance
偏度
Skewness
峰度
Kurtosis
多仁果率
RMSP (%)
2018 50.26A 0.00B 0.00 75.76 15.64** 268.52 1.21 1.00
2020 55.17A 0.00B 0.00 70.73 18.98** 333.80 0.91 -0.10
单仁果率
NOPP (%)
2018 17.86A 21.29A 0.00 81.82 33.67** 254.04 0.72 0.43
2020 10.34A 16.67A 0.00 69.39 24.16** 198.68 0.74 0.26
双仁果率
RTSP (%)
2018 30.95A 78.71B 15.79 100.00 50.79** 228.87 -0.08 -0.03
2020 34.48A 83.33B 2.50 94.44 54.68** 398.24 -0.15 -0.61

Fig. 2

Frequency profile for each trait of RIL population in different environments"

Table 2

QTLs detected for one seed pods per plant, two seeds pods per plant and multiple pods per plant in different environments"

性状
Trait
年份
Year
位点
QTL
染色体
Chromosome
位置
Position
(cM)
标记区间
Marker interval
范围
Range
(cM)
LOD 可解释
表型变异
PVE (%)
加性效应
Additive
物理位置
Physical interval (Mb)
多仁果率
RMSP
2018 qRMSPA05 A05 87 Marker148282—Marker146762 85.5—87.5 14.90 17.34 7.69 88.64—91.57
2020 qRMSPA05 A05 87 Marker148282—Marker146762 85.5—87.5 14.98 16.58 8.12 88.64—91.57
2018 qRMSPA06 A06 29 Marker156261—Marker156336 26.5—31.5 6.07 6.73 -4.77 7.33—7.77
2018 qRMSPA09.1 A09 51 Marker248339—Marker250104 49.5—53.5 9.85 10.71 6.05 114.00—119.66
2020 qRMSPA09.2 A09 46 Marker247552—Marker248077 43.5—47.5 18.18 22.34 9.42 110.90—113.16
2020 qRMSPB10 B10 78 AHGS1573_B07—EM_30A 77.5—78.5 3.32 3.19 3.59
单仁果率
NOPP
2018 qNOPPB06 B06 61 Marker538904—Marker536875 60.5—61.5 3.66 6.43 -4.45 106.84—113.12
2020 qNOPPB02 B02 33 Marker338013—Marker338987 32.5—34.5 5.78 4.97 -4.54 16.78—19.22
双仁果率
RTSP
2020 qRTSPA05 A05 90 Marker146713—Marker146673 89.5—90.5 15.02 18.14 -8.72 88.26—88.45
2018 qRTSPA09.1 A09 52 Marker248339—Marker250104 49.5—53.5 7.27 13.84 -5.85 114.00—119.66
2020 qRTSPA09.2 A09 46 Marker247552—Marker248077 43.5—47.5 15.49 20.87 -9.35 110.90—113.16
2020 qRTSPB10 B10 78 AHGS1573_B07—EM_30A 77.5—78.5 3.24 3.46 -3.84

Fig. 3

QTLs detected for one seed pods per plant, two seeds pods per plant and multiple pods per plant in RIL population"

[1] BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D, CANNON E K S, LIU X, GAO D, CLEVENGER J, DASH S. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48(4): 438-446.
doi: 10.1038/ng.3517
[2] MORETZSOHN M C, GOUVEA E G, INGLIS P W, LEAL- BERTIOLI S C M, VALLS J F M, BERTIOLI D J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Annals of Botany, 2013, 111(1): 113-126.
doi: 10.1093/aob/mcs237
[3] ROBLEDO G, SEIJO G. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: A new proposal for genome arrangement. Theoretical and Applied Genetics, 2010, 121(6): 1033-1046.
doi: 10.1007/s00122-010-1369-7
[4] WONDRACEK-LÜDKE D C, CUSTODIO A R, SIMPSON C E, VALLS J F M. Crossability of Arachis valida and B genome Arachis species. Genetics and Molecular Research, 2015, 14(4): 17574-17586.
doi: 10.4238/2015.December.21.30
[5] 任小平. 中国主要花生改良品种遗传多样性及品质性状关联分析[D]. 北京: 中国农业科学院, 2013.
REN X P. Correlation analysis of genetic diversity and quality traits of main peanut improved varieties in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[6] 禹山林:中国花生遗传育种学. 上海: 上海科学技术出版社, 2011: 201-252.
YU S L. Genetics and Breeding of Peanut in China. Shanghai: Shanghai Science and Technology Press, 2011: 201-252. (in Chinese)
[7] Food and Agricultural Organization of the United Nations. http://www.fao.org/faostat/en/. [2022-06-08].
[8] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931.
LI H H, ZHANG L Y, WANG J K. Analysis and answers to some common problems in quantitative trait gene mapping. Crop Journal, 2010, 36(6): 918-931. (in Chinese)
[9] VARSHNEY R K, BERTIOLI D J, MORETZSOHN M C, VADEZ V, KRISHNAMURTHY L, ARUNA R, NIGAM S N, MOSS B J, SEETHA K, RAVI K. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2009, 118(4): 729-739.
doi: 10.1007/s00122-008-0933-x
[10] CHEN W G, JIAO Y Q, CHENG L Q, HUANG L, LIAO B S, TANG M, REN X P, ZHOU X J, CHEN Y N, JIANG H F. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genetics, 2016, 17(1): 25-34.
doi: 10.1186/s12863-016-0337-x
[11] CHEN Y, REN X, ZHENG Y, ZHOU X, HUANG L, YAN L, JIAO Y, CHEN W, HUANG S, WAN L. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Molecular Breeding, 2017, 37(2): 2-14.
doi: 10.1007/s11032-016-0601-9
[12] BRANCH W D. Inheritance of a one-seeded pod trait in peanut. Journal of Heredity, 2008, 99(2): 221-228.
doi: 10.1093/jhered/esm121
[13] MANSUR L M, LARK K G, KROSS H, OLIVEIRA A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Tag Theoretical & Applied Genetics, 1993, 86: 907-913.
[14] MORETZSOHN M C, LEOI L, PROITE K. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 2005, 111(6): 1060-1071.
doi: 10.1007/s00122-005-0028-x
[15] MORETZSOHN M C, BARBOSA A, ALVES-FREITAS D M. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biology, 2009, 9(1): 40-50.
doi: 10.1186/1471-2229-9-40
[16] 王辉, 梁前进, 胡小娇, 李坤, 黄长玲, 王琪, 何文昭, 王红武, 刘志芳. 不同密度下玉米穗部性状的QTL分析. 作物学报, 2016, 42(11): 9-16.
WANG H, LIANG Q J, HU X J, LI K, HUANG C L, WANG Q, HE W Z, WANG H W, LIU Z F. QTL analysis of ear traits in maize under different densities. Crop Journal, 2016, 42(11): 9-16. (in Chinese)
[17] RAVI K, VADEZ V, ISOBE S. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2011, 122(6): 1119-1132.
doi: 10.1007/s00122-010-1517-0
[18] SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012, 21(1): 80-91.
doi: 10.1186/s12870-021-02856-3
[19] LUO H Y, PANDEY M K, KHAN A W, GUO J B, WU B, CAI Y, HUANG L, ZHOU X J, CHEN Y N, CHEN W G, LIU N, LEI Y, LIAO B S, VARSHNEY R, JIANG H F. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 2019, 17(7): 1248-1260.
doi: 10.1111/pbi.13050
[20] CHAVARRO C, CHU Y, HOLBROOK C, ISLEIB T, BERTIOLI D, HOVAV R, BUTTS C, LAMB M, SORENSEN R A, JACKSON S, OZIAS-AKINS P. Pod and seed trait QTL identification to assist breeding for peanut market preferences. Genes Genomes Genetics, 2020, 10(7): 2297-2315.
[21] 高静瑶, 刘春燕, 蒋洪蔚, 胡国华, 陈庆山. 多环境下大豆单株荚数性状的QTL分析. 中国油料作物学报, 2012, 34(1): 1-7.
GAO J Y, LIU C Y, JIANG H W, HU G H, CHEN Q S. QTL analysis of pod number traits per plant in soybean under multiple environments. Chinese Journal of Oil Crops, 2012, 34(1): 1-7. (in Chinese)
[22] 杨喆, 孙亚男, 齐照明, 辛大伟, 蒋洪蔚, 何琳, 栾怀海, 刘春燕, 钟鹏. 大豆荚数性状相关QTL的加性, 上位性及QE互作效应分析. 中国农业大学学报, 2013(3): 1-13.
YANG J, SUN Y N, QI Z M, XIN D W, JIANG H W, HE L, LUAN H H, LIU C Y, ZHONG P. Additivity, epistasis and QE interaction of QTL related to pod number traits in soybean. Journal of China Agricultural University, 2013(3): 1-13. (in Chinese)
[23] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 李彩云, 杜华, 巩鹏涛, 刘学义. 大豆产量及主要农艺性状QTL的上位性互作和环境互作分析. 作物学报, 2014, 40(1): 37-44.
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, LI C Y, DU H, GONG P T, LIU X Y. Epistatic and environmental interactions of QTL for yield and main agronomic traits in soybean. Crop of Journal, 2014, 40(1): 37-44. (in Chinese)
[24] 李灿东, 蒋洪蔚, 齐照明, 李莹莹, 郭泰, 王志新, 郑伟, 张振宇, 赵海红, 王囡囡. 大豆三粒荚数QTL定位及上位性效应分析. 分子植物育种, 2019, 17(9): 2906-2913.
LI C D, JIANG H W, QI Z M, LI Y Y, GUO T, WANG Z X, ZHENG W, ZHANG Z Y, ZHAO H H, WANG N N. QTL mapping and epistatic effect analysis of three pod number in soybean. Molecular Plant Breeding, 2019, 17(9): 2906-2913. (in Chinese)
[25] 李灿东, 蒋洪蔚, 郭泰, 王志新, 郑伟, 张振宇, 赵海红, 王囡囡, 陈庆山. 大豆四粒荚数QTL分析及位点交互群体验证. 中国油料作物学报, 2020, 42(1): 44-50.
LI C D, JIANG H W, GUO T, WANG Z X, ZHENG W, ZHANG Z Y, ZHAO H H, WANG N N, CHEN Q S. QTL analysis and interpopulation validation of four pod numbers in soybean. Chinese Journal of Oil Crops, 2020, 42(1): 44-50. (in Chinese)
[26] JEONG N, MOON J K, HONG S K, KIM C G, JEONG S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theoretical and Applied Genetics, 2011, 122(5): 865-874.
doi: 10.1007/s00122-010-1492-5
[27] LIU Z Z, YAO D, ZHANG J, LI Z L, WANG P W. Identification of genes associated with the increased number of four-seed pods in soybean (Glycine max L.) using transcriptome analysis. Genetics & Molecular Research, 2015, 14(4): 18895-18912.
[28] YANG Z, XIN D W, LIU C Y, JIANG H W, HAN X. Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Molecular Genetics & Genomics, 2013, 288(12): 651-667.
[29] WANG L, YANG X, CUI S, MU G, SUN X, LIU L, LI Z. QTL mapping and QTL × environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal, 2019, 7(2): 249-260.
doi: 10.1016/j.cj.2018.11.007
[30] WANG L, YANG X L, CUI S L, ZHAO N N, HOU M Y, MU G J, LIU L F, LI Z C. High-density genetic map development and QTL mapping for concentration degree of floret flowering date in cultivated peanut (Arachis hypogaea L.). Molecular Breeding, 2020, 40(17): 1-14.
doi: 10.1007/s11032-019-1080-6
[31] LI H, WANG L J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical and Applied Genetics, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5
[32] WANG L, MENG L, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Acta Agronomica Sinica, 2015, 3: 169-173.
[33] 张志勇. 水稻粒型和粒重性状的主效QTL定位研究[D]. 厦门: 厦门大学, 2008.
ZHANG Z Y. Mapping of dominant QTL for grain shape and grain weight traits in rice[D]. Xiamen: Xiamen University, 2008. (in Chinese)
[34] LI W T, LIU N, HUANG L, CHEN Y N, GUO J B, YU B L, LUO H Y, ZHOU X J, HUAI D X, CHEN W G, YAN L, WANG X, YONG L, LIAO B S, JIANG H F. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). The Crop Journal, 2021, 9(5): 1-20.
doi: 10.1016/j.cj.2020.06.012
[35] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 杜华, 崔暐文, 刘学义, 方宣钧. 大豆粒形性状主效QTL环境互作和上位性检测. 中国农业科学, 2013, 46(24): 5081-5088.
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, DU H, CUI W W, LIU X Y, FANG X J. Main, environmentally interacted and epistatic QTL for seed shape traits in soybean. Scientia Agricultura Sinica, 2013, 46(24): 5081-5088. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[7] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[8] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[14] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[15] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!