Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2500-2508.doi: 10.3864/j.issn.0578-1752.2022.13.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HAO Jing(),LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng(
)
[1] |
BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D, CANNON E K S, LIU X, GAO D, CLEVENGER J, DASH S. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48(4): 438-446.
doi: 10.1038/ng.3517 |
[2] |
MORETZSOHN M C, GOUVEA E G, INGLIS P W, LEAL- BERTIOLI S C M, VALLS J F M, BERTIOLI D J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Annals of Botany, 2013, 111(1): 113-126.
doi: 10.1093/aob/mcs237 |
[3] |
ROBLEDO G, SEIJO G. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: A new proposal for genome arrangement. Theoretical and Applied Genetics, 2010, 121(6): 1033-1046.
doi: 10.1007/s00122-010-1369-7 |
[4] |
WONDRACEK-LÜDKE D C, CUSTODIO A R, SIMPSON C E, VALLS J F M. Crossability of Arachis valida and B genome Arachis species. Genetics and Molecular Research, 2015, 14(4): 17574-17586.
doi: 10.4238/2015.December.21.30 |
[5] | 任小平. 中国主要花生改良品种遗传多样性及品质性状关联分析[D]. 北京: 中国农业科学院, 2013. |
REN X P. Correlation analysis of genetic diversity and quality traits of main peanut improved varieties in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
[6] | 禹山林:中国花生遗传育种学. 上海: 上海科学技术出版社, 2011: 201-252. |
YU S L. Genetics and Breeding of Peanut in China. Shanghai: Shanghai Science and Technology Press, 2011: 201-252. (in Chinese) | |
[7] | Food and Agricultural Organization of the United Nations. http://www.fao.org/faostat/en/. [2022-06-08]. |
[8] | 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931. |
LI H H, ZHANG L Y, WANG J K. Analysis and answers to some common problems in quantitative trait gene mapping. Crop Journal, 2010, 36(6): 918-931. (in Chinese) | |
[9] |
VARSHNEY R K, BERTIOLI D J, MORETZSOHN M C, VADEZ V, KRISHNAMURTHY L, ARUNA R, NIGAM S N, MOSS B J, SEETHA K, RAVI K. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2009, 118(4): 729-739.
doi: 10.1007/s00122-008-0933-x |
[10] |
CHEN W G, JIAO Y Q, CHENG L Q, HUANG L, LIAO B S, TANG M, REN X P, ZHOU X J, CHEN Y N, JIANG H F. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genetics, 2016, 17(1): 25-34.
doi: 10.1186/s12863-016-0337-x |
[11] |
CHEN Y, REN X, ZHENG Y, ZHOU X, HUANG L, YAN L, JIAO Y, CHEN W, HUANG S, WAN L. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Molecular Breeding, 2017, 37(2): 2-14.
doi: 10.1007/s11032-016-0601-9 |
[12] |
BRANCH W D. Inheritance of a one-seeded pod trait in peanut. Journal of Heredity, 2008, 99(2): 221-228.
doi: 10.1093/jhered/esm121 |
[13] | MANSUR L M, LARK K G, KROSS H, OLIVEIRA A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Tag Theoretical & Applied Genetics, 1993, 86: 907-913. |
[14] |
MORETZSOHN M C, LEOI L, PROITE K. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 2005, 111(6): 1060-1071.
doi: 10.1007/s00122-005-0028-x |
[15] |
MORETZSOHN M C, BARBOSA A, ALVES-FREITAS D M. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biology, 2009, 9(1): 40-50.
doi: 10.1186/1471-2229-9-40 |
[16] | 王辉, 梁前进, 胡小娇, 李坤, 黄长玲, 王琪, 何文昭, 王红武, 刘志芳. 不同密度下玉米穗部性状的QTL分析. 作物学报, 2016, 42(11): 9-16. |
WANG H, LIANG Q J, HU X J, LI K, HUANG C L, WANG Q, HE W Z, WANG H W, LIU Z F. QTL analysis of ear traits in maize under different densities. Crop Journal, 2016, 42(11): 9-16. (in Chinese) | |
[17] |
RAVI K, VADEZ V, ISOBE S. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2011, 122(6): 1119-1132.
doi: 10.1007/s00122-010-1517-0 |
[18] |
SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012, 21(1): 80-91.
doi: 10.1186/s12870-021-02856-3 |
[19] |
LUO H Y, PANDEY M K, KHAN A W, GUO J B, WU B, CAI Y, HUANG L, ZHOU X J, CHEN Y N, CHEN W G, LIU N, LEI Y, LIAO B S, VARSHNEY R, JIANG H F. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 2019, 17(7): 1248-1260.
doi: 10.1111/pbi.13050 |
[20] | CHAVARRO C, CHU Y, HOLBROOK C, ISLEIB T, BERTIOLI D, HOVAV R, BUTTS C, LAMB M, SORENSEN R A, JACKSON S, OZIAS-AKINS P. Pod and seed trait QTL identification to assist breeding for peanut market preferences. Genes Genomes Genetics, 2020, 10(7): 2297-2315. |
[21] | 高静瑶, 刘春燕, 蒋洪蔚, 胡国华, 陈庆山. 多环境下大豆单株荚数性状的QTL分析. 中国油料作物学报, 2012, 34(1): 1-7. |
GAO J Y, LIU C Y, JIANG H W, HU G H, CHEN Q S. QTL analysis of pod number traits per plant in soybean under multiple environments. Chinese Journal of Oil Crops, 2012, 34(1): 1-7. (in Chinese) | |
[22] | 杨喆, 孙亚男, 齐照明, 辛大伟, 蒋洪蔚, 何琳, 栾怀海, 刘春燕, 钟鹏. 大豆荚数性状相关QTL的加性, 上位性及QE互作效应分析. 中国农业大学学报, 2013(3): 1-13. |
YANG J, SUN Y N, QI Z M, XIN D W, JIANG H W, HE L, LUAN H H, LIU C Y, ZHONG P. Additivity, epistasis and QE interaction of QTL related to pod number traits in soybean. Journal of China Agricultural University, 2013(3): 1-13. (in Chinese) | |
[23] | 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 李彩云, 杜华, 巩鹏涛, 刘学义. 大豆产量及主要农艺性状QTL的上位性互作和环境互作分析. 作物学报, 2014, 40(1): 37-44. |
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, LI C Y, DU H, GONG P T, LIU X Y. Epistatic and environmental interactions of QTL for yield and main agronomic traits in soybean. Crop of Journal, 2014, 40(1): 37-44. (in Chinese) | |
[24] | 李灿东, 蒋洪蔚, 齐照明, 李莹莹, 郭泰, 王志新, 郑伟, 张振宇, 赵海红, 王囡囡. 大豆三粒荚数QTL定位及上位性效应分析. 分子植物育种, 2019, 17(9): 2906-2913. |
LI C D, JIANG H W, QI Z M, LI Y Y, GUO T, WANG Z X, ZHENG W, ZHANG Z Y, ZHAO H H, WANG N N. QTL mapping and epistatic effect analysis of three pod number in soybean. Molecular Plant Breeding, 2019, 17(9): 2906-2913. (in Chinese) | |
[25] | 李灿东, 蒋洪蔚, 郭泰, 王志新, 郑伟, 张振宇, 赵海红, 王囡囡, 陈庆山. 大豆四粒荚数QTL分析及位点交互群体验证. 中国油料作物学报, 2020, 42(1): 44-50. |
LI C D, JIANG H W, GUO T, WANG Z X, ZHENG W, ZHANG Z Y, ZHAO H H, WANG N N, CHEN Q S. QTL analysis and interpopulation validation of four pod numbers in soybean. Chinese Journal of Oil Crops, 2020, 42(1): 44-50. (in Chinese) | |
[26] |
JEONG N, MOON J K, HONG S K, KIM C G, JEONG S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theoretical and Applied Genetics, 2011, 122(5): 865-874.
doi: 10.1007/s00122-010-1492-5 |
[27] | LIU Z Z, YAO D, ZHANG J, LI Z L, WANG P W. Identification of genes associated with the increased number of four-seed pods in soybean (Glycine max L.) using transcriptome analysis. Genetics & Molecular Research, 2015, 14(4): 18895-18912. |
[28] | YANG Z, XIN D W, LIU C Y, JIANG H W, HAN X. Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Molecular Genetics & Genomics, 2013, 288(12): 651-667. |
[29] |
WANG L, YANG X, CUI S, MU G, SUN X, LIU L, LI Z. QTL mapping and QTL × environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal, 2019, 7(2): 249-260.
doi: 10.1016/j.cj.2018.11.007 |
[30] |
WANG L, YANG X L, CUI S L, ZHAO N N, HOU M Y, MU G J, LIU L F, LI Z C. High-density genetic map development and QTL mapping for concentration degree of floret flowering date in cultivated peanut (Arachis hypogaea L.). Molecular Breeding, 2020, 40(17): 1-14.
doi: 10.1007/s11032-019-1080-6 |
[31] |
LI H, WANG L J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical and Applied Genetics, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5 |
[32] | WANG L, MENG L, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Acta Agronomica Sinica, 2015, 3: 169-173. |
[33] | 张志勇. 水稻粒型和粒重性状的主效QTL定位研究[D]. 厦门: 厦门大学, 2008. |
ZHANG Z Y. Mapping of dominant QTL for grain shape and grain weight traits in rice[D]. Xiamen: Xiamen University, 2008. (in Chinese) | |
[34] |
LI W T, LIU N, HUANG L, CHEN Y N, GUO J B, YU B L, LUO H Y, ZHOU X J, HUAI D X, CHEN W G, YAN L, WANG X, YONG L, LIAO B S, JIANG H F. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). The Crop Journal, 2021, 9(5): 1-20.
doi: 10.1016/j.cj.2020.06.012 |
[35] | 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 杜华, 崔暐文, 刘学义, 方宣钧. 大豆粒形性状主效QTL环境互作和上位性检测. 中国农业科学, 2013, 46(24): 5081-5088. |
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, DU H, CUI W W, LIU X Y, FANG X J. Main, environmentally interacted and epistatic QTL for seed shape traits in soybean. Scientia Agricultura Sinica, 2013, 46(24): 5081-5088. (in Chinese) |
[1] | YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349. |
[2] | ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406. |
[3] | XIONG ShangYe, ZHANG Xiang, LIANG BaoHui, YE YangDong, LI YuYang, ZHU Xiao, ZHU ZhiHong, GUAN HuaZhong, ZHANG Shuai, WU JianGuo, HU Jie. Fine Mapping and Analysis of Pyramiding Effects of Rice Brown Planthopper Resistance Genes QBPH1 and QBPH4 [J]. Scientia Agricultura Sinica, 2024, 57(23): 4619-4631. |
[4] | ZHU YanTing, DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua. Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(21): 4376-4390. |
[5] | HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191. |
[6] | LIU Han, DING Di, WANG JiangTao, ZHENG Bin, WANG XiaoXiao, ZHU ChenXu, LIU Juan, LIU Ling, FU GuoZhan, JIAO NianYuan. Coordinated Effects of Maize Ear Type and Planting Density on Interspecific Competition in Maize-Peanut Intercropping System [J]. Scientia Agricultura Sinica, 2024, 57(19): 3758-3769. |
[7] | LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550. |
[8] | HU JiaYu, GAO BingYang, GAO YiFan, YUAN ShiLun, QI Xin, HUANG YuFang, YAN JunYing, ZHAO YaNan, YE YouLiang. Effects of Magnesium Fertilizer Dosage on Nutrient Absorption and Photosynthetic Characteristics in Peanuts [J]. Scientia Agricultura Sinica, 2024, 57(16): 3220-3233. |
[9] | LIU Hua, ZENG FanPei, WANG Qian, CHEN GuoQuan, MIAO LiJuan, QIN Li, HAN SuoYi, DONG WenZhao, DU Pei, ZHANG XinYou. Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut [J]. Scientia Agricultura Sinica, 2024, 57(10): 1870-1881. |
[10] | LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247. |
[11] | JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598. |
[12] | LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648. |
[13] | YAO QiFu, ZHOU JieGuang, WANG Jian, CHEN HuangXin, YANG YaoYao, LIU Qian, YAN Lei, WANG Ying, ZHOU JingZhong, CUI FengJuan, JIANG Yun, MA Jian. Identification and Genetic Analysis of QTL for Spike Length in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(24): 4814-4825. |
[14] | YU TianYi, YANG JiShun, WU ZhengFeng, ZHANG ZhiMeng, SHEN Pu, ZHENG YongMei, LI ShangXia, WU JuXiang, SUN QiQi, WU Yue. Comparative Analysis of the Effects of Different Types of Plastic Film on Peanut Growth and Rhizobacterial Community [J]. Scientia Agricultura Sinica, 2023, 56(24): 4842-4853. |
[15] | JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670. |
|