Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4562-4572.doi: 10.3864/j.issn.0578-1752.2021.21.007
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
YAO Qing1(),YAO Bo1,LÜ Jun1,TANG Jian2,*(
),FENG Jin3,ZHU XuHua3
[1] | 张心雨. 低密度下评估稻飞虱智能识别系统的有效性[D]. 南京: 南京农业大学, 2016. |
ZHANG X Y. Evaluate the effectiveness of automatic identification system at the low planthoppers density. Nanjing: Nanjing Agricultural University, 2016. (in Chinese) | |
[2] | 林培炯, 张智, 王旭龙, 刘冬雪, 胡高, 张云慧. 2019年北京市延庆区草地贪夜蛾种群动态与虫源分析. 植物保护学报, 2020, 47(4):758-769. |
LIN P J, ZHANG Z, WANG X L, LIU D X, HU G, ZHANG Y H. Population dynamic and trajectory simulation of migratory moths of fall armyworm Spodoptera frugiperda in Yangqing of Beijing in 2019. Journal of Plant Protection, 2020, 47(4):758-769. (in Chinese) | |
[3] | 王祥会, 焦玉霞, 王圣楠, 孙玉涛, 王宏梅, 孔德生. 祥辰智能虫情测报灯在大田害虫监测预报中的应用研究. 基层农技推广, 2020, 8(8):43-45. |
WANG X H, JIAO Y X, WANG S N, SUN Y T, WANG H M, KONG D S. Application of Xiangchen intelligent pest situation forecasting lamp in field pest monitoring and forecasting. Grassroots Agricultural Technology Extension, 2020, 8(8):43-45. (in Chinese) | |
[4] |
YAO Q, FENG J, TANG J, XU W G, ZHU X H, YANG B J, LV J, XIE Y Z, YAO B, WU S Z, KUAI N Y, WANG L J. Development of an automatic monitoring system for rice light-trap pests based on machine vision. Journal of Integrative Agriculture, 2020, 19(10):2500-2513.
doi: 10.1016/S2095-3119(20)63168-9 |
[5] |
EBRAHIMI M A, KHOSHTAGHAZA M H, MINAEI S, JAMSHIDI B. Vision-based pest detection based on SVM classification method. Computers and Electronics in Agriculture, 2017, 137:52-58.
doi: 10.1016/j.compag.2017.03.016 |
[6] | XIAO D Q, FENG J Z, LIN T Y, PANG C H, YE Y W. Classification and recognition scheme for vegetable pests based on the BOF-SVM model. International Journal of Agricultural and Biological Engineering, 2018, 11(3):190-196. |
[7] |
DENG L M, WANG Y J, HAN Z Z, YU R S. Research on insect pest image detection and recognition based on bio-inspired methods. Biosystems Engineering, 2018, 169:139-148.
doi: 10.1016/j.biosystemseng.2018.02.008 |
[8] |
ZHAO J, CHENG X P. Field pest identification by an improved Gabor texture segmentation scheme. New Zealand Journal of Agricultural Research, 2007, 50(5):719-723.
doi: 10.1080/00288230709510343 |
[9] | 佘颢, 吴伶, 单鲁泉. 基于SSD网络模型改进的水稻害虫识别方法. 郑州大学学报(理学版), 2020, 52(3):49-54. |
SHE H, WU L, SHAN L Q. Improved rice pest recognition based on SSD network model. Journal of Zhengzhou University (Natural Science Edition), 2020, 52(3):49-54. (in Chinese) | |
[10] | 钱蓉, 孔娟娟, 朱静波, 张萌, 董伟. 基于VGG-16卷积神经网络的水稻害虫智能识别研究. 安徽农业科学, 2020, 48(5):235-238. |
QIAN R, KONG J J, ZHU J B, ZHANG M, DONG W. Research on intelligent identification of rice pests based on VGG-16 convolutional neural network. Journal of Anhui Agricultural Sciences, 2020, 48(5):235-238. (in Chinese) | |
[11] | 梁万杰, 曹宏鑫. 基于卷积神经网络的水稻虫害识别. 江苏农业科学, 2017, 45(20):241-243, 253. |
LIANG W J, CAO H X. Rice pest identification based on convolutional neural network. Jiangsu Agricultural Sciences, 2017, 45(20):241-243, 253. (in Chinese) | |
[12] | ALFARISY A A, CHEN Q, GUO M. Deep learning based classificationfor paddy pests & diseases recognition. Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence. Chengdu, 2018: 21-25. |
[13] | 邵泽中, 姚青, 唐健, 李罕琼, 杨保军, 吕军, 陈轶. 面向移动终端的农业害虫图像智能识别系统的研究与开发. 中国农业科学, 2020, 53(16):3257-3268. |
SHAO Z Z, YAO Q, TANG J, LI H Q, YANG B J, LÜ J, CHEN Y. Research and development of the intelligent identification system of agricultural pests for mobile terminals. Scientia Agricultura Sinica, 2020, 53(16):3257-3268. (in Chinese) | |
[14] | 姚青, 吴叔珍, 蒯乃阳, 杨保军, 唐健, 冯晋, 朱旭华, 朱先敏. 基于改进CornerNet的水稻灯诱飞虱自动检测方法构建与验证. 农业工程学报, 2021, 37(7):183-189. |
YAO Q, WU S Z, KUAI N Y, YANG B J, TANG J, FENG J, ZHU X H, ZHUX M. Construction and verification of automatic detection method for rice planthoppers on light-trap insect images based on improved ConerNet. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):183-189. | |
[15] |
CHENG X, ZHANG Y H, CHEN Y Q, WU Y Z, YUE Y. Pest identification via deep residual learning in complex background. Computers and Electronics in Agriculture, 2017, 141:351-356.
doi: 10.1016/j.compag.2017.08.005 |
[16] |
SUN Y, LIU X X, YUAN M S, REN L L, WANG J X, CHEN Z B. Automatic in-trap pest detection using deep learning for pheromone- based dendroctonus valens monitoring. Biosystems Engineering, 2018, 176:140-150.
doi: 10.1016/j.biosystemseng.2018.10.012 |
[17] |
SHEN Y F, ZHOU H L, LI J T, JIAN F J, JAYAS D S. Detection of stored-grain insects using deep learning. Computers and Electronics in Agriculture, 2018, 145:319-325.
doi: 10.1016/j.compag.2017.11.039 |
[18] | NAQVI S D Y, HAILE A, RAO S, TEWElDEMEDHIN B, SHARMA V, NYENDE A B. Evaluation of husbandry, insect pests, diseases and management practices of vegetables cultivated in Zoba Anseba, Eritrea. Journal of Eco-friendly Agriculture, 2017, 12(1):47-50. |
[19] |
FERENTINOS K P. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 2018, 145:311-318.
doi: 10.1016/j.compag.2018.01.009 |
[20] |
LIU L, WANG R, XIE C, YANG P, WANG F, SUDIRMAN S, LIU W. PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access, 2019, 7:45301-45312.
doi: 10.1109/Access.6287639 |
[21] | 孔建磊, 金学波, 陶治, 王小艺, 林森. 基于多流高斯概率融合网络的病虫害细粒度识别. 农业工程学报, 2020, 36(13):148-157. |
KONG J L, JIN X B, TAO Z, WANG X Y, LIN S. Fine-grained recognition of pests and diseases based on multi-stream Gaussian probability fusion network. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13):148-157. (in Chinese) | |
[22] | LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear cnn models for fine-grained visual recognition. Proceedings of the IEEE International Conference on Computer Vision. CentroParque Convention Center in Santiago,Chile, 2015: 1449-1457. |
[23] | 蓝洁, 周欣, 何小海, 滕奇志, 卿粼波. 基于跨层精简双线性网络的细粒度鸟类识别. 科学技术与工程, 2019, 19(36):240-246. |
LAN J, ZHOU X, HE X H, TENG Q Z, QING L B. Fine-grained bird recognition based on cross-layer compact bilinear network. Science Technology and Engineering, 2019, 19(36):240-246. (in Chinese) | |
[24] | 冀中, 赵可心, 张锁平, 李明兵. 基于空间变换双线性网络的细粒度鱼类图像分类. 天津大学学报: 自然科学与工程技术版, 2019, 52(5):475-482. |
JI Z, ZHAO K X, ZHANG S P, LI M B. Fine-grained fish image classification based on a bilinear network with spatial transformation. Journal of Tianjin University: Natural Science and Engineering Technology Edition, 2019, 52(5):475-482. (in Chinese) | |
[25] | 刘虎, 周野, 袁家斌. 基于多尺度双线性卷积神经网络的多角度下车型精细识别. 计算机应用, 2019, 39(8):2402-2407. |
LIU H, ZHOU Y, YUAN J B. Fine-grained vehicle recognition under multiple angles based on multi-scale bilinear convolutional neural network. Journal of Computer Applications, 2019, 39(8):2402-2407. (in Chinese) | |
[26] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25:1097-1105. |
[27] |
ZHU Q, ZHENG H F, WANG Y B, CAO Y G, GUO S X. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm. Sensors, 2020, 20(15):4313-4330.
doi: 10.3390/s20154313 |
[28] | HOU J, SU H Y, YAN B, ZAHNG H, SUN Z, CAI X. Classification of tongue color based on CNN. IEEE 2nd International Conference on Big Data Analysis. Beijing, 2017: 725-729. |
[29] | SZEGEDY C, LIU W, JIA Y, SERMANET P, REED S, ANGUELOV D, ERHAN D, VANHOUCKE V, RABINOVICH A. Going deeper with convolutions. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. Hynes Convention Center, Boston, 2015: 1-9. |
[30] | HE K M, ZHANG X, REN S Q, SUN J. Deep residual learning for image recognition. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770-778. |
[31] | MMIH V, HEESS N, GRAVES A. Recurrent models of visual attention. Advances in Neural Information Processing Systems. Palais des Congres de Montreal, Montreal Canada, 2014: 2204-2212. |
[32] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, SUTSKEVER I, SALAKHUTDINOV R. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. |
No related articles found! |
|